
Advances in Large Vocabulary Continuous Speech Recognition

Geoffrey Zweig and Michael Picheny
IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598�

gzweig,picheny � @us.ibm.com

The development of robust, accurate and efficient speech recognition systems is critical to the widespread
adoption of a large number of commercial applications. These include automated customer service, broadcast
news transcription and indexing, voice-activated automobile accessories, large-vocabulary voice-activated cell-
phone dialing, and automated directory assistance. This article provides a review of the current state-of-the-art,
and the recent research performed in pursuit of these goals.

Contents

1 Introduction 2

2 Front End Signal Processing 3
2.1 Mel Frequency Cepstral Coefficients . 4
2.2 Perceptual Linear Predictive Coefficients . 4
2.3 Discriminative Feature Spaces . 5

3 The Acoustic Model 6
3.1 Hidden Markov Model Framework . 6
3.2 Acoustic Context Models . 7
3.3 Gaussian Mixture State Models . 8
3.4 Maximum Likelihood Training . 9

3.4.1 Maximum Mutual Information Training . 10

4 Language Model 11
4.1 Finite State Grammars . 11
4.2 N-gram Models . 12

4.2.1 Smoothing . 12
4.2.2 Cross-LM Interpolation . 14
4.2.3 N-gram Models as Finite State Graphs . 14
4.2.4 Pruning . 16
4.2.5 Class Language Models . 16

5 Search 17
5.1 The Viterbi Algorithm . 17

5.1.1 Statically Compiled Decoding Graphs (HMMs) . 18
5.1.2 Dynamically Compiled Decoding Graphs (HMMs) . 19

5.2 Multipass Lattice Decoding . 19
5.3 Consensus Decoding . 20
5.4 System Combination . 20

1

6 Adaptation 21
6.1 MAP Adapatation . 21
6.2 Vocal Tract Length Normalization . 22
6.3 MLLR . 23

6.3.1 Model Space MLLR . 23
6.3.2 Feature Space MLLR . 24

7 Performance Levels 25

8 Conclusion 26

2

1 Introduction

Over the course of the past decade, automatic speech recognition technology has advanced to the point where a
number of commercial applications are now widely deployed and successful: systems for name-dialing (Suon-
tausta et al. 2000; Gao et al. 2001), travel reservations (Chen 2001; Pellom et al. 2001), getting weather-
information (Zue 2000), accessing financial accounts (Davies 1999), automated directory assistance (Jan et al.
2003), and dictation (Wegmann et al. 1999; Chen et al. 1999; Saon et al. 2003) are all in current use. The fact
that these systems work for thousands of people on a daily basis is an impressive testimony to technological ad-
vance in this area, and it is the aim of this article to describe the technical underpinnings of these systems and the
recent advances that have made them possible. It must be noted, however, that even though the technology has
matured to the point of commercial usefulness, the problem of large vocabulary continuous speech recognition
(LVCSR) is by no means solved: background noise, corruption by cell-phone or other transmission channels,
unexpected shifts in topic, foreign accents, and overly casual speech can all cause automated systems to fail.
Thus, where appropriate, we will indicate the shortcomings of current technology, and suggest areas of future
research. Although this article aims for a fairly comprehensive coverage of today’s speech recognition systems,
a vast amount of work has been done in this area, and some limitation is necessary. Therefore, this review will
focus primarily on techniques that have proven successful to the point where they have been widely adopted
in competition-grade systems such as (Saon et al. 2003; Hain et al. 2000; Hain et al. 1999; Matsoukas 2003;
Gauvain et al. 2000; Woodland 2002).

The cornerstone of all current state-of-the-art speech recognition systems is the Hidden Markov Model
(HMM) (Baker 1975; Jelinek 1976; Levinson et al. 1983; Rabiner & Juang 1993). In the context of HMMs,
the speech recognition problem is decomposed as follows. Speech is broken into a sequence of acoustic obser-
vations or frames, each accounting for around 25 milliseconds of speech; taken together, these frames comprise
the acoustics � associated with an utterance. The goal of the recognizer is to find the likeliest sequence of words� given the acoustics: �������	��
�

�� ��� ���
This can then be rewritten as:

����������
�
�� ��� ����� ����������
�

�� � � �� � � � ��� ���
Since the prior on the acoustics is independent of any specific word hypothesis, the denominator can be ignored,
leaving the decomposition: ����������
�

�� ��� ����� ����������
�
�� � � �� � � � �

The first factor,
�� � � , is given by the language model, and sets the prior on word sequences. The second factor,�� � � � � is given by the acoustic model, and links word sequences to acoustics, and is described by an HMM.

The breakdown of a system into acoustic and language model components is one of the main characteristics
of current LVCSR systems, and the details of these models are discussed in Sections 3 and 4. However, even with
well-defined acoustic and language models that allow for the computation of

�� � � and
�� � � � � for any given

word and acoustic sequences � and � , the problem of finding the likeliest single sequence of words remains
computationally difficult, and is the subject of a number of specialized search algorithms. These are discussed
in Section 5. The final component of current LVCSR systems performs the function of speaker adaptation, and
adjusts the acoustic models to match the specifics of an individual voice. These techniques include Maximum
A-Posteriori (MAP) adaptation (Gauvain & Lee 1994), methods that work by adjusting the acoustic features to
more closely match generic acoustic models (Gales 1998), and methods that adjust the acoustic models to match
the feature vectors (Leggeter & Woodland 1995). The field of speaker adaptation has evolved quite dramatically
over the past decade,and is currently a key research area; Section 6 covers it in detail. The combination of
acoustic and language models, search, and adaptation that characterize current systems is illustrated in Figure 1.

2 Front End Signal Processing

Currently, there are two main ways in which feature vectors are computed, both motivated by information about
human perception. The first of these ways produces features known as Mel Frequency Cepstral Coefficients

3

Search

AM Modules

LM Modules

Adaptation ModulesWord HypothesisSpeech Signal

Figure 1: Sample LVCSR Architecture

(MFCCs) (Davis & Mermelstein 1980), and the second method is known as Perceptual Linear Prediction (PLP)
(Hermansky 1990). In both cases, the speech signal is broken into a sequence of overlapping frames which serve
as the basis of all further processing. A typical frame-rate is 100 per second, with each frame having a duration
of 20 to 25 milliseconds.

After extraction, the speech frames are subjected to a sequence of operations resulting in a compact repre-
sentation of the perceptually important information in the speech. Algorithmically, the steps involved in both
methods are approximately the same, though the motivations and details are different. In both cases, the algo-
rithmic process is as follows:

1. compute the power spectrum of the frame

2. warp the frequency range of the spectrum so that the high-frequency range is compressed

3. compress the amplitude of the spectrum

4. decorrelate the elements of the spectral representation by performing an inverse DFT - resulting in a
cepstral representation

Empirical studies have shown that recognition performance can be further enhanced with the inclusion of
features computed not just from a single frame, but from several surrounding frames as well. One way of doing
this is to augment the feature vectors with the first and second temporal derivatives of the cepstral coefficients
(Furui 1986). More recently, however, researchers have applied linear discriminant analysis (Duda & Hart 1973)
and related transforms to project a concatenated sequence of feature vectors into a low-dimensional space in
which phonetic classes are well separated. The following subsections will address MFCCs, PLP features, and
discriminant transforms in detail.

2.1 Mel Frequency Cepstral Coefficients

The first step in the MFCC processing of a speech frame is the computation of a short-term power spectrum
(Davis & Mermelstein 1980). In a typical application in which speech is transmitted by phone, it is sampled
at 8000 Hz and bandlimited to roughly 3800 Hz. A 25 millisecond frame is typical, resulting in 200 speech
samples.This is zero-padded, windowed with the hamming function

� ��� ������� �	��
��� ��������� �����
�

����� �

and an FFT is used to compute a 128 point power spectrum.
The next step is to compute a warped representation of the power spectrum in which a much coarser repre-

sentation is used for the high frequencies. This mirrors psychoacoustic observations that human hearing is less
precise as frequency increases. To do this, the power spectrum is filtered by a sequence of triangularly shaped

4

Figure 2: Mel frequency filters grow exponentially in size

filterbanks, whose centers are spaced linearly on the mel scale. The Mel frequency warping (Young et al. 1997)
is given by ��� � � ��� ��� � ���
	 � �
 �� � � �
so the bandwidth increases exponentially with frequency. Figure 2.1 illustrates the shape of the mel-frequency
filters

�
Typical applications use 18 to 24 filterbanks spaced between 0 and 4000 Hz (Saon et al. 2003; Kingsbury

et al. 2003). This mel frequency warping is similar to the use of critical bands as defined in (Zwicker 1961).
After the spectrum is passed through the mel frequency filters, the output of each filter is compressed through

the application of a logarithm, and the cepstrum is computed. With � filterbank outputs �� , the � th MFCC is
given by: � ������� �

��
��� � � � ����� �

��� � �
� �
�� � � � ��! � ! � � � ! �

In a typical implementation, the first
�#"

cepstral coefficients are retained.
MFCCs have the desirable property that linear channel distortions can to some extent be removed through

mean subtraction. For example, an overall gain applied to the original signal will be removed through mean-
subtraction, due to the logarithmic nonlinearity. Therefore, mean-subtraction is standard.

2.2 Perceptual Linear Predictive Coefficients

Perceptual Linear Prediction is similar in implementation to MFCCs, but different in motivation and detail. In
practice, these differences have proved to be important, both in lowering the overall error rate, and because
PLP-based systems tend to make errors that are somewhat uncorrelated with those in MFCC systems. Therefore,
as discussed later in Section 5.4, multiple systems differing in the front-end and other details can be combined
through voting to reduce the error rate still further.

The principal differences between MFCC and PLP features are:

$ The shape of the filterbanks

$ The use of equal-loudness preemphasis to weight the filterbank outputs

$ The use of cube-root compression rather than logarithmic compression

$ The use of a (parametric) linear-predictive model to determine cepstral coefficients, rather than the use of
a (non-parametric) discrete cosine transform%

The original paper (Davis & Mermelstein 1980) used fixed-width filters below 1000Hz.

5

The first step in PLP analysis is the computation of a short-term spectrum, just as in MFCC analysis. The
speech is then passed through a sequence of filters that are spaced at approximately one-Bark intervals, with the
Bark frequency � being related to un-warped frequency � (in rad/s) by:

� � � ��� � � � ��� ��� � � � � �
 � � ��� � � � � � ���
 � �
		�
��

The shape of the filters is trapezoidal, rather than triangular, motivated by psycho-physical experiments (Schroeder
1977; Zwicker 1970).

Conceptually, after the filterbank outputs are computed, they are subjected to equal-loudness preemphasis.
A filterbank centered on (unwarped) frequency � is modulated by

 � � ��� � � ���
�� �� ��� � ��� ����� � � � � ����
 ��� " � � ��� ����� � ���
 ��� " ��� � ��� � �
This reflects psycho-physical experiments indicating how much energy must be present in sounds at different
frequencies in order for them to be perceived as equally loud. In practice, by appropriately shaping the filters,
this step can be done simultaneously with the convolution that produces their output. The weighted outputs are
then cube-root compressed, � � ��� 		� ��� .

In the final PLP step, the warped spectrum is represented with the cepstral coefficients of an all-pole linear
predictive model (Makhoul 1975). This is similar to the DCT operation in MFCC computation, but the use of an
all-pole model makes the results more sensitive to spectral peaks, and smooths low-energy regions. In the original
implementation of (Hermansky 1990), a fifth-order autoregressive model was used; subsequent implementations
use a higher order model, e.g. 12 as in (Kingsbury et al. 2003).

2.3 Discriminative Feature Spaces

As mentioned earlier, it has been found that improved performance can be obtained by augmenting feature
vectors with information from surrounding frames (Furui 1986). One relatively simple way of doing this is to
compute the first and second temporal derivatives of the cepstral coefficients; in practice, this can be done by
appending a number of consecutive frames (nine is typical) and multiplying with an appropriate matrix.

More recently (Haeb-Umbach & Ney 1992; Welling et al. 1997), it has been observed that pattern recognition
techniques might be applied to transform the features in a way that is more directly related to reducing the error
rate. In particular, after concatenating a sequence of frames, linear discriminant analysis can be applied to find a
projection that maximally separates the phonetic classes in the projected space.

Linear discriminant analysis proceeds as follows. We will denote the class associated with example � as � � � � .
First, the means "! and covariances #�! of each class are computed, along with the overall mean and variance
:

 ! �
�
� !

�
��$ � %���&�' �)(�"!

* �

#�! �
�
� !

�
�+$ � %��,&�' �-(�"!

� * � � "! � � * � � "! �/.

 �
�
�
�
� * �

�
�
�
�
�
� * � � � � * � � �/.

Next, the total within class variance
�

is computed

� �
�
�
�
!
� ! # !

6

Using � to denote the LDA transformation matrix, the LDA objective function is given by:�� � ����������
� � � . #�� �� � . � � � !
and the optimal transform is given by the top eigenvectors of

��� � # .
While LDA finds a projection that tends to maximize relative interclass distances, it makes two questionable

assumptions: first, that the classes are modeled by a full covariance gaussian in the transformed space, and
second that the covariances of all transformed classes are identical. The first assumption is problematic because,
as discussed in Section 3.3, full covariance gaussians are rarely used; but the extent to which the first assumption
is violated can be alleviated by applying a subsequent transformation meant to minimize the loss in likelihood
between the use of full and diagonal covariance gaussians (Gopinath 1998). The MLLT transform developed in
(Gopinath 1998) applies the transform � that minimizes�

!
� ! � � � � ��� �
	�� � � #�!��. � � � � � � � � #�!� . � �

and has been empirically found to be quite effective in conjunction with LDA (Saon et al. 2000).
To address the assumption of equal covariances, (Saon et al. 2000) proposes the maximization of�

!
� � � #�� . �
� �+#�!�� . �������

and presents favorable results when used in combination with MLLT. A closely related technique, HLDA, (Ku-
mar & Andreou 1998) relates projective discriminant analysis to maximum likelihood training, where the unused
dimensions are modeled with a shared covariance. This form of analysis may be used both with and without the
constraint that the classes be modeled by a diagonal covariance model in the projected space, and has also been
widely adopted. Combined, LDA and MLLT provide on the order of a 10% relative reduction in word-error rate
(Saon et al. 2000) over simple temporal derivatives.

3 The Acoustic Model

3.1 Hidden Markov Model Framework

The job of the acoustic model is to determine word-conditioned acoustic probabilities,
�� � � � � . This is done

through the use of Hidden Markov Models, which model speech as being produced by a speaker whose vocal
tract configuration proceeds through a sequence of states, and produces one or more acoustic vectors in each
state. An HMM consists of a set of states � , a set of acoustic observation probabilities, � ! � ��� , and a set of
transition probabilities 	 � ! . The transition and observation probabilities have the following meaning:

1. � ! � ��� is a function that returns the probability of generating the acoustic vector � in state � . � ! � � % � is the
probability of seeing the specific acoustics associated with time � in state � . The observation probabilities
are commonly modeled with Gaussian mixtures.

2. 	 � ! is the time-invariant probability of transitioning from state � to state �
Note that in the HMM framework, each acoustic vector is associated with a specific state in the HMM. Thus, a
sequence of

�
acoustic vectors will correspond to a sequence of

�
consecutive states. We will denote a specific

sequence of states � � ��	 ! � � ��� ! � � � � ! � � � ! ��� � � by � . In addition to normal emitting states, it is often
convenient to use “null” states, which do not emit acoustic observations. In particular, we will assume that the
HMM starts at time � � � in a special null start-state , and that all paths must end in a special null final-state
� at � � �
 �

. In general, having a specific word hypothesis � will be compatible with only some state
sequences, � , and not with others. It is necessary, therefore, to constrain sums over state sequences to those
sequences that are compatible with a given word sequence; we will not, however, introduce special notation to
make this explicit. With this background, the overall probability is factored as follows:

�� � � � � �
��! �� � � � � �� � � � ��� ��! �

% � � � � � � � $
" � � % �#	 $
"�$
"�$&%
7

"Uh"
Start

State

Final State

"The"

"That"

Figure 3: A simple HMM representing the state sequence of three words. Adding an arc from the final state back
to the start state would allow repetition.

Figure 3 illustrates a simple HMM that represents the state sequences of three words.
The following sections describe the components of the HMM acoustic model in more detail. Section 3.2

will focus on the mapping from words to states that is necessary to determine
�� � � � � . Section 3.3 discusses the

Gaussian Mixture models that are typically used to model � ! � ��� . The transition probabilities can be represented
in a simple table, and no further discussion is warranted. The section closes with a description of the training
algorithms used for parameter estimation.

3.2 Acoustic Context Models

In its simplest form, the mapping from words to states can be made through the use of a phonetic lexicon that
associates one or more sequences of phonemes with each word in the vocabulary. For example,

barge | B AA R JH
tomato | T AH M EY T OW
tomato | T AH M AA T OW

Typically, a set of 40 phonemes is used, and comprehensive dictionaries are available (CMU 2003; Consortium
2003).

In practice, coarticulation between phones causes this sort of invariant mapping to perform poorly, and
instead some sort of context-dependent mapping from words to acoustic units is used (Young et al. 1994;
Bahl 1991) This mapping takes each phoneme and the phonemes that surround it, and maps it into an acoustic
unit. Thus, the “AA” in “B AA R JH” may have a different acoustic model than the “AA” in “T AH M AA T
OW.” Similarly, the “h” in “hammer” may be modeled with a different acoustic unit depending on whether it
is seen in the context of “the hammer” or “a hammer.” The exact amount of context that is used can vary, the
following being frequently used:

1. Word-internal triphones. A phone and its immediate neighbors to the left and right. However, special units
are used at the beginnings and endings of words so that context does not persist across word boundaries.

2. Cross-word triphones. The same as above, except that context persists across word boundaries, resulting
in better coarticulation modeling.

3. Cross-word quinphones. A phone and its two neighbors to the left and right.

4. A phone, and all the other phones in the same word.

5. A phone, all the other phones in the same word, and all phones in the preceding word.

When a significant amount of context is used, the number of potential acoustic states becomes quite large. For
example, with triphones the total number of possible acoustic models becomes approximately ���

�
� �	� ! � ��� . In

order to reduce this number, decision-tree clustering is used to determine equivalence classes of phonetic contexts
(Bahl 1991; Young et al. 1994) A sample tree is shown in Figure 4. The tree is grown in a top-down fashion
using an algorithm similar to that of Figure 5. Thresholds on likelihood gain, frame-counts, or the Bayesian
Information Criterion (Chen & Gopalakrishnan 1995) can be used to determine an appropriate tree depth.

In a typical large vocabulary recognition system (Saon et al. 2003), it is customary to have a vocabulary
size between 30 and 60 thousand words and two or three hundred hours of training data from hundreds of

8

left a nasal?

Is the phone two to the
left a vowel?the right a

plosive?

Is the phone to

Is the phone to the

Acoustic model to use

Y N

Y N

3 41 2

Figure 4: Decision tree for clustering phonetic contexts

1. Create a record for each frame that includes the frame and the phonetic context as-
sociated with it.

2. Model the frames associated with a node with a single diagonal-covariance Gaussian.
The frames associated with a node will have a likelihood according to this model.

3. For each yes/no question based on the context window, compute the likelihood that
would result from partitioning the examples according to the induced split.

4. Split the frames in the node using the question that results in the greatest likelihood
gain, and recursively process the resulting two nodes.

Figure 5: Decision Tree building

speakers. The resulting decision trees typically have between 4,000 and 12,000 acoustic units (Saon et al. 2003;
Kingsbury et al. 2003).

3.3 Gaussian Mixture State Models

The observation probabilities � ! � ��� are most often modeled with mixtures of gaussians. The likelihood of the
d-dimensional feature vector * being emitted by state � is given by:� ! � * ��� � ��� ! � � � �	� �

� � #�! � � � � ��� ���
�� � � �� � * � "! ��� . # � �! � � * � "! �����
where the coefficients � ! � are mixture weights, 	 � � ! � � �

. This can be expressed more compactly as��! � * ��� � �
� ! ���
� *� "! � ! #�! ���

In order to minimize the amount of computation required to compute observation probabilities, it is common
practice to use diagonal covariance matrices. Between

� � � ! � � � and
" ��� ! ��� � gaussians are typical in current

LVCSR systems.
The use of diagonal covariance matrices has proved adequate, but requires that the dimensions of the feature

vectors be relatively uncorrelated. While the linear transforms described in Section 2 can be used to do this,
recently there has been a significant amount of work focused on more efficient covariance representations. One
example of this is EMLLT (Olsen & Gopinath 2001), in which the inverse covariance matrix of each gaussian �
is modeled as the sum of basis matrices. First, a set of � dimensional basis vectors 	�� is defined. Then inverse
covariances are modeled as:

� �! �
��
� � ���

! � � � � .�
One of the main contributions of (Olsen & Gopinath 2001) is to describe a maximum-likelihood training proce-
dure for adjusting the basis vectors. Experimental results are presented that show improved performance over

9

both diagonal and full-covariance modeling in a recognition system for in-car commands. In further work (Axel-
rod et al. 2002), this model has been generalized to model both means and inverse-covariance matrices in terms
of basis expansions (SPAM).

3.4 Maximum Likelihood Training

A principal advantage of HMM-based systems is that it is quite straightforward to perform maximum likelihood
parameter estimation. The main step is to compute posterior state-occupancy probabilities for the HMM states.
To do this, the following quantities are defined:

$! � � � : the probability of the observation sequence up to time � , and accounting for � % in state � .

$�� ! � � � : the probability of the observation sequence � %�� � � � �/� � given that the state at time � is � .

$ � 	 � �� � � � � � � � � : the total data likelihood, constant over t.

$�� ! � � ��� � � ' % (�� � ' % (
	 � 	
' % (�� 	 ' % (: the posterior probability of being in state � at time � .

$
� � ! �

� � ��� � � 	� '�� "�� ������� ����� (
	�� � � � � '�� " � � ��� � � ��� (: the probability of mixture component

�
given state � at time � .

The and � quantities can be computed with a simple recursion:

$! � � ��� 	 � � � � � � � 	 � ! ��! � � % �$�� ! � � ��� 	 � 	�! ��� � � � %�� � � � � � �
 � �
The recursions are initialized by setting all s and � s to 0 except:

$ � � � ��� �

$���� ���
 � ��� �

Once the posterior state occupancy probabilities are computed, it is straightforward to update the model
parameters for a diagonal-covariance system (Levinson et al. 1983; Young et al. 1997; Rabiner & Juang 1986).

$ �	 � ! � 	 " �! ')% (#" � $ � '&% "�' % (�� � ' %�� � (" � ')% (�� ' % (
$ � "! � � 	 ")(� ')% (� �+* � 	 ' % (� "	 ",(� ' % (� �&* � 	 ' % ($ �#�! � � 	 " (� ')% (� �+* � 	 ')% ('�� " �.-� � 	 ('+� " �/-� � 	 (#0	 "1(� ' % (� �+* � 	 ' % (
This discussion has avoided a number of subtleties that arise in practice, but are not central to the ideas.

Specifically, when multiple observation streams are available, an extra summation must be added outside all
others in the reestimation formulae. Also, observation probabilities are tied across multiple states - the same
“ae” acoustic model may be used in multiple HMM states. This entails creating summary statistics for each
acoustic model by summing the statistics of all the states that use it. Finally, in HMMs with extensive null states,
the recursions and reestimation formulae must be modified to reflect the spontaneous propagation of probabilities
through chains of null states.

10

3.4.1 Maximum Mutual Information Training

In standard maximum likelihood training, the model parameters for each class are adjusted in isolation, so as to
maximize the likelihood of the examples of that particular class. While this approach is optimal in the limit of
infinite training data(Nadas 1983), it has been suggested (Nadas et al. 1988; Bahl et al. 1986) that under more
realistic conditions, a better training objective might be to maximize the amount of mutual information between
the acoustic vectors and the word labels. That is, rather than training so as to maximize

 � � � ! ��� � � � � � � � � � � �
with respect to � , to train so as to maximize

�
� � �

 � � � ! � � � � � � � � ! ��� � � � � � � ���
Using the training data

�
to approximate the sum over all words and acoustics, we can represent the mutual

information as

�
� � � �

 � � � ! � � � � � � � � ��� � � � � � � � � � � � � � � � � � � � � � � ��� �
�
� � � �

 � � � � � � � � ��� �
�
� � � �

 � � � � � �
	 ��� � � � � � � � � � � � �

If we assume that the language model determining
 � � � � is constant (as is the case in acoustic model training)

then this is identical to optimizing the posterior word probability:

�
� � � � � � ��� ����� � � � � � � � � � � � � � � �

	 ��� � � � � � � � � � � � �
Before describing MMI training in detail, we note that the procedure that will emerge is not much different

from training an ML system. Procedurally, one first computes the state-occupancy probabilities and first and
second order statistics exactly as for a ML system. This involves summing path posteriors over all HMM paths
that are consistent with the known word hypotheses. One then repeats exactly the same process, but sums over
all HMM paths without regard to the transcripts. The two sets of statistics are then combined in a simple update
procedure. For historical reasons, the first set of statistics is referred to as “numerator” statistics and the second
(unconstrained) set as “denominator” statistics.

An effective method for performing MMI optimization was first developed in (Gopalakrishnan et al. 1991)
for the case of discrete hidden Markov models. The procedure of (Gopalakrishnan et al. 1991) works in general
to improve objective functions � � � � that are expressible as

� � � � � � � � � �� � � � �
with � � and � � being polynomials with � � � � . Further, for each individual probability distribution � under
adjustment, it must be the case that � ��� � and 	 � � � � �

In this case, it is proved that the parameter update�
� � � � � �	��
 ����

'�� (� �
 � �
	 � � � ����
 ����

'�� (� � 	
 � �
is guaranteed to increase the objective function, with a large enough value of the constant

�
. In the case of

discrete variables, it is shown that � � � � � � � ��
� � �

�

� �
� � ��� ��

� � ��� ��

 �
where � � is probability of event associated with � � being true, and � � is count of times this event occurred, as
computed from the - � recursions of the previous section.

Later work (Normandin et al. 1994; Woodland & Povey 2000), extended these updates to gaussian means
and variances, and (Woodland & Povey 2000) did extensive work to determine appropriate values of

�
for large

vocabulary speech recognition. For state � , mixture component � , let � � � denote the first order statistics, � � � �
11

denote the second order statistics, and � denote the count of the number of times a mixture component is used.
The update derived is � "! � � � ��� �! �

� � � � ��� �! �
� �
 � "! �� ��� �! �

� � ��� �! �
 �

�� �! � � � ��� �! �
� � � � � ��� �! �

� � �
 ��� � �! �
 �! � �� ��� �! �
� � ��� �! �
 � � � �! �

For the mixture weights, let
� ! � be the mixture coefficient associated with mixture component � of state � .

Then �� ! � �
� ! � � ��
 ����

'�� (��� � �
 � �
	 � � ! � � ��
 ���� '�� (��� � 	
 � �

with � � � � � � � �� � ! � �
�� ! � � � ��� �! � � � ��� �! � �

Several alternative ways for reestimating the mixture weights are given in (Woodland & Povey 2000).
MMI has been found to give a 5-10% relative improvement in large vocabulary tasks (Woodland & Povey

2000), though the advantage diminishes as systems with larger numbers of gaussians are used (Matsoukas 2003).
The main disadvantage of MMI training is that the denominator statistics must be computed over all possible
paths. This requires either doing a full decoding of the training data at each iteration, or the computation of
lattices (see Section 5.2). Both options are computationally expensive unless an efficiently written decoder is
available.

4 Language Model

4.1 Finite State Grammars

Finite state grammars (Aho et al. 1986; Hopcroft & Ullman 1979) are the simplest and in many ways the most
convenient way of expressing a language model for speech recognition. The most basic way of expressing one
of these grammars is as an unweighted regular expression that represents a finite set of recognizable statements.
For example, introductions to phone calls in a three-person company might be represented with the expression

(Hello | Hi) (John | Sally | Sam)? it’s (John | Sally | Sam)

At a slightly higher level, Backus Naur Form (Naur 1963) is often used for more elaborate grammars with
replacement patterns. For example,

<SENTENCE> ::= Greeting.
Greeting ::= Intro Name? it’s Name .
Intro ::= Hello | Hi .
Name ::= John | Sally | Sam .

In fact, BNF is able to represent context free grammars (Chomsky 1965) - a broad class of grammars in which
recursive rule definitions allow the recognition of some strings that cannot be represented with regular expres-
sions. However, in comparison with regular expressions, context-free grammars have had relatively little affect
on ASR, and will not be discussed further.

Many of the tools and conventions associated with regular expressions were developed in the context of
computer language compilers, in which texts (programs) were either syntactically correct or not. In this context,
there is no need for a notion of how correct a string is, or alternatively what the probability of it being generated
by a speaker of the language is. Recall, however, that in the context of ASR, we are interested in

�� � � , the
probability of a word sequence. This can easily be incorporated in to the regular expression framework, simply
by assigning costs or probabilities to the rules in the grammar.

Grammars are frequently used in practical dialog applications, where developers have the freedom to design
system prompts and then specify a grammar that is expected to handle all reasonable replies. For example, in an

12

airline-reservation application the system might ask “Where do you want to fly to?” and then activate a grammar
designed to recognize city names. Due to their simplicity and intuitive nature, these sorts of grammars are the
first choice wherever possible.

4.2 N-gram Models

N-gram language models are currently the most widely used LMs in large vocabulary speech recognition. In an
N-gram language model, the probability of each word is conditioned on the

� ���
preceding words:

�� � � � ���� � � ���� � � � � ������� ���� � � � � � � � � � � � � � � � � ��� � � ���� � � � � � � !�� � � � ! � � � � � � � � � �
While in principle this model ignores a vast amount of prior knowledge concerning linguistic structure - part-
of-speech classes, syntactic constraints, semantic coherence, and pragmatic relevance - in practice, researchers
have been unable to significantly improve on it.

A typical large vocabulary system will recognize between 30 and 60 thousand words, and use a 3 or 4-gram
language model trained on around 200 million words (Saon et al. 2003). While 200 million words seems at first
to be quite large, in fact for a 3-gram LM with a 30,000 word vocabulary, it is actually quite small compared to
the � � � � � � � distinct trigrams that need to be represented. In order to deal with this problem of data sparsity,
a great deal of effort has been spent of developing techniques for reliably estimating the probabilities of rare
events.

4.2.1 Smoothing

Smoothing is perhaps the most important practical detail in building N-gram language models, and these tech-
niques fall broadly into three categories: additive smoothing, backoff models, and interpolated models. The
following sections touch briefly on each, giving a full description for only interpolated LMs, which have been
empirically found to give good performance on a variety of tasks. The interested reader can find a full review of
all these methods in (Chen & Goodman 1998).

Additive Smoothing

In the following, we will use the compact notation
�	�
* to refer to the sequence of words

� * !
� * � � � � � � � ,
and � �����* � to the number of times (count) that this sequence has been seen in the training data. The maximum-
likelihood estimate of

���� � � � � � �� � � � � � is thus given as:

���� � � � � � �� � � � � ��� � ��� �� � � � � �
� ��� � � �� � � � � �

The problem, of course, is that for high-order N-gram models, many of the possible (and perfectly normal) word
sequences in a language will not be seen, and thus assigned zero-probability. This is extraordinarily harmful to
a speech recognition system, as one that uses such a model will never be able to decode these novel word se-
quences. One of the simplest ways of dealing with such a problem is to use a set of fictitious or imaginary counts
to encode our prior knowledge that all word sequences have some likelihood. In the most basic implementation
(Jeffreys 1948), one simply adds a constant amount

�
to each possible event. For a vocabulary of size � � , one

then has:
���� � � � � � �� � � � � ��� �
 � ��� �� � � � � �

� � �
 � ��� � � �� � � � � �
The optimal value of

�
can be found simply by performing a search so as to maximize the implied likelihood

on a set of held-out data. This scheme, while having the virtue of simplicity, tends to perform badly in practice
(Chen & Goodman 1998).

Low-Order Backoff

13

One of the problems of additive smoothing is that it will assign the same probability to all unseen words
that follow a particular history. Thus for example, it will assign the same probability to the sequence “spaghetti
western” as to “spaghetti hypanthium,” assuming that neither has been seen in the training data. This violates
our prior knowledge that more frequently occurring words are more likely to occur, even in previously unseen
contexts.

One way of dealing with this problem is to use a backoff model in which one “backs off” to a low order
language model estimate to model unseen events. These models are of the form:

���� � � � � � �� � � � � � � � ��� � � � � � �� � � � � � if � ��� �� � � � � � � �
� ��� � � �� � � � � � ���� � � � � � �� � � � � � if � ��� �� � � � � ��� �

One example of this is Katz smoothing (Katz 1987), which is used, e.g., in the SRI language-modeling toolkit
(Stolcke 2002). However, empirical studies have shown that better smoothing techniques exist, so we will not
present it in detail.

Low-Order Interpolation

The weakness of a backoff language model is that it ignores the low-order language model estimate whenever
a high-order N-gram has been seen. This can lead to anomalies when some high-order N-grams are seen, and
others with equal (true) probability are not. The most effective type of N-gram model uses an interpolation be-
tween high and low-order estimates under all conditions. Empirically, the most effective of these is the modified
Kneser Ney language model (Chen & Goodman 1998), which is based on (Kneser & Ney 1995).

This model makes use of the concept of the number of unique words that have been observed to follow a
given language model history at least

�
times. Define

� � ��� � � �� � � � � $ ��� � � � ��� � ��� � � �� � � � � � � ��� � � �
and � � � ��� � � �� � � � � $ ��� � � � � � � ��� � � �� � � � � � � � � � � �
The modified Kneser Ney estimate is then given as

���� � � � � � �� � � � � ��� � ��� �� � � � � � � � � � ��� �� � � � � ���
� ��� � � �� � � � � �
 � ��� � � �� � � � � � ���� � � � � � �� � � � � �

Defining �
�

� �
� �
 � � �

where
���

is the number of n-grams that occur exactly � times, the discounting factors are given by

� � � � ���		
 		�
� if � ���� � �

� ��� % if � � �
� � " � ��� � if � � �" � � � ����� if � � "

The backoff weights are determined by

� ��� � � �� � � � � ��� � � � � ��� � � �� � � � � $ �
 �
�
�
�
��� � � �� � � � � $ �
 � � � � � � ��� � � �� � � � � $ �

� ��� � � �� � � � � �
This model has been found to slightly outperform most other models and is in use in state-of-the-art systems
(Saon et al. 2003). Because

��� � ��� � , this can also be expressed in a backoff form.

14

4.2.2 Cross-LM Interpolation

In many cases, several disparate sources of language model training data are available, and the question arises:
what is the best method of combining these sources? The obvious answer is simply to concatenate all the sources
of training data together, and to build a model. This, however, has some serious drawbacks when the sources
are quite different in size. For example, in many systems used to transcribe telephone conversations (Saon et al.
2003; Sankar et al. 2002; Woodland 2002; Gauvain et al. 2000), data from television broadcasts is combined with
a set of transcribed phone conversations. However, due to its easy availability, there is much more broadcast data
than conversational data: about 150 million words compared to 3 million. This can have quite negative effects.
For example, in the news broadcast data, the number of times “news” follows the bigram “in the” may be quite
high, whereas in conversations, trigrams like “in the car” or “in the office” are much likelier. Because of the
smaller amount of data, though, these counts will be completely dwarfed by the broadcast news counts, with the
result that the final language model will be essentially identical to the broadcast news model. Put another way, it
is often the case that training data for several styles of speaking is available, and that the relative amounts of data
in each category bears no relationship to how frequently the different styles are expected to be used in real life.

In order to deal with this, it is common to interpolate multiple distinct language models. For each data source�
, a separate language model is built that predicts word probabilities:

 � ��� � � � � � �� � � � � � . These models are then
combined with weighting factors � � :

���� � � � � � �� � � � � ��� � � � ��� � � � � � �� � � � � � ! �
� � � � �

For example, in a recent conversational telephony system (Saon et al. 2003) an interpolation of data gathered
from the web, broadcast news data, and two sources of conversational data (with weighting factors 0.4, 0.2,
0.2, and 0.2 respectively) resulted in about a 10% relative improvement over using the largest single source of
conversational training data.

4.2.3 N-gram Models as Finite State Graphs

While N-gram models have traditionally been treated as distinct from recognition grammars, in fact they are
identical, and this fact has been increasingly exploited. One simple way of seeing this is to consider a concrete
algorithm for constructing a finite state graph at the HMM state level from an N-gram language model expressed
as a backoff language model. This will make use of two functions that act on a word sequence

� �! :

1. ��� 	 � ��� �! � returns the suffix
� �! � �

2. �#	 ��� ��� �! � returns the prefix
� � � �!

For a state-of-the-art backoff model, one proceeds as follows:

1. for each N-gram with history � and successor word � make a unique state for � , ��� 	 � � � ��� , and �#	 ��� � � �
2. for each N-gram add an arc from � to ��� 	 � � � ��� labeled with � and weighted by the probability of the

backoff model

3. for each unique N-gram history � add an arc from � to �#	 ��� � � � with the backoff � associated with �

To accommodate multiple pronunciations of a given word, one then replaces each word arc with a set of arcs,
one labeled with each distinct pronunciation, and multiplies the associated probability with the probability of
that pronunciation. For acoustic models in which there is no cross word context, each pronunciation can then be
replaced with the actual sequence of HMM states associated with the word; accommodating cross word context
is more complex, but see, e.g. (Zweig et al. 2002). Figure 6 illustrates a portion of an HMM n-gram graph.

We have described the process of expanding a language model into a finite-state graph as a sequence of
“search and replace” operations acting on a basic representation at the word level. However, (Mohri 1997;
Mohri et al. 1998) have recently argued that the process is best viewed in terms of a sequence of finite state
transductions. In this model, one begins with a finite state encoding of the language model, but represents
the expansion at each level - from word to pronunciation, pronunciation to phone, and phone to state - as the

15

h=

h=

h=

h=

h’= "blue"

h’= "ran amok"

n−gram history states

ngram prob

Backoff factor

"The dog ran"

"dog ran"

"ran"

""

"quickly"

"home"

"fast"

Successor words

"amok"

"blue"

"hazy"unigram state

Figure 6: HMM state graph illustrating the structure of a backoff language model

composition of the previous representation with a finite state transducer. The potential advantage of this approach
is a consistent representation of each form of expansion, with the actual operations being performed by a single
composition function. In practice, care must be taken to ensure that the composition operations do not use large
amounts of memory, and in some cases, it is inconvenient to express the acoustic context model in the form of a
transducer (e.g. when long span context models are used).

In some ways, the most important advantage of finite-state representations is that operations of determiniza-
tion and minimization were recently developed by (Mohri 1997; Mohri et al. 1998). Classical algorithms were
developed in the 1970s (Aho et al. 1986) for unweighted graphs as found in compilers, but the extension to
weighted graphs (the weights being the language model and transition probabilities) has made these techniques
relevant to speech recognition. While it is beyond the scope of this paper to present the algorithms for deter-
minization and minimization, we briefly describe the properties.

A graph is said to be deterministic if each outgoing arc from a given state has a unique label. In the context
of speech recognition graphs, the arcs are labeled with either HMM states, or word, pronunciation, or phone
labels. While the process of taking a graph and finding an equivalent deterministic one is well defined, the
deterministic representation can in pathological cases grow exponentially in the number of states of the input
graph. In practice, this rarely happens, but the graph does grow. The benefit actually derives from the specific
procedures used to implement the Viterbi search described in Section 5.1. Suppose one has identified a fixed
number

�
of states that are reasonably likely at a given time � . Only a small number

�
of HMM states are likely

to have good acoustic matches, and thus to lead to likely states at time �
 � . Thus, if on average � outgoing arcs
per state are labeled with a given HMM state, the number of likely states at �
 � will be on the order of �

� �
.

By using a deterministic graph, � is limited to
�
, and thus tends to decrease the number of states that will ever be

deemed likely. In practice, this property can lead to an order-of-magnitude speedup in search time, and makes
determinization critical.

One can also ask, given a deterministic graph, what is the smallest equivalent deterministic graph. The
process of minimization (Mohri 1997) produces such a graph, and in practice often reduces graph sizes by a
factor of two or three.

4.2.4 Pruning

Modern corpus collections (Graff 2003) often contain an extremely large amount of data - between 100 million
and a billion words. Given that N-gram language models can backoff to lower-order statistics when high-order
statistics are unavailable, and that representing extremely large language models can be disadvantageous from
the point-of-view of speed and efficiency, it is natural to ask how one can trade off language model size and
fidelity. Probably the simplest way of doing this is to impose a count threshold, and then to use a lower-order
backoff estimate for the probability of the

�
th word in such N-grams.

A somewhat more sophisticated approach (Seymore & Rosenfeld 1996) looks at the loss in likelihood caused

16

by using the backoff estimate to select N-grams to prune. Using

and
 �

to denote the original and backed-off
estimates, and

� �
� � to represent the (possibly discounted) number of times an N-gram occurs, the loss in log

likelihood caused by the omission of an N-gram
� �� � � � � is given by:

� ��� �� � � � � � � � � � ���� � � � � � �� � � � � � � � � � ���� � � � � � �� � � � � ���
In the “Weighted Difference Method” (Seymore & Rosenfeld 1996), one computes all these differences, and
removes the N-grams whose difference falls below a threshold. A related approach (Stolcke 1998) uses the
Kullback-Leibler distance between the original and pruned language models to decide which N-grams to prune.
The contribution of an N-gram in the original model to this KL distance is given by:

���� �� � � � � � � � � � ���� � � � � � �� � � � � � � � � � ���� � � � � � �� � � � � ���
and the total KL distance is found by summing over all N-grams in the original model. The algorithm of (Stolcke
1998) works in batch mode, first computing the change in relative entropy that would result from removing each
N-gram, and then removing all those below a threshold, and recomputing backoff weights. A comparison of
the weighted-difference and relative-entropy approaches shows that the two criteria are the same in form, and
the difference between the two approaches is primarily in the recomputation of backoff weights that is done in
(Stolcke 1998). In practice, LM pruning can be extremely useful in limiting the size of a language model in
compute-intensive tasks.

4.2.5 Class Language Models

While n-gram language models often work well, they have some obvious drawbacks, specifically their inability
to capture linguistic generalizations. For example, if one knows that the sentence “I went home to feed my dog”
has a certain probability, then one might also surmise that the sentence “I went home to feed my cat” is also
well-formed, and should have roughly the same probability. There are at least two forms of knowledge that are
brought to bear to make this sort of generalization: syntactic and semantic. Syntactically, both “dog” and “cat”
are nouns, and can therefore be expected to be used in the same ways in the same sentence patterns. Further, we
have the semantic information that both are pets, and this further strengthens their similarity. The importance of
the semantic component can be further highlighted by considering the two sentences, “I went home to walk my
dog,” and “I went home to walk my cat.” Here, although the syntactic structure is the same, the second sentence
seems odd because cats are not walked.

Class-based language models are an attempt to capture the syntactic generalizations that are inherent in lan-
guage. The basic idea is to first express a probability distribution over parts-of-speech (nouns, verbs, pronouns,
etc.), and then to specify the probabilities of specific instances of the parts of speech. In its simplest form (Brown
1992) a class based language model postulates that each word maps to a single class, so that the word stream

� ��
induces a sequence of class labels � �� . The n-gram word probability is then given by:

���� � � � � � �� � � � � ��� ���� � � � � � �� � � � � � � �� � � � � �
Operationally, one builds an n-gram model on word classes, and then combines this with a unigram model that
specifies the probability of a specific word given a class. This form of model makes the critical assumption that
each word maps into a unique class, which of course is not true for standard parts of speech. (For example, “fly”
has a meaning both in the verb sense of what a bird does, and in the noun sense of an insect.) However, (Brown
1992) present an automatic procedure for learning word-classes of this form. This method greedily assigns
words to classes so as to minimize the perplexity of induced N-gram model over class sequences. This has the
advantage both of relieving the user from specifying grammatical relationships, and of being able to combine
syntactic and semantic information. For example, (Brown 1992) presents a class composed of:
feet miles pounds degrees inches barrels tons acres meters bytes
and many similar classes whose members are similar both syntactically and semantically.

Later work (Ney et al. 1994) extends the class-based model to the case where a word may map into multiple
classes, and a general mapping function � � � � is used to map a word history

� � � �� � � � � into a specific equivalence
class � . Under these more general assumptions, we have

���� � � � � � �� � � � � ��� � &

���� � � � � � � � $
�� � � � � � �� � � � � � �� � � � � � �

17

Due to the complexity of identifying reasonable word-to-class mappings, however, the class induction procedure
presented assumes an unambiguous mapping for each word.

This general approach has been further studied in (Niesler et al. 1998), and experimental results are presented
suggesting that automatically derived class labels are superior to the use of linguistic part-of-speech labels. The
process can also be simplified (Whittaker & Woodland 2001) to using

���� � � � ��� � � �� � � � � ��� �
Class language models are now commonly used in state-of-the-art systems, where their probabilities are interpo-
lated with word-based N-gram probabilities, e.g. (Woodland 2002).

5 Search

Recall that the objective of a decoder is to find the best word sequence ��� given the acoustics:

� � � �������	��
�
�� ��� ����� ����������
�

�� � � �� � � � ��� ���
The crux of this problem is that with a vocabulary size and utterance length

�
, the number of possible word-

sequences is
� � � � , i.e. it grows exponentially in the utterance length. Over the years, the process of finding

this word sequence has been one of the most studied aspects of speech recognition with numerous techniques
and variations developed, (Gopalakrishnan et al. 1995; Odell 1995; Aubert 2000). Interestingly, in recent years,
there has been a renaissance of interest in the simplest of these decoding algorithms: the Viterbi procedure. The
development of better HMM compilation techniques along with faster computers has made Viterbi applicable to
both large vocabulary recognition and constrained tasks, and therefore this section will focus on Viterbi alone.

5.1 The Viterbi Algorithm

The Viterbi algorithm operates on an HMM graph in order to find the best alignment of a sequence of acoustic
frames to the states in the graph. For the purposes of this discussion, we will define an HMM in the classical
sense as consisting of states with associated acoustic models, and arcs with associated transition costs. A special
non-emitting “start state” and “final state” � are specified such that all paths start at � � � in and end at��� �
 � in � . Finally, we will associate a string label (possibly “epsilon” or null) with each arc. The semantics
of Viterbi decoding can then be very simply stated: the single best alignment of the frames to the states is
identified, and the word labels encountered on the arcs of this path are output. Note that in the “straight” HMM
framework there is no longer any distinction between acoustic model costs, language model costs, or any other
costs. All costs associated with all sources of information must be incorporated in the transition and emission
costs that define the network: � ! � � % � and � � ! .

A more precise statement of Viterbi decoding is to find the optimal state sequence � � � � � ! � � ! � � � � � :

� � � ����������
�
�

% � � � � � � � $
" � � % �#	 $
"�$
" $&%
Remarkably, due to the limited-history property of HMMs, this can be done with an extremely simple algorithm
(Levinson et al. 1983; Rabiner & Juang 1986). We define

1.
� % � � � : the cost of the best path ending in state � at time �

2. � % � � � : the state preceding state � on the best path ending in state � at time �
3. � � � � � � � : the set of states that are � ’s immediate predecessors in the HMM graph

These quantities can then be computed for all states and all times according to the recursions

1. Initialize

$ � 	 � ��� �

18

$ � 	 � � ��� undefined � �$ � 	 � � ��� ��� ����
2. Recursion

$ � % � � � � ����
 !���� � � � ' $ (� % � � � � � � ! $ � % � � �$ � % � � ��� ����������
 !���� � � � ' $�(� % � � � � � � ! $� % � � �
Thus, to perform decoding, one computes the

�
s and their backpointers � , and then follows the backpointers

backwards from the final state � at time
�
 �

. This produces the best path, from which the arc labels can be
read off.

In practice, there are a several issues that must be addressed. The simplest of these is that the products
of probabilities that define the

�
s will quickly underflow arithmetic precision. This can be easily dealt with

by representing numbers with their logarithms instead. A more difficult issue occurs when non-emitting states
are present throughout the graph. The semantics of null states in this case are that spontaneous transitions are
allowed without consuming any acoustic frames. The update for a given time frame must then proceed in two
stages:

1. The
�
s for emitting states are computed in any order by looking at their predecessors

2. The
�
s for null states are computed by iterating over them in topological order and looking at their prede-

cessors

The final practical issue is that in large systems, it may be advantageous to use pruning to limit the number of
states that are examined at each time frame. In this case, one can maintain a fixed number of “live” states at each
time frame. The decoding must then be modified to “push” the

�
s of the live states at time � to the successor

states at time �
 � .
An examination of the Viterbi recursions reveals that for an HMM with � arcs and an utterance of

�
frames,

the runtime is
� � � � � and the space required is

� ��� ��� . However, it is interesting to note that through the use of
a divide-and-conquer recursion, the space used can be reduced to

� � � � � � � � � � at the expense of a runtime of� ��� � � � � � � � (Zweig & Padmanabhan 2000). This is often useful for processing long conversations, messages
or broadcasts. The Viterbi algorithm can be applied to any HMM, and the primary distinction is whether the
HMM is explicitly represented and stored in advance, or whether it is constructed “on-the-fly.” The following
two sections address these approaches.

5.1.1 Statically Compiled Decoding Graphs (HMMs)

Section 4.2.3 illustrated the conversion of an N-gram based language model into a statically compiled HMM,
and in terms of decoding efficiency, this is probably the best possible strategy (Mohri et al. 1998; Saon et al.
2003). In this case, a large number of optimizations can be applied to the decoding graph (Mohri et al. 1998) at
“compile time” so that a highly efficient representation is available at decoding time without further processing.
Further, it provides a unified way of treating both large and small vocabulary recognition tasks.

5.1.2 Dynamically Compiled Decoding Graphs (HMMs)

Unfortunately, under some circumstances it is difficult or impossible to statically represent the search space.
For example, in a cache-LM (Kuhn 1988; Kuhn & De Mori 1990) one increases the probability of recently
spoken words. Since it is impossible to know what will be said at compile-time, this is poorly suited to static
compilation. Another example is the use of trigger-LMs (Rosenfeld 1996) in which the co-occurrences of words
appearing throughout a sentence are used to determine its probability; in this case, the use of a long-range word-
history makes graph compilation difficult. Or in a dialog application, one may want to create a grammar that is
specialized to information that a user has just provided; obviously, this cannot be anticipated at compile time.
Therefore, despite its renaissance, the use of static decoding graphs is unlikely to become ubiquitous.

In the cases where dynamic graph compilation is necessary, however, the principles of Viterbi decoding can
still be used. Recall that when pruning is used, the

�
quantities are pushed forward to their successors in the

graph. Essentially what is required for dynamic expansion is to associate enough information with each
�

that

19

SmithHello

Mister

Star
Hum

My

SirNo

Smyth

Figure 7: A word lattice. Any path from the leftmost start state to the rightmost final state represents a possible
word sequence.

MisterHum

Hello <eps> Star

My Sir

Smyth

Smith

No

Figure 8: A word lattice

its set of successor states can be computed on demand. This can be done in many ways, a good example being
the strategy presented in (Odell 1995).

5.2 Multipass Lattice Decoding

Under some circumstances, it is desirable to generate not just a single word hypothesis, but a set of hypotheses,
all of which have some reasonable likelihood. There are a number of ways of doing this (Odell 1995; Weng
et al. 1998; Neukirchen et al. 2001; Ortmanns & Ney 1997; Zweig & Padmanabhan 2000), and all result in a
compact representation of a set of hypotheses as illustrated in Figure 7. The states in a word lattice are annotated
with time information, and the arcs with word labels. Additionally, the arcs may have the acoustic and language
model scores associated with the word occurrence (note that with an n-gram LM, this implies that all paths of
length

� � �
leading into a state must be labeled with the same word sequence). We note also, that the posterior

probability of a word occurrence in a lattice can be computed as the ratio of the sum likelihood of all the paths
through the lattice that use the lattice link, to the sum likelihood of all paths entirely. These quantities can be
computed with recursions analogous to the HMM � recursions, e.g. as in (Zweig & Padmanabhan 2000).

Once generated, lattices can be used in a variety of ways. Generally, these involve recomputing the acoustic
and language model scores in the lattice with more sophisticated models, and then finding the best path with
respect to these updated scores. Some specific examples are:

$ Lattices are generated with an acoustic model in which there is no cross-word acoustic context, and then
rescored with a model using cross-word acoustic context, e.g. (Matsoukas 2003; Kingsbury et al. 2003).

$ Lattices are generated with a speaker-independent system, and then rescored using speaker-adapted acous-
tic models, e.g. (Woodland 2002).

$ Lattices are generated with a bigram LM and then rescored with a trigram or 4-gram LM, e.g. (Woodland
2002; Ljolje 2000).

The main potential advantage of using lattices is that the rescoring operations can be faster than decoding from
scratch with sophisticated models. With efficient Viterbi implementations on static decoding graphs, however, it
is not clear that this is the case (Saon et al. 2003).

20

5.3 Consensus Decoding

Recall that the decoding procedures that we have discussed so far have aimed at recovering the MAP word
hypothesis:

� � � �������	��
�
�� ��� ����� ����������
�

�� � � �� � � � ��� ���
Unfortunately, this is not identical to minimizing the WER metric by which speech recognizers are scored. The
MAP hypothesis will asymptotically minimize sentence error rate, but not necessarily word error rate. Recent
work (Stolcke et al. 1997; Mangu et al. 2000) has proposed that the correct objective function is really the ex-
pected word-error rate under the posterior probability distribution. Denoting the reference or true word sequence
by � and the string edit distance between � and � by

 � � ! ��� , the expected error is:

�� '���� � (� � � ! ��� � �
�
�
�� � � ��� � � ! ���

Thus, the objective becomes finding

� � � ����������
�
�
�
�� � � ��� � � ! ���

There is no known dynamic programming procedure for finding this optimum when the potential word sequences
are represented with a general lattice. Therefore, (Mangu et al. 2000) proposes instead work with a segmental
or sausage-like structure as illustrated in Figure 8. To obtain this structure, the links in a lattice are clustered
so that temporally overlapping and phonetically similar word occurrences are grouped together. Often, multiple
occurrences of the same word (differing in time-alignment or linguistic history) end up together in the same bin,
where their posterior probabilities are added together. Under the assumption of a sausage structure, the expected
error can then be minimized simply by selecting the link with highest posterior probability in each bin (Mangu
et al. 2000). This procedure has been widely adopted and generally provides a � to

� ��� relative improvement in
large vocabulary recognition performance.

5.4 System Combination

In recent DARPA-sponsored speech recognition competitions, it has become common practice to improve the
word error rate by combining the outputs of multiple systems. This technique was first developed in (Fiscus
1997) where the outputs of multiple systems are aligned to one another, and a voting process is used to select
the final output. This process bears a strong similarity to the consensus decoding technique, in that a segmental
structure is imposed on the outputs, but differs in its use of multiple systems.

Although the problem of producing an optimal multiple alignment is NP complete (Gusfield 1997), (Fiscus
1997) presents a practical algorithm for computing a reasonable approximation. The algorithm works by itera-
tively merging a sausage structure that represents the current multiple alignment with a linear word hypothesis.
In this algorithm, the system outputs are ordered, and then sequentially merged into a sausage structure.

In a typical use (Kingsbury et al. 2003), multiple systems are built differing in the front-end analysis, type of
training (ML vs. MMI) and/or speaker adaptation techniques that are used. The combination of 3 to 5 systems
may produce on the order of 10% relative improvement over the best single system.

6 Adaptation

The goal of speaker adaptation is to modify the acoustic and language models in light of the data obtained
from a specific speaker, so that the models are more closely tuned to the individual. This field has increased in
importance since the early 1990s, has been intensively studied, and is still the focus of a significant amount of
research. However, since no consensus has emerged on the use of language model adaptation, and many state-
of-the-art systems do not use it, this section will focus solely on acoustic model adaptation. In this area, there
are three main techniques:

$ Maximum A Posteriori (MAP) adaptation, which is the simplest form of acoustic adaptation;

21

$ Vocal Tract Length Normalization (VTLN), which warps the frequency scale to compensate for vocal tract
differences;$ Maximum Likelihood Linear Regression, which adjusts the gaussians and/or feature vectors so as to in-
crease the data likelihood according to an initial transcription

These methods will be discussed in the following sections.

6.1 MAP Adapatation

MAP adaptation is a Bayesian technique applicable when one has some reasonable expectation as to what ap-
propriate parameter values should be. This prior � � � � on the parameters � is then combined with the likelihood
function

� � *�� � � to obtain the MAP parameter estimates:� � � ����������
� � � � � � � *�� � �
. The principled use of MAP estimation has been thoroughly investigated in (Gauvain & Lee 1994), which
presents the formulation that appears here.

The most convenient representation of the prior parameters for � -dimensional gaussian mixture models is
given by Dirichlet priors for the mixture weights

� � � � � ��� , and normal-Wishart densities for the gaussians
(parameterized by means � � and inverse covariance matrices � �). These priors are expressed in terms of the
following parameters:$�� � ; a count � � � �$�� � ; a count � � � �$ � ; a count �� � � ���$ � ; a � dimensional vector$�� � , a � � � positive definite matrix

Other necessary notation is:$ � � % : the posterior probability of gaussian
�

at time �$�� : the number of gaussians$ � : the number of frames

With this notation, the MAP estimate of the gaussian mixture parameters are:

� �� � � � � �
 	 �% � � � � %� � �
 	
� ��� � � �

�
� � � � �� ���
 	 �% � � ��� % %

� �
 	 �% � � ��� %
� � � �� �

� �
 � � � �� � �
� � � � �� � �

� � � . � � �
 	 �% � � � � %
 	 �% � � � � % � % � � � � � � % � �
� � � . �� � �
 	 �% � � ��� %

Unfortunately, there are a large number of free parameters in the representation of the prior, making this
formulation somewhat cumbersome in practice. (Gauvain & Lee 1994) discusses setting these, but in practice it
is often easier to work in terms of fictitious counts. Recall that in EM, the gaussian parameters are estimated from
first and second-order sufficient statistics accumulated over the data. One way of obtaining reasonable priors is
simply to compute these over the entire training set without regard to phonetic state, and then to weight them
according to the amount of emphasis that is desired for the prior. Similarly, statistics computed for one corpus
can be downweighted and added to the statistics from another.

22

o

fo’

f

f’

f

Figure 9: Two VTLN warping functions.
� 	

is mapped into
� �	 .

6.2 Vocal Tract Length Normalization

The method of VTLN is motivated by the fact that formants and spectral power distributions vary in a systematic
way from speaker to speaker. In part, this can be viewed as a side-effect of a speech generation model in which
the vocal tract can be viewed as a simple resonance tube, closed at one end. In this case the first resonant
frequency is given by

� ��� , where L is the vocal tract length. While such a model is too crude to be of practical
use, it does indicate a qualitative relationship between vocal tract length and formant frequencies. The idea
of adjusting for this on a speaker-by-speaker basis is old, dating at least to the 1970s (Waitika 1977; Bamberg
1981), but was revitalized by a CAIP workshop (Kamm et al. 1995), and improved to a fairly standard form in
(Wegmann et al. 1996). The basic idea is to warp the frequency scale so that the acoustic vectors of a speaker are
made more similar to a canonical speaker-independent model. (This idea of “canonicalizing” the feature vectors
will recur in another form in section 6.3.2.) Figure 9 illustrates the form of one common warping function.

There are a very large number of variations on VTLN, and for illustration we choose the implementation
presented in (Wegmann et al. 1996). In this procedure, the FFT vector associated with each frame is warped
according a warping function like that in Figure 9. Ten possible warping scales are considered, ranging in the
slope of the initial segment from �� ��� to

� � � . The key to this technique is to build a simple model of voiced
speech, consisting of a single mixture of gaussians trained on frames that are identified as being voiced. (This
identification is made on the basis of a cepstral analysis described in (Hunt 1995).) To train the voicing model,
each speaker is assigned an initial warp scale of

�
, and then the following iterative procedure is used:

1. Using the current warp scales for each speaker, train a GMM for the voiced frames

2. Assign to each speaker the warp scale that maximizes the likelihood of his or her warped features according
to the current voicing model

3. goto 1

After several iterations, the outcome of this procedure is a voicing scale for each speaker, and a voicing model.
Histograms of the voicing scales are generally bimodal, with one peak for men, and one for women. Training of
the standard HMM parameters can then proceed as usual, using the warped or canonicalized features.

The decoding process in similar. For the data associated with a single speaker, the following procedure is
used:

1. Select the warp scale that maximizes the likelihood of the warped features according to the voicing model

2. Warp the features and decode as usual

The results reported in (Wegmann et al. 1996) indicate a
� � � relative improvement in performance over unnor-

malized models, and improvements of this scale are typical (Welling et al. 1998; Zhan & Waibel 1997).
As mentioned, a large number of VTLN variants have been explored. (Hain et al. 1999; Molau et al. 2000;

Welling et al. 1998) choose warp scales by maximizing the data likelihood with respect to a full-blown HMM
model, rather than a single GMM for voiced frames, and experiment with the size of this model. The precise

23

nature of the warping has also been subject to scrutiny; (Hain et al. 1999) uses a piecewise linear warp with two
discontinuities rather than one; (Molau et al. 2000) experiments with a power law warping function of the form

� � � � �� � �
� � �

where
� � is the bandwidth and (Zhan & Waibel 1997) experiments with bilinear warping functions of the form

��� � �
 � ��� ��� ��� � � � � � ��� � � � �� � � � � � � ��� � � � �
Generally, the findings are that piecewise linear models work as well as the more complex models, and that
simple acoustic models can be used to estimate the warp factors.

The techniques described so far operate by finding a warp scale using the principles of maximum likelihood
estimation. An interesting alternative presented in (Eide & Gish 1996; Gouvea & Stern 1997) is based on
normalizing formant positions. In (Eide & Gish 1996), a warping function of the form��� � � � � ��� 	 	 	$
is used, where

� $ is the ratio of the speaker’s third formant to the average frequency of the third formant. In
(Gouvea & Stern 1997), the speaker’s first, second, and third formants are plotted against their average values,
and the slope of the line fitting these points is used as the warping scale. These approaches, while nicely mo-
tivated, have the drawback that it is not easy to identify formant positions, and they have not been extensively
adopted.

6.3 MLLR

A seminal paper (Leggetter & Woodland 1994) sparked intensive interest in the mid
� � ��� s in techniques for

adapting the means and/or variances of the gaussians in an HMM model. Whereas VTLN can be thought of as a
method for standardizing acoustics across speakers, Maximum Likelihood Linear Regression was first developed
as a mechanism for adapting the acoustic models to the peculiarities of individual speakers. This form of MLLR
is known as “model-space” MLLR, and is discussed in the following section. It was soon realized (Digalakis et al.
1995; Gales & Woodland 1996), however, that one particular form of MLLR has an equivalent interpretation as
on operation on the features, or “feature-space” MLLR. This technique is described in Section 6.3.2, and can be
though of as another canonicalizing operation.

6.3.1 Model Space MLLR

A well defined question first posed in (Leggetter & Woodland 1994) is, suppose the means of the gaussians are
transformed according to � �� �
	�
Under the assumption of this form of transform, what matrix � and offset vector � will maximize the data
probability given an initial transcription of the data? To solve this, one defines an extended mean vector

 ��� � � � � � �� .
and a � � �
 � matrix

�
. The likelihood assigned by a gaussian � is then given by

� � *� �
�� ! # � �
In general, with a limited amount of training data, it may be advantageous to tie the transforms of many gaussians,
for example all those belonging to a single phone or phone-group such as vowels. If we define � � ' % (to be the
posterior probability of gaussian � having generated the observation � % at time � , and � to be the set of gaussians
whose transforms are to be tied, then the matrix

�
is given by the following equation (Leggetter & Woodland

1994) % � �� % � � �� ��� � � � � ��# � ���� � � �
 .� �
% � �� % � � �� ��� � � � � ��# � �� �
 �
 .�

24

Thus, estimating the transforms simply requires accumulating the sufficient statistics used in ML reestimation,
and solving a simple matrix equation. Choosing the sets of gaussians to tie can be done simply by clustering
the gaussians according to pre-defined phonetic criteria, or according to KL divergence (Leggetter & Woodland
1995). Depending on the amount of adaptation data available, anywhere from 1 to several hundred transforms
may be used.

A natural extension of mean-adaptation is to apply a linear transformation to the gaussian variances as well
(Gales & Woodland 1996; Gales 1997). The form of this transformation is given by� � �
	� � �

and �# ��� #�� .
where

�
and � are the matrices to be estimated. A procedure for doing this is presented in (Gales 1997).

6.3.2 Feature Space MLLR

Although it is a constrained version of the mean and variance transform described in the previous section, in
some ways the most important form of MLLR applies the same transform to the means as to the variances:� � � � � � ��# � � � # � � .
Under this constraint, straightforward estimation formulae can be derived, but more importantly, the transforma-
tion can be applied in to the feature vectors rather than the models, according to:�� � � ��� � � � � � � � �
 � � � � � � � � � � � �
��
The likelihoods computed with this feature transformation differ from those computed with the model transform
by � � � � � � � � . When, as is often done, a single fMLLR transform is used, this can be ignored in Viterbi decoding
and EM training. This has two important ramifications. Once the transforms have been estimated,

1. Transformed features can be written out and the models can be retrained with the standard EM procedures
(speaker-adaptive or SAT training) and

2. MMI or other discriminative training can be performed with the transformed features.

Curiously, although multiple MLLR transforms are commonly used, the use of multiple fMLLR transforms has
not yet been thoroughly explored. Due to the convenience of working with transformed or canonicalized features,
feature space MLLR has become a common part of modern systems (Saon et al. 2003; Woodland 2002). It is
often used in conjunction with VTLN in the following speaker-adaptive or SAT training procedure:

1. Train a speaker-independent (SI) system

2. Estimate VTLN warp scales using the frames that align to voiced phones with the SI system

3. Write out warped features for each speaker

4. Train a VTLN-adapted system

5. Estimate fMLLR transforms with the VTLN models

6. Write out fMLLR-VTLN features

7. Train ML and/or MMI systems from the canonical features

25

7 Performance Levels

In order to illustrate the error rates attainable with today’s technology - and the relative contribution of the
techniques discussed in earlier sections - the following paragraphs describe the state-of-the-art as embodied by
an advanced IBM system in 2002 (Kingsbury et al. 2003). This system was designed to work well across a wide
variety of speakers and topics, and is tested on five separate datasets -

1. Telephone conversations (Swb98)

2. Meeting recordings (mtg)

3. Two sets of call center recordings of customers discussing account information (cc1 and cc2)

4. Voicemail recordings (vm)

In this system, the recognition steps are as follows:

P1 Speaker-independent decoding. The system uses mean-normalized MFCC features and an acoustic model
with 4078 left context-dependent states and 171K mixture components.

P2 VTLN decoding. VTLN warp factors are estimated for each speaker using forced alignments of the data to
the recognition hypotheses from P1, then recognition is performed with a VTLN system that uses mean-
normalized PLP features and an acoustic model with 4440 left context-dependent states and 163K mixture
components.

P3 Lattice generation. Initial word lattices are generated with a SAT system that uses mean-normalized PLP
features and an acoustic model with 3688 word-internal context-dependent states and 151K mixture com-
ponents. FMLLR transforms are computed with the recognition hypotheses from P2.

P4 Acoustic rescoring with large SAT models. The lattices from P3 are rescored with five different SAT
acoustic models and pruned. The acoustic models are as follows:

A An MMI trained PLP system with 10437 left context-dependent states and 623K mixture compo-
nents. The maximum value of ��� is subtracted from each feature vector, and mean-normalization is
performed for the other cepstral coefficients.

B An MLE PLP system identical to the system of P4A, except for the use of MLE training of the
acoustic model.

C An MLE PLP system with 10450 left context-dependent states and 589K mixture components. This
system uses mean normalization of all raw features including ��� .

D A SPAM MFCC system with 10133 left context-dependent states and 217K mixture components.

E An MLE MFCC system with 10441 left context-dependent states and 600K mixture components.
This system uses max.-normalization of � � and mean normalization of all other raw features.

The FMLLR transforms for each of the five acoustic models are computed from the one-best hypotheses
in the lattices from P3.

P5 Acoustic model adaptation. Each of the five acoustic models are adapted with MLLR using one-best
hypotheses from their respective lattices generated in P4.

P6 4-gram rescoring. Each of the five sets of lattices from P5 are rescored and pruned using a 4-gram language
model.

P7 Confusion network combination. Each of the five sets of lattices from P6 are processed to generate con-
fusion networks (Mangu et al. 2000), then a final recognition hypothesis is generated by combining the
confusion networks for each utterance.

The performance of the various recognition passes on the test set is summarized in Table 1.

26

pass swb98 mtg cc1 cc2 vm all
P1 42.5 62.2 67.8 47.6 35.4 51.1
P2 38.7 53.7 56.9 44.1 31.7 45.0
P3 36.0 44.6 46.6 40.1 28.0 39.1
P4A 31.5 39.4 41.7 38.2 26.7 35.5
P4B 32.3 40.0 41.3 39.0 26.7 35.9
P4C 32.5 40.2 42.1 39.9 27.0 36.3
P4D 31.7 40.3 42.6 37.6 25.8 35.6
P4E 33.0 40.5 43.4 38.8 26.9 36.5
P5A 30.9 38.3 39.4 36.9 26.1 34.3
P5B 31.5 38.5 39.4 37.0 26.5 34.6
P5C 31.6 38.7 41.0 39.4 26.8 35.5
P5D 30.8 39.0 41.1 36.7 25.6 34.6
P5E 32.1 38.9 41.8 36.8 26.4 35.2
P6A 30.4 38.0 38.9 36.5 25.7 33.9
P6B 31.0 38.3 38.9 36.4 25.8 34.1
P6C 31.2 38.4 40.1 38.9 26.3 35.0
P6D 30.4 38.6 40.8 36.3 25.5 34.3
P6E 31.5 38.5 41.6 35.9 25.7 34.6
P7 29.0 35.0 37.9 33.6 24.5 32.0

Table 1: Word error rates (%) for each test set at each processing stage and the overall, average error rate. For
passes where multiple systems are used (P4–6), the best error rate for a test component is highlighted.

8 Conclusion

Over the past decade, incremental advances in HMM technology have advanced the state of the art to the point
where commercial use is possible. These advances have occurred in all areas of speech recognition, and include

$ LDA and HLDA analysis in feature extraction

$ discriminative training

$ VTLN, MLLR and FMLLR for speaker adaptation

$ the use of determinization and minimization in decoding graph compilation

$ consensus decoding

$ voting and system combination

Collectively applied, these advances produce impressive results for many speakers under many conditions.
However, under some conditions, such as when background noise is present or speech is transmitted over a low-
quality cell phone or a speaker has an unusual accent, today’s systems can fail. As the error-rates of Section 7
illustrate, this happens enough that the average error-rate for numerous tasks across a variety of conditions is
around 30% – far from human levels. Thus, the most critical problem over the coming decade is develop truly
robust techniques that reduce the error rate by another factor of five.

References
AHO, ALFRED V., RAVI SETHI, & JEFFREY D. ULLMAN. 1986. Compilers: Principles, Techniques, and Tools. Reading,

Massachusetts: Addison-Wesley.

AUBERT, XAVIER. 2000. A brief overview of decoding techniques for large vocabulary continuous speech recognition. In
Automatic Speech Recognition: Challenges for the New Millenium.

27

AXELROD, SCOTT, RAMESH GOPINATH, & PEDER OLSEN. 2002. Modeling with a subspace constraint on inverse covari-
ance matrices. In ICSLP.

BAHL, L.R., P.F. BROWN, P.V. DESOUZA, & L.R. MERCER. 1986. Maximum mutual information estimation of hidden
markov model parameters for speech recognition. In ICASSP-86, 49–52.

BAHL, L.R. ET AL. 1991. Context dependent modeling of phones in continuous speech using decision trees. In Proceedings
of DARPA Speech and Natural Language Processing Workshop.

BAKER, J. 1975. The Dragon system—an overview. IEEE Transactions on Acoustics, Speech, and Signal Processing
23.24–29.

BAMBERG, P. 1981. Vocal tract normalization. Technical report, Verbex.

BROWN, P. F. AT AL. 1992. Class-based n-gram models of natural language. Computational Linguistics 18.

CHEN, S., E. EIDE, M. GALES, R. GOPINATH, & P. OLSEN. 1999. Recent improvements in ibm’s speech recognition
system for automatic transcription of broadcast speech. In Proceedings of the DARPA Broadcast News Workshop.

CHEN, S. S., & P. S. GOPALAKRISHNAN. 1995. Clustering via the bayesian information criterion with applications in
speech recognition. In ICASSP, 645–648.

CHEN, SCOTT AT AL. 2001. Speech recognition for darpa communicator. In ICASSP.

CHEN, STANLEY F., & JOSHUA GOODMAN. 1998. An empirical study of smoothing techniques for language modeling.
Technical Report TR-10-98, Harvard University.

CHOMSKY, NOAM. 1965. Aspects of the Theory of Syntax. Cambridge, Massachusetts: MIT Press.

CMU, 2003. The cmu pronouncing dictionary.

CONSORTIUM, LINGUISTIC DATA, 2003. Callhome american english lexicon (pronlex).

DAVIES, KEN ET AL. 1999. The ibm conversational telephony system for financial applications. In Eurospeech.

DAVIS, S, & P. MERMELSTEIN. 1980. Comparison of parametric representations for monosyllabic word recognition in
continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing 28.357–366.

DIGALAKIS, V.V., D. RTISCHEV, & L.G. NEUMEYER. 1995. Speaker adaptation using constrained estimation of gaussian
mixtures. IEEE Transactions on Speech and Audio Processing 357–366.

DUDA, R.O., & P.B. HART. 1973. Pattern Classification and Scene Analysis. Wiley.

EIDE, ELLEN, & HERB GISH. 1996. A parametric approach to vocal tract length normalization. In ICASSP, 346–348.

FISCUS, J.G. 1997. A post-processing system to yield reduced word error rates: Recognizer output voting error reduction
(rover). In IEEE Workshop on Automatic Speech Recognition and Understanding.

FURUI, SADAOKI. 1986. Speaker independent isolated word recognition using dynamic features of speech spectrum. IEEE
Transactions on Acoustics Speech and Signal Processing ASSP-34.52–59.

GALES, M.J.F. 1997. Maximum likelihood linear transformations for hmm-based speech recognition. Technical Report
CUED-TR-291, Cambridge University.

—— 1998. Maximum likelihood linear transformations for hmm-based speech recognition. Computer Speech and Language
12.

——, & P.C. WOODLAND. 1996. Mean and variance adaptation within the mllr framework. Computer Speech and Language
10.249–264.

GAO, YUQING, BHUVANA RAMABHADRAN, JULIAN CHEN, HAKAN ERDOGAN, & MICHAEL PICHENY. 2001. Innovative
approaches for large vocabulary name recognition. In ICASSP.

GAUVAIN, JEAN-LUC, LORI LAMEL, & GILES ADDA. 2000. The limsi 1999 bn transcription system. In Proceedings 2000
Speech Transcription Workshop, http://www.nist.gov/speech/publications/tw00/html/abstract.htm.

——, & CHIN-HUI LEE. 1994. Maximum a posteriori estimation for multivariate gaussian mixture observations of markov
chains. IEEE Transactions on Speech and Audio Processing 2.291–298.

GOPALAKRISHNAN, P. S., L. R. BAHL, & R. L. MERCER. 1995. A tree-search strategy for large vocabulary continuous
speech recognition. In ICASSP.

GOPALAKRISHNAN, PONANI, DIMITRI KANEVSKY, ARTHUR NADAS, & DAVID NAHAMOO. 1991. An inequality for
rational functions with applications to some statistical estimation problems. IEEE Transactions on Information Theory
37.107–113.

GOPINATH, RAMESH. 1998. Maximum likelihood modeling with gaussian distributions for classification. In ICASSP.

28

GOUVEA, EVANDRO B., & RICHARD M. STERN. 1997. Speaker normalization through formant-based warping of the
frequency scale. In Eurospeech.

GRAFF, DAVID, 2003. The english gigaword corpus.

GUSFIELD, DAN. 1997. Algorithms on Strings, Trees and Sequences. Cambridge University Press.

HAEB-UMBACH, R., & H. NEY. 1992. Linear discriminant analysis for improved large vocabulary continuous speech
recognition. In ICASSP.

HAIN, T., P.C. WOODLAND, G. EVERMANN, & D. POVEY. 2000. The cu-htk march 2000 hub5e transcription system. In
Proc. Speech Transcription Workshop, 2000.

——, P.C. WOODLAND, T.R. NIESLER, & E.W.D. WHITTAKER. 1999. The 1998 htk system for transcription of conversa-
tional telephone speech. In Eurospeech.

HERMANSKY, H. 1990. Perceptual linear predictive (plp) analysis of speech. Journal of the Acoustical Society of America
87.1738–1752.

HOPCROFT, J. E., & J.D. ULLMAN. 1979. Introduction to Automata Theory, Languages and Computation. Addison-Wesley.

HUNT, M. J. 1995. A robust method of detecting the presence of voiced speech. In ICASSP.

JAN, EE, BENOIT MAISON, LIDIA MANGU, & GEOFFREY ZWEIG. 2003. Automatic construction of unique signatures and
confusable setsfor natural language directory assistance applications. In Eurospeech.

JEFFREYS, H. 1948. Theory of Probability. Clarendon Press.

JELINEK, F. 1976. Continuous speech recognition by statistical methods. Proceedings of the IEEE 64.532–556.

KAMM, T., A. ANDREOU, & J. COHEN. 1995. Vocal tract normalization in speech recognition: Compensating for systematic
speaker variability. In Proceedings of the Fifteenth Annual Speech Recognition Symposium, 175–178, Baltimore, MD.

KATZ, SLAVA M. 1987. Estimation of probabilities from sparse data for the language model component of a speech
recognizer. IEEE Transactions of Acoustics, Speech and Signal Processing ASSP-35.400–401.

KINGSBURY, BRIAN, LIDIA MANGU, GEORGE SAON, GEOFFREY ZWEIG, SCOTT AXELROD, KARTHIK

VISWESWARIAH, & MICHAEL PICHENY. 2003. Towards domain independent conversational speech recognition.
In Eurospeech.

KNESER, N., & H. NEY. 1995. Improved backing-off for m-gram language modeling. In ICASSP-95.

KUHN, R. 1988. Speech recognition and the frequency of recently used words: A modified markov model for natural
language. In 12th International Conference on Computational Linguistics, 348–350, Budapest.

——, & R. DE MORI. 1990. A cache based natural language model for speech recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence 12.570–583.

KUMAR, N., & A.G. ANDREOU. 1998. Heteroscedastic discriminant analysis and reduced rank hmms for improved speech
recognition. Speech Communication 283–297.

LEGGETER, C., & P.C. WOODLAND. 1995. Flexible speaker adaptation using maximum likelihood linear regression. In
Eurospeech-95.

LEGGETTER, C., & P.C. WOODLAND. 1994. Speaker adaptation of continuous denbsity hmms using multivariale linear
regression. In ICSLP.

LEGGETTER, C.J., & P.C. WOODLAND. 1995. Flexible speaker adaptation using maximum likelihood linear regression. In
Eurospeech.

LEVINSON, S.E., L.R. RABINER, & M.M. SONDHI. 1983. An introduction to the application of the theory of probabilistic
functions of a markov process to automatic speech recognition. The Bell System Technical Journal 62.1035–1074.

LJOLJE, ANDREJ ET AL. 2000. The at&t 2000 lvscr system. In Proceedings 2000 Speech Transcription Workshop,
http://www.nist.gov/speech/publications/tw00/html/abstract.htm.

MAKHOUL, J. 1975. Linear prediction: A tutorial review. Proceedings of the IEEE 63.561–580.

MANGU, LIDIA, ERIC BRILL, & ANDREAS STOLCKE. 2000. Finding consensus in speech recognition: Word error mini-
mization and other applications of confusion networks. Computer Speech and Language 14.373–400.

MATSOUKAS, SPYROS ET AL. 2003. Speech to text research at bbn. In Proceedings of January 2003 EARS Midyear
Meeting.

MOHRI, MEHRYAR. 1997. Finite-state transducers in language and speech processing. Computational Linguistics 23.

——, MICHAEL RILEY, DON HINDLE, ANDREJ LJOLJE, & FERNANDO PEREIRA. 1998. Full expansion of context-
dependent networks in large vocabulary speech recognition. In ICASSP.

29

MOLAU, SIRKO, STEPHAN KANTHAK, & HERMANN NEY. 2000. Efficient vocal tract normalization in automatic speech
recognition. In ESSV , 209–216.

NADAS, ARTHUR. 1983. A decision theoretic formulation of a training problem in speech recognition and a comparison
of training by unconditional versus unconditional maximum likelihood. IEEE Transactions on Acoustics, Speech, and
Signal Processing ASSP-31.

——, DAVID NAHAMOO, & MICHAEL PICHENY. 1988. On a model-robust training method for speech recognition. IEEE
Transactions on Acoustics, Speech, and Signal Processing 36.

NAUR, PETER. 1963. Revised report on the algorithmic language Algol 60. Communications of the Association for Com-
puting Machinery 6.1–17.

NEUKIRCHEN, CHRISTOPH, DIETRICH KLAKOW, & XAVIER AUBERT. 2001. Generation and expansion of word graphs
using long span context information. In ICASSP.

NEY, HERMANN, UTE ESSEN, & REINHARD KNESER. 1994. On structuring probabilistic dependences in stochastic
language modelling. Computer Speech and Language 1–38.

NIESLER, T.R., E.W.D. WHITTAKER, & P.C. WOODLAND. 1998. Comparison of part-of-speech and automatically derived
category-based language models for speech recognition. In ICASSP.

NORMANDIN, YVES, CARDIN REGIS, & DE MORI RENATO. 1994. High-performance connected digit recognition using
maximum mutual information. IEEE Transactions on Speech and Audio Processing 2.299–311.

ODELL, JULIAN JAMES, 1995. The Use of Context in Large Vocabulary Speech Recognition. Cambridge University disser-
tation.

OLSEN, PEDER, & RAMESH GOPINATH. 2001. Extended mllt for gaussian mixture models. IEEE Transactions on Speech
and Audio Processing .

ORTMANNS, STEFAN, & HERMANN NEY. 1997. A word graph algorithm for large vocabulary continuous speech recogni-
tion. Computer Speech and Language 43–72.

PELLOM, B., W. WARD, J. HANSEN, K. HACIOGLU, J. ZHANG, X. YU, & S. PRADHAN. 2001. University of colorado
dialog systems for travel and navigation. In Human Language Technologies.

RABINER, L. R., & B.-H. JUANG. 1986. An introduction to hidden markov models. IEEE ASSP Magazine 4–16.

——, & ——. 1993. Fundamentals of Speech Recognition. Prentice-Hall.

ROSENFELD, R. 1996. A maximum entropy approach to adaptive statistical language modeling. Computer Speech and
Language 10.187–228.

SANKAR, A., V. R. RAO GADDE, ANDREAS STOLCKE, & F. WENG. 2002. Improved modeling and efficiency for automatic
transcription of broadcast news. Speech Communication 37.133–158.

SAON, GEORGE, MUKUND PADMANABHAN, RAMESH GOPINATH, & SCOTT CHEN. 2000. Maximum likelihood discrim-
inant feature spaces. In ICASSP.

——, GEOFFREY ZWEIG, BRIAN KINGSBURY, LIDIA MANGU, & UPENDRA CHAUDHARI. 2003. An architecture for rapid
decoding of large vocabulary conversational speech. In Eurospeech.

SCHROEDER, M.R. 1977. Recognition of complex acoustic signals. In Life Sciences Research Report 5, ed. by T.H. Bullock.
Abakon Verlag.

SEYMORE, K., & R. ROSENFELD. 1996. Scalable backoff language models. In ICSLP.

STOLCKE, A., Y. KONIG, & M. WEINTRAUB. 1997. Explicit word error minimization using n-best list rescoring. In
Eurospeech.

STOLCKE, ANDREAS. 1998. Entropy-based pruning of backoff language models. In Proceedings of DARPA Broadcast News
Transcription and Understanding Workshop, 270–274.

——. 2002. Srilm - an extensible language modeling toolkit. In ICSLP.

SUONTAUSTA, JANNE, JUHE HAKKINEN, & VIIKKI OLLI. 2000. Fast decoding in large vocabulary name dialing. In
ICASSP, 1535–1538.

WAITIKA, H. 1977. Normalization of vowels by vocal-tract length and its application to vowel identificatiom. IEEE
Transactions on Audio Speech and Signal Processing 183–192.

WEGMANN, STEVE, PUMING ZHAN, IRA CARP, MICHAEL NEWMAN, JON YAMRON, & LARRY GILLICK. 1999. Dragon
systems’ 1998 broadcast news transcription system. In Proceedings of the DARPA Broadcast News Workshop. NIST.

30

WEGMANN, STEVEN, DON MCALLASTER, JEREMY ORLOFF, & BARBARA PESKIN. 1996. Speaker normalization on
conversational telephone speech. In ICASSP.

WELLING, L., N. HABERLAND, & H. NEY. 1997. Acoustic front-end optimization for large vocabulary speech recognition.
In Eurospeech.

WELLING, R., R. HAEB-UMBACH, X. AUBERT, & N. HABERLAND. 1998. A study on speaker normalization using vocal
tract normalization and speaker adaptive training. In ICASSP, 797–800.

WENG, FULIANG, ANDREAS STOLCKE, & ANATH SANKAR. 1998. Efficient lattice representation and generation. In
ICSLP.

WHITTAKER, E.W.D., & P.C. WOODLAND. 2001. Efficient class-based language modelling for very large vocabularies. In
ICASSP.

WOODLAND, P.C., & DANIEL POVEY. 2000. Large scale discriminative training for speech recognition. In Automatic
Speech Recognition: Challenges for the New Millenium.

WOODLAND, PHIL ET AL. 2002. The cu-htk april 2002 switchboard system. In EARS Rich Transcription Workshop.

YOUNG, S., J. ODELL, D. OLLASON, V. VALTCHEV, & P. WOODLAND. 1997. The HTK Book. Entropic Cambridge
Research Laboratory, 2.1 edition.

YOUNG, S. J., J. J. ODELL, & P.C. WOODLAND. 1994. Tree-based tying for high accuracy acoustic modelling. In ARPA
Workshop on Human Language Technology.

ZHAN, PUMING, & ALEX WAIBEL. 1997. Vocal tract length normalization for large vocabulary continuous speech recog-
nition. Technical Report CMU-CS-97-148, School of Computer Science, Carnegie Mellon University.

ZUE, V. ET AL., 2000. A telephone-based conversational interface for weather information.

ZWEIG, GEOFFREY, & MUKUND PADMANABHAN. 2000. Exact alpha-beta computation in logarithmic space with applica-
tion to map word graph construction. In ICSLP.

——, GEORGE SAON, & FRANCOIS YVON. 2002. Arc minimization in finite state decoding graphs with cross-word acoustic
context. In ICSLP.

ZWICKER, E. 1961. Subdivision of the audible frequency range into critical bands. Journal of the Acoustical Society of
America 33.248.

ZWICKER, E. 1970. Masking and physiological excitation as consequences of ear’s frequency analysis. In Frequency
Analysis and Periodicity Detection in Hearing, ed. by R. Plomp & G.F. Smoorenburg.

31

