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Abstract—In this paper, we present an intelligent image editing and face synthesis system that automatically removes eyeglasses

from an input frontal face image. Although conventional image editing tools can be used to remove eyeglasses by pixel-level editing,

filling in the deleted eyeglasses region with the right content is a difficult problem. Our approach works at the object level where the

eyeglasses are automatically located, removed as one piece, and the void region filled. Our system consists of three parts: eyeglasses

detection, eyeglasses localization, and eyeglasses removal. First, an eye region detector, trained offline, is used to approximately

locate the region of eyes, thus the region of eyeglasses. A Markov-chain Monte Carlo method is then used to accurately locate key

points on the eyeglasses frame by searching for the global optimum of the posterior. Subsequently, a novel sample-based approach is

used to synthesize the face image without the eyeglasses. Specifically, we adopt a statistical analysis and synthesis approach to learn

the mapping between pairs of face images with and without eyeglasses from a database. Extensive experiments demonstrate that our

system effectively removes eyeglasses.

Index Terms—Intelligent image editing, find-and-replace, eye region detection, eyeglasses localization, eyeglasses removal.

�

1 INTRODUCTION

AN important application for computer vision is intelli-
gent image editing which allows users to easily modify

or transfer an image with minimum amount of manual
work. Tools such as Intelligent Scissor [6] and Jet Stream
[20] were devised to segment images with user-specified
semantics. Most image editing operations are pixel-based
and time-consuming. For example, to remove scratches
from a face image, a user needs to painstakingly mark all
the pixels that are considered as damaged. To repair the
damaged image areas, image inpainting approaches (e.g.,
[2]) can be used to fill in the blank region by using
information from nearby pixels.

Often people need to edit human face images. A good

example is to remove red eyes commonly seen in images

taken with a flash. Interesting global operations on human

faces include changing various lighting effects [28] and

modifying facial expressions [17]. In this paper, our goal is

to automatically remove eyeglasses from a human face

image (Fig. 1). Because of significant variations in the

geometry and appearance of eyeglasses, it is very useful to

construct a face image without eyeglasses on which many

existing face analysis and synthesis algorithms can be
applied. For instance, we may start with a face image with
eyeglasses, create its corresponding face image without
eyeglasses, then generate a cartoon sketch for this face [4],
and, finally, put an eyeglasses template back to complete
the cartoon sketch.

Conventional image editing tools can be used to
painstakingly mark all pixels of eyeglasses frame from a
face image. These pixels are then deleted. It is, however,
difficult to fill in this rather large deleted region with the
right content. We propose in this paper a novel find-and-
replace approach at the object level instead of at the pixel
level. In our approach, we find the eyeglasses region and
replace it with a synthesized region with eyeglasses
removed. The synthesized new region is obtained by using
the information from the detected eyeglasses region from
the given face image and, more importantly, based on a
learned statistical mapping between pairs of face images
with and without eyeglasses. This find-and-replace ap-
proach can work with other facial components (e.g., beard
and hair) as well. It is also worthwhile to emphasize that
our approach is used for the purpose of image synthesis,
not for recognition.

1.1 Previous Work

Our approach is related to several statistical learning
methods developed recently in computer vision. For
instance, a statistical technique [8] was proposed to learn
the relationship between high resolution and low resolution
image pairs. Similarly, image analogy [10] learns the
mapping relationship between a pair (or pairs) of training
images, which is then applied to the new input and
synthesized image pair. These statistical approaches gen-
erally use a number of training data to learn a prior model
of the target and then apply Bayesian inference to
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synthesize new images by maximizing a posteriori. Such
approaches have also been applied to human faces in face
hallucination [1], [15] and face cartoon sketch generation [4].
We briefly review related work in face analysis and
statistical learning before introducing our approach.

Many statistical learning-based methods have been
successfully deployed. For instance, neural networks [22],
[25], support vector machines (SVM) [19], wavelets [24], and
decision trees [27] have been applied to face detection.
Deformable shape models [30], [13] and active shape models
(ASM) [5] have been demonstrated to be effective in
localizing faces. Meanwhile, appearance models such as
active appearance models (AAM) [5] are developed to include
texture information for better localization. These object
detection and alignment algorithms are useful in auto-
matically locating user-intended objects in a cluttered
image.

In facial image analysis, people usually focus on facial
parts such as eyes, nose, mouth and profile. For example, in
the neural network-based face detection work [22], specific
feature detectors are devised corresponding to each facial
part in order to improve detection. In ASM [5], facial key
points (landmarks) are defined as the edge points and
corners of various parts and profile. In face sketch generation
work [4], a specific eye model is designed to sketch the eye.
Unfortunately, the presence of occluders such as eyeglasses
tends to compromise the performance of facial feature
extraction and face alignment. However, face detection is
not very much affected by eyeglasses except for extreme
cases of sunglasses and eyeglasses with significant reflection
where the eyes are completely occluded.

Several researchers have worked on eyeglasses recogni-

tion, localization, and removal recently. Jiang et al. [11] used

a glasses classifier to detect glasses on facial images. Wu et

al. [29] devised a sophisticated eyeglasses classifier based

on SVM, with a reported recognition rate close to 90 percent.

Jing and Mariani [12] employed a deformable contour

method to detect glasses under a Bayesian framework. In

their work, 50 key points are used to define the shape of

glasses, and the position of glasses is found by maximizing

the posteriori. Saito’s eyeglasses removal work [23] is based

on principal component analysis (PCA). The eigen-space of

eyeglasses-free patterns is learned by PCA to retain their

principal variance. Projecting a glasses pattern into this

space results in the corresponding glasses-free pattern.

However, the joint distribution between glasses and

glasses-free patterns is not discussed.

1.2 Our Approach

Fig. 1 shows how our eyeglasses removal system is used for

intelligent image editing. Suppose that we start with an

image where a face with eyeglasses is present. Using

conventional face detector (not discussed in this paper), we

crop the face image out as the input to our system. Our

system consists of three modules: eyeglasses detection,

eyeglasses localization, and eyeglasses removal. Once the

eyeglasses region is detected and key points on eyeglasses

frame are located, we apply a novel approach to synthesiz-

ing the face image with eyeglasses removed. The eye-

glasses-free face image then replaces the original face image

to output an edited new image.
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Fig. 1. The automatic eyeglasses removal system consists of three parts: detection, localization, and removal. The removal system can be used for
object-level image editing. (a) An input image is first scanned by a face detector and the face wearing eyeglasses is selected by the user. (b) The
cropped face image. (c) Eye area detection to roughly estimate the region of eyeglasses. (d) Eyeglasses localization by MCMC, which yields an
accurate position of the glasses. (e) Eyeglasses removal based on a set of training examples, which removes the glasses by inferring and pasting
the glasses-free pattern. (f) The final result on the original image.



Central to our system is a sample-based approach that
learns the statistical mapping between face images with
eyeglasses and their counterparts without eyeglasses. From
a number of training pairs of face images with and without
eyeglasses, we model their joint distribution effectively in
an eigenspace spanned by all training pairs. With the
learned joint distribution, given a face image with eye-
glasses, we can obtain in closed form its corresponding face
image without eyeglasses.

The success of our approach depends on how well we

construct the eigenspace on which the joint distribution is

constructed. We propose an eyeglasses frame template and

a face template to calibrate all training data. By warping all

training pairs to the templates, we reduce the geometrical

misalignment between various eyeglasses frames. The

warped and calibrated pairs of face images with and

without eyeglasses would constitute a more compact

eigenspace. Similar to ASM in face alignment, we construct

an active eyeglasses shape model to accurately locate these

key points. We also propose an eyeglasses detection scheme

(similar to boosting-based face detection [27], [14]) to

initialize the process of eyeglasses localization.
The remainder of this paper is organized as follows:

Section 2 describes the sample-based approach to eye-
glasses removal. Section 3 discusses how to locate the key
points on the eyeglasses frame. Eyeglasses region detection
is also briefly discussed. Experimental results on eyeglasses
detection, localization and removal are shown in Section 4.
We summarize this paper in Section 5.

2 EYEGLASSES REMOVAL

An overview of eyeglasses removal is illustrated in Fig. 2.

Given an input face image with eyeglasses, it is compared

with a training set of face image pairs with and without

eyeglasses to infer the corresponding face image without

eyeglasses. Note that each face image is calibrated to a face

template and an eyeglasses template to reduce the

geometrical misalignment among different face images.

2.1 A Sample-Based Approach

We denote the calibrated pair of glasses and glasses-free
images by I 0G and I 0F , respectively. Based on the maximum a
posteriori (MAP) criterion, we may infer the optimal I 0F
from I 0G by

I 0F
� ¼ argmax

I 0
F

pðI 0F jI 0GÞ

¼ argmax
I 0
F

pðI 0GjI 0F ÞpðI 0F Þ ð1Þ

¼ argmax
I 0
F

pðI 0G; I 0F Þ: ð2Þ

Because of the high dimensionality of I 0F and I 0G, modeling
the conditional density or likelihood pðI 0GjI 0F Þ is difficult.
Instead, we choose (2) as the objective function.

We estimate the joint distribution pðI 0F ; I 0GÞ by introdu-
cing a hidden variable V which dominates the main
variance of I 0F and I 0G

pðI 0F ; I 0GÞ ¼
Z
pðI 0F ; I 0GjV ÞpðV ÞdV

¼
Z
pðI 0F jV ÞpðI 0GjV ÞpðV ÞdV :

ð3Þ

The second line of (3) assumes that I 0F and I 0G are
conditionally independent given the hidden variable. But,
how does one choose the hidden variable V ? A popular
method is to set it as the principal components of I 0F and
I 0G. Let Y

T ¼ ½I 0TG I 0
T
F � be a long vector with two compo-

nents I 0G and I 0F , and the training examples become
fY ðiÞ; i ¼ 1; � � � ;Mg. Through singular value decomposi-
tion (SVD), we can get the principal components matrix
�� ¼ ½ 1  2 � � �  h� with  j the jth eigenvector, the eigen-
values f�2i ; i ¼ 1; � � � ; hg, and the mean �Y . A number of
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Fig. 2. The eyeglasses removal system consists of two parts: The learning process is shown in the upper half and the inference process shown in the
bottom half. (a) By warping the training pairs of images to a face template and then an eyeglasses template, we obtain a calibrated training pairs of
regions with and without eyeglasses. (b) Learning the correspondence or joint distribution of glasses and glasses-free regions. (c) Inferring the best-
fit glasses-free region from the calibrated region with glasses based on the learned distribution. (d) Inverse warping to the original image. (e) Paste
the inferred glasses-free region onto the input image with boundary blended.



principal components are chosen such that the sum of

eigenvalues corresponding to the principal components

accounts for no less than 97 percent of the sum of the total

eigenvalues. PCA yields a linear dimensionality reduction

to Y by

Y ¼ ��V þ �Y þ "Y ; V ¼ ��T ðY � �Y Þ; ð4Þ

where "Y is a Gaussian noise. By PCA, V 2 IRh and Y 2 IR2m

with the condition h� 2m. Let

�� ¼ ��G

��F

� �
; �Y ¼ �G

�F

� �
; "Y ¼ "G

"F

� �
: ð5Þ

We have

I 0G ¼ ��GV þ �G þ "G

I 0F ¼ ��FV þ �F þ "F
; ð6Þ

which indicates

pðI 0GjV Þ ¼
1

ZG
exp �kI 0G � ð��GV þ �GÞk2

�2G

( )

pðI 0F jV Þ ¼
1

ZF
exp �kI 0F � ð��FV þ �F Þk2

�2F

( ) ; ð7Þ

where �G and �F are the variances of "G and "F , and ZG and

ZF are normalization constants, respectively. The distribu-

tion of the hidden variable is also Gaussian

pðV Þ ¼ 1

ZV
expf�V T���1

V V g; ð8Þ

where ��V ¼ diag½�21; �22; � � � ; �2h� is the covariance matrix and

ZV is the normalization constant.
As mentioned above, in PCA at least 97 percent of the

total variance of Y is retained in V , which implies

�2G þ �2F
traceð��V Þ

� 3

97
� 3:09%; ð9Þ

where traceð��V Þ ¼
Ph

i¼1 �
2
i is the total variance of V . In other

words, pðV Þ captures the major and always global un-

certainty of Y , while pðI 0GjV Þ and pðI 0F jV Þ just compensate

the approximation error from V to Y (4). Mathematically,

entropyfpðI 0GjV Þg þ entropyfpðI 0F jV Þg � entropyfpðV Þg:
ð10Þ

Let us come back to the optimization problem. From (2)

and (3), we have

I 0F
� ¼ argmax

I 0
F

Z
pðI 0F jV ÞpðI 0GjV ÞpðV ÞdV : ð11Þ

Obviously, the function to integrate pðI 0F jV ÞpðI 0GjV ÞpðV Þ has
a sharp peak around ��T ðY � �Y Þ, formed by the constraint

from I 0F and I 0G. Therefore, maximizing the integration can

be approximated by maximizing the function to be

integrated,

fI 0F
�
; V �g ¼ argmax

I 0
F
;V
pðI 0F jV ÞpðI 0GjV ÞpðV Þ: ð12Þ

This naturally leads to a two-step inference

a: V � ¼ argmax
V

pðI 0GjV ÞpðV Þ;

b: I 0F
� ¼ argmax

I 0
F

pðI 0F jV Þ:
ð13Þ

This approximate inference is straightforward. From (10),
we know that pðV Þ can approximate pðI 0F ; I 0GÞ with an error
less than 3 percent. So, given I 0G, we may directly find the
best hidden variable V � with its glasses component closest
to I 0G. The optimal glasses-free part I 0F best fit for I 0G is
naturally the glasses-free component of V �.

To maximize the posteriori in (13) a is equivalent to
minimizing the energy

V � ¼ argmin
V

f�2GV T���1
V Vþ

ð��GV þ �G � I 0GÞ
T ð��GV þ �G � I 0GÞg:

ð14Þ

Since the objective function is a quadratic form, we can get a
closed-form solution:

V � ¼ ð��T
G��G þ �2G��

�1
V Þ�1��T

GðI 0G � �GÞ: ð15Þ

To ensure numerical stability, the inverse ð��T
G��G þ

�2G��
�1Þ�1 is computed by the standard SVD algorithm.

In the global solution (15), all the matrices can be
computed and stored offline so that the solution is very
fast. Finally, the optimal glasses-free region I 0�F is calcu-
lated by maximizing (13)

I 0�F ¼ ��FV
� þ �F

¼ ��F ð��T
G��G þ �2G��

�1
V Þ�1��T

GðI 0G � �GÞ þ �F :
ð16Þ

Then, I 0�F is inversely warped to the glasses region of IG,
denoted by I�F . Finally, I

�
F is pasted on the face with the

abutting area blended around the boundary.

2.2 Experimental Setup

Collecting a good training database is crucial for sample-
based learning approaches. Unfortunately, there are few face
image databases available that contain pairs of correspond-
ing face images with andwithout eyeglasses. We have found
a very small sample set of 20 pairs of such images from the
FERET face database [21]. Moreover, we have captured
247 image pairs of people in our lab. All images contain
upright frontal faces wearing conventional eyeglasses. Some
typical samples are shown in Fig. 3. The extreme appearance
of eyeglasses such as sunglasses and pure specular reflec-
tions are not taken into account in our system.

In the training procedure, we manually labeled the pair
of glasses and glasses-free samples as shown in Fig. 3. Each
sample, wearing glasses or not, is labeled by seven
landmarks as key points to represent the face. As shown
in Figs. 4e and 4f, the image pair is normalized with these
seven landmarks by affine transform Figs. 4c and 4d to be
frontal parallel and then cropped as a normalized pair of
glasses and glasses-free regions. Each eyeglasses frame uses
15 additional key points to represent its shape. These
15 points, along with four key points of eye corners, are
used to warp the normalized pair of glasses and glasses-free
regions to the calibrated training pair that are used to learn
the correspondence. These two steps of warping with
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respect to the face template (seven key points) and eye-
glasses template (15 key points on the frame and four on the
face) are necessary to calibrate each training sample pair to
reduce the misalignment due to geometrical variations of
faces and eyeglasses. In this paper, we use the warping
method of thin plate splines [3], [5], which has been
frequently used in statistical shape analysis and computer
graphics because of its smooth deformations.

To begin the inference procedure shown in Fig. 2 with a
new face image, all the key points must be automatically
localized. This is the topic for the next section.

3 EYEGLASSES LOCALIZATION

To accurately locate eyeglasses, we use a deformable contour
model [13], [30] or active shape model (ASM) [5] to describe the
geometric information such as shape, size, and position of

the glasses. We denote all key points on the eyeglasses
frame by W ¼ fðxi; yiÞ; i ¼ 1; � � � ; ng, where n ¼ 15. In the
following, W is a long vector with dimensionality of 2n.
Based on the Bayesian rule, to locate the position is to find
an optimal W � in the eyeglasses region IG by maximizing
the posterior, or the product of the prior and likelihood

W � ¼ argmax
W

pðW jIGÞ ¼ argmax
W

pðIGjWÞpðWÞ: ð17Þ

We shall learn the prior pðWÞ and likelihood pðIGjWÞ,
respectively, and then design an optimization mechanism to

search for the optimal solution.

3.1 Prior Learning

The prior distribution of W is composed of two indepen-

dent parts: internal parameters or the position invariant

shape w, and external parameters or the position relevant
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Fig. 3. Some face images with and without glasses sample in the data set. Top: seven key points to align face are marked in red. Bottom: 15 key
points are marked in yellow on the eyeglasses frame, in addition to several key points on face.

Fig. 4. A training pair of glasses and glasses-free regions is first normalized to a face template and then warped to an eyeglasses template to
construct a calibrated training pair. Different transforms are applied to the training pair ((a) and (b)) to generate normalized pair of images ((e) and
(f)). However, the same warping field is applied to normalized images pair.



variables such as the orientation �, scale s, and centroid Cxy.

With a linear transition matrix Tðs;�Þ to scale and rotate the

shape w, we get

W ¼ Tðs;�Þwþ Cxy; Tðs;�Þ ¼ s
cosð�Þ sinð�Þ
� sinð�Þ cosð�Þ

� �
: ð18Þ

The position invariant shape w ¼ fðx0i; y0iÞ; i ¼ 1; � � � ; ng is

the centralized, scale, and orientation normalized key

points. Since w in the internal parameter space and the

position correlated s, �, and Cxy in the external parameter

space are statistically independent, we can decouple the

prior distribution into

pðWÞ ¼ pðwÞpðsÞpð�ÞpðCxyÞ: ð19Þ

We shall model the internal and external priors in different

ways.
Similar to ASM and many other points distribution

models, the distribution of the internal parameters w is also

assumed Gaussian. We use PCA to reduce the dimension-

ality and learn the distribution. Suppose

u ¼ BT ðw� �wÞ; ð20Þ

where B ¼ ½b1; � � � ; bm� is the matrix in which the column

vectors are principal components, the bases of the reduced

feature space, u 2 IRm is the controlling variable and �w is

the mean shape. We also obtain the eigenvalue �� ¼
diagð�21; � � � ; �2mÞ scales the variance in each dimension of

the feature space. The principal components matrix B and

the variances �� are chosen to explain the majority,

97 percent, for instance, of the eigenvalues of the covariance

matrix of a set of training examples fwk; k ¼ 1; � � � Mg. We

may directly use u to approximate w

w ¼ Buþ �w; pðuÞ ¼
1

Z
expf�uT���1ug: ð21Þ

The principal components bi denote the main variations of

the shape w. This implies that it is more meaningful to vary

along the principal components of the shape, the whole set

of individual points than a single point in estimating the

shape.
The external parameters, the scale, orientation, and

central point are all in low dimension(s) (1D or 2D). We

simply use histograms to represent their distributions as

shown in Fig. 5.

3.2 Likelihood Learning

The likelihood pðIGjW Þ is used to measure if the local

features F
ðiÞ
G on point ðxi; yiÞ are similar to those of the key

point in terms of the appearance. Under the assumption of

independency, it can be simplified to

pðIGjWÞ ¼ pðFGjWÞ ¼
Yn
i¼1

pðF ðiÞ
G jðxi; yiÞÞ; ð22Þ

where FG ¼ fFj � IG; j ¼ 1; � � � ; lg is the feature images

filtered by linear filters fFjg. What we should learn is the

local feature distribution pðF ðiÞ
G jðxi; yiÞÞ for each key point.

Since the key points of eyeglasses are defined on the

eyeglasses frame, they are distinct in edge and orientation.

We choose the responses of local edge detectors as the

features, including a Laplacian operator, the first and

second order Sobel operators with four orientations. These

operators are all band-pass filters to capture the local space-

frequency statistics. We find that the results obtained with

these filters are comparable with those using wavelets

filters such as Gabors, and these filters have the additional

benefit of being more efficient. Before filtering, we use a

Gaussian filter to smooth out the noise. All these filters are

displayed in Fig. 6, and an example of the filtering results is

shown in Fig. 7.
For each key point, we can get the training vector-

valued features fF ðiÞ
G ðjÞjj ¼ 1; � � � ;Mg. Then, the likelihood

of each key point can be estimated by a Gaussian mixture

model, i.e.,
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Fig. 5. The discretized histograms of external parameters: (a) scale and

(b) orientation. They have been smoothed by a Gaussian filter.

Fig. 6. The filters whose responses are used as features in likelihood modeling.



pðF ðiÞ
G jxi; yiÞ ¼

XK
k¼1

�
ðiÞ
k GðF

ðiÞ
G ;�

ðiÞ
k ;��

ðiÞ
k Þ; ð23Þ

where weights f�ðiÞ
k g :

P
k �

ðiÞ
k ¼ 1, means f�ðiÞk g and covar-

iance matrices f��ðiÞ
k g are learned using EM algorithm.

3.3 MAP Solution by Markov-Chain Monte Carlo

After the prior and likelihood models are learned, we

should find the optimal W � by maximizing the posterior

under the MAP criterion. However, the posterior is too

complex to be globally optimized. Conventional determi-

nistic gradient ascent algorithms tend to get stuck at local

optima. Markov-chain Monte Carlo (MCMC) is a technique

with guaranteed global convergence and, thus, is chosen to

locate the eyeglasses in our system. MCMC has been

successfully used recently in Markov random field learning

[31], face prior learning [16], structure from motion [7], and

image segmentation [26]. Specifically, we choose Gibbs
sampling [9] over Metropolis-Hastings sampling [18] in
optimization because it has a low rejection ratio and it does
not require the design of a sophisticated proposal prob-
ability. Since the key points W have been decoupled to
internal and external parameters by (18) and the internal
parameter w has been reduced to the controlling variable u
by (21), the solution space is simplified to X ¼ fu; s; �; Cxyg.
Suppose X ¼ ðx1; x2; � � � ; xkÞ, the Markov chain dynamics
in Gibbs sampling is given by

x
ðtþ1Þ
1 � pðx1jxðtÞ2 ; x

ðtÞ
3 ; � � � ; x

ðtÞ
k Þ

x
ðtþ1Þ
2 � pðx2jxðtþ1Þ

1 ; x
ðtÞ
3 ; � � � ; x

ðtÞ
k Þ

..

.

x
ðtþ1Þ
k � pðxkjxðtþ1Þ

1 ; x
ðtþ1Þ
2 ; � � � ; xðtþ1Þ

k�1 Þ;

ð24Þ

where the conditional density is directly computed from
the joint density pðx1; x2; � � � ; xkÞ. By sequentially flipping
each dimension, the Gibbs sampler walks through the
solution space with the target posterior probability density
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Fig. 7. The local features captured by different small band-pass filters from (b) to (j). (a) Original, (b) Sobel(1) 0	, (c) Sobel(1) 45	, (d) Sobel(1) 90	,

(e) Sobel(1) 135	, (f) Laplacian, (g) Sobel(2) 0	, (h) Sobel(2) 45	, (i) Sobel(2) 90	, (j) Sobel(2) 135	.

Fig. 8. Localization procedure. (a) Input inage. (b) Salient map. (c) Initialization. (d) After one iteration. (e) After five iterations. (f) After 10 iterations.

Fig. 9. The ROC curve of eye area detector testing on 1,386 face images

containing eyeglasses or not. The unit of the horizontal axis is the power

of 10.
Fig. 10. The distribution of mean error in eyeglasses localization for the
test data.



given by (17), (21), and (23). After R jumps in the Markov

chain, the optimal solution X� is obtained in the samples

fXð1Þ; Xð2Þ; � � � ; XðRÞg drawn by the Gibbs sampler. Finally,

W � is computed by (18).
To save computational cost, we generate a salient map

fpðxi; yijFGÞ; i ¼ 1; � � � ; ng for each key point ðxi; yiÞ

pðxi; yijFGÞ / pðF ðiÞ
G jxi; yiÞpðxi; yiÞ / pðFi

Gjxi; yiÞ: ð25Þ

The second “/ ” exists because each key point has nearly

the same opportunity to appear in the image. The salient

maps can be regarded as the likelihood maps as a

preprocessing step before Gibbs sampling. They can also

be used for initialization by sampling pðxi; yijFGÞ or

choosing the maximum probability point.
The mechanism of the proposed method is illustrated in

Fig. 8. First of all, the salient maps (Fig. 8b) of 15 key points

are computed from the input (Fig. 8a) which takes only
0.2 seconds on a Pentium IV 2G Hz computer with 512M
memory. Initialization is done by simply looking for the
optimal likelihood points in the salient map. Then, the
Gibbs sampler flips the parameters sequentially and
completes an iteration by flipping all parameters. The
localization results after 1, 5, and 10 iterations are shown in
Figs. 8d, 8e, and 8f, respectively. Clearly, Gibbs sampling
converges quickly to the global optimum.

3.4 Eyeglasses Region Detection

It is helpful to know where the eyeglasses region is
approximately located in the face image before the face
localization step is invoked. Our key observation is that the
eyeglasses region can be located by finding the eye area
including eyes and eyebrows without considering eye-
glasses. Although eyeglasses regions vary significantly from
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Fig. 11. The results of eyeglasses localization by MCMC.



one to another, and the relative positions between eyeglasses
and eyes change from case to case, eyes and very often
(parts) of eyebrows are visible in all face images (except
sunglasses where eyes may be completely blocked). There-
fore, we do not train a detector for all possible eyeglasses
patterns. Rather, we train a detector for the eye area.

Our eye area detector is in principle very similar to the
face detector [27]. The eye area is defined as a 30
 12 patch
cropped out from a face image. A dense Gaussian pyramid
is built upon this patch as well. Then, a boosting classifier
(i.e., a cascade of eye area classifiers) scans the pyramid
shifting by two pixels and verify if each 30
 12 patch is an
eye area. A brief introduction to boosting classifier can be
found in the Appendix. We have adopted the KLBoosting
classifier introduced in [14] and use a cascade of KLBoost-
ing classifier to quickly rule out the most dissimilar

negative samples. The training results in a 7-level cascade
of classifiers, by retaining the false negative ratio no more
than 0.5 percent while forcing the false alarm ratio under
30 percent in each level.

For training data, we have collected 1,271 face images
covering all possible cases of shape, gender, age, race, pose,
and lighting. For each face image, we manually cropped out
an eye area. By randomly perturbing each eye area in scale
and orientation as in [22], the number of the positive
samples is significantly increased. we obtain 12,710 positive
samples. All other possible 30
 12 patches in a dense
Gaussian pyramid for each face image are chosen as
negative samples, with the criterion that the negative patch
must be within the face and should not overlap the positive
patch too much. We have generated 8:2
 107 negative
samples from face images in our experiment.
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Fig. 12. The results of eye area detection.



4 EXPERIMENTAL RESULTS

4.1 Eyeglasses Detection

We have also collected another test data set consisting of

1,386 face images that are not in the training data. The

ROC curve is shown in Fig. 9 to demonstrate the eye area

detector performance. Although this is slightly worse than

the latest face detection result [14], it is good enough for our

purpose with the detection rate of 96 percent and the false

alarm at 10�4. Some typical detection results for the test data

are presented in Fig. 12. The average time to detect an eye

area from a 96
 128 image takes 0.1 second. These results

demonstrate that our algorithm is effective and efficient.

Note that the location of the eyeglasses pattern is defined as

twice as big as the detected eye area.

4.2 Eyeglasses Localization

Eyeglasses localization results are shown in Fig. 11. The
number of Gibbs sampling iterations is set to be 100 to
ensure for most cases that satisfactory results can be
reached. These results demonstrate that our method works
for a variety of samples with difference face profiles,
illuminations, eyeglasses shapes, and highlight distribu-
tions. For quantitative analysis, we plot the distribution of
the mean error(ME), namely, the average difference between
the result from automatic localization and that from manual
labeling, computed using the test data in Fig. 10. In this
figure, 90.3 percent of ME lie within two pixels, which also
demonstrates the effectiveness of our algorithm.

In our localization experiment, we have collected 264 sam-
ples for training and 40 for testing. More than 95 percent
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Fig. 13. The results of eyeglasses removal from samples (1) to (4). (a) Input images with glasses. (b) Synthesized results. (c) Images of (a) taken

without glasses.



samples in our experiment can be detected and localized
well. Much of the detection and localization error is due to
the fact thatwe train our systembased on a limited number of
training data.

4.3 Eyeglasses Removal

Some results with eyeglasses removal are shown in Figs. 13,

14, and 15, labeled from (1) to (12). In these three figures,

column a represents input images with eyeglasses, column b

synthesized images with glasses removed using our system,

and column c images of the same people taken without

eyeglasses.We recommend the reader to view the pdf file for

better visualization of results. Note that different types of

glasses from our own database and the FERET database have

been used in our experiment. Even though the synthesized

glasses-free images appear slightly blurred and somewhat

different from those that would have been taken without

eyeglasses, the visual quality of images in column b with

eyeglasses removed is acceptable. Residues of eyeglasses

frame can be seen in Fig. 14 sample 8b because this part of the

frame was not modeled in the eyeglasses template with

15 key points. Some irregularities can also be observed in

Fig. 14 (samples 5, 8), and Fig. 15 (sample 11) around the

glasses boundaries, due to the modeling error of PCA.
Comparison between our results and those from image

inpainting [2] are shown in Fig. 16. The user specifies the

regions of frame, highlights, and shadows brought by the
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Fig. 14. The results of eyeglasses removal from samples (5) to (8). (a) Input images with glasses. (b) Synthesized results. (c) Images of (a) taken

without glasses.



eyeglasses marked in red as illustrated in Fig. 16b. This

procedure is tedious and sometimes it is hard to decide

which region to be marked. The inpainting results (Fig. 16c)

are reasonable for the upper example but unacceptable for

the lower example where the lenses are semitransparent.

The lenses can be either removed with the eyes disappeared

or remained to occlude the eyes. The removal results

generated in our system (Fig. 16d) are better. Our system

also removes the eyeglasses quickly without any user

intervention.
Two failure cases are shown in Fig. 17. The significant

highlights from these two images were not present in the

training data nor modeled in our system. Our system was

unable to correctly infer the underlying information in the

eye region occluded by the highlights. It is difficult for

human being to imagine such missing information as well.
Finally, we have done a leave-one-out experiment to

validate our system by comparing the synthesized image

with glasses removed and the image taken without glasses.

For lack of a good measure of visual similarity, we choose

two simple distances, namely, RMS errors on gray-level

images and on Laplacian images. The distributions of these

two errors tested on 247 samples are shown in Fig. 18. We

may observe that the RMS errors on Laplacian images are

fairly small, which implies that the synthesized results

match the ground truth (the images taken without glasses)

well in terms of local image features.
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Fig. 15. The results of eyeglasses removal from samples (9) to (12). (a) Input images with glasses. (b) Synthesized results. (c) Images of (a) taken

without glasses.



5 SUMMARY

In this paper, we have presented a system to automatically
remove eyeglasses from face images. Our system consists of
three modules, eye area detection, eyeglasses localization
and removal, by integrating statistical learning techniques
such as boosting, MCMC, and subspace analysis. Extensive
experiments have been carried out to demonstrate the
effectiveness of the proposed system.

In our system, we have adopted a find-and-replace
approach for intelligent image editing at the object level
instead of the pixel level. Such an approach makes sense
for two reasons. First of all, both object detection and
localization can be done very well based on existing
statistical learning and computational methods, as demon-
strated in our paper by the eye area detection and
eyeglasses localization systems. Second, the prior knowl-
edge plays an essential role in object-level image editing.
When important information is missing, it is difficult for the
user fill in the object pixel by pixel, even with the help of
tools like image inpainting. Based on statistical learning
techniques, however, we can model the prior knowledge

from training samples and use Bayesian inference to find
the missing information, as we have demonstrated in
reconstructing eyeglasses-free region from eyeglasses re-
gion. Finally, this find-and-replace approach is not limited in
automatic eyeglasses removal, but can be widely applied to
editing a variety of visual objects.

APPENDIX

BOOSTING CLASSIFIER

The mechanism of boosting is used to train a binary
classifier based on the labeled data. Suppose that we are
given a set of labeled samples fxi; yigNi¼1, where xi 2 IRd and
yi 2 f�1; 1g and are asked to give a decision y to any
x 2 IRd. It is convenient for us to get some 1D statistics from
the data, using a mapping function �Tx : IRd ! IR1, where
� 2 IRd is a linear feature. Once we have a set of linear
features f�igki¼1, we may obtain the histograms of positive
and negative samples hþi ð�Ti xÞ and h�i ð�Ti xÞ with certain
weights along each feature �i. At a specific point z ¼ �Ti x, if
hþi ðzÞ > h�i ðzÞ, it will be more likely from this evidence that

334 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 3, MARCH 2004

Fig. 16. The comparison between our method and image inpainting [2]. Note that inpainting cannot remove the semitransparent effect inside the
eyeglasses frame. (a) Eyeglass inage, (b) region marked by user, (c) inpainting result, (d) result of our system.

Fig. 17. Two failure cases. Although the eyeglasses frame are successfully removed, the pixels inside the frame are not synthesized well. Note that

the significant highlights in these two images were not present in the training data. (a) Eyeglass inage, (b) removal result, (c) eyeglass image,

(d) removal result.



x is a positive sample. Therefore the classification function
is defined as

F ðxÞ ¼ sign
Xk
i¼1

�i log
hþi ð�Ti xÞ
h�i ð�Ti xÞ

" #
ð26Þ

with parameters f�ig to balance the evidence from each
feature. signð�Þ 2 f�1; 1g is an indicator function.

There are two terms to learn in the classification function
(26), the feature set f�ig, and combining coefficients f�ig.
Simple Harr wavelet features have been used for computa-
tional efficiency in face detection [27]. Recently, a data-
driven approach [14] is proposed to compose a minimum
number of features. The coefficients f��

i g can be either
empirically set for incrementally optimal like AdaBoost [27]
or optimized as a whole by a greedy algorithm [14].

The boosting scheme is used to gradually find the set of
most discriminating features. From the previous learned
classifier, the weight of misclassified samples is increased
while that of recognized samples reduced and then a best
feature is learned to discriminate them. Assume that at
step ðk�1Þ the weights of the positive and negative samples
are Wk�1ðxþi Þ and Wk�1ðx�i Þ, respectively. Then, at step k,
we may reweight the samples by

Wkðxþi Þ ¼
1

ZþWk�1ðxþi Þ expf��kyþi Fk�1ðxþi Þg

Wkðx�i Þ ¼
1

Z�Wk�1ðx�i Þ expf��ky�i Fk�1ðx�i Þg;
ð27Þ

where Zþ and Z� are normalization factors for Wkðxþi Þ and
Wkðx�i Þ, respectively, and sequence �k controls how fast to
adapt the weight computed from the training error [14].
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Fig. 18. Quantitative study of the eyeglasses removal system on

247 samples: histogram of error distribution. (a) RMS error on images.

(b) RMS error on Laplacian images.
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