
9 2 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E

Three decades later, these are still the pri-
mary tools developers use to write software.
Although they’ve been refined, the tools have
neither progressed to meet the challenge of
complex software nor evolved to exploit faster
computers. Today, tools from an era of com-
putational scarcity run on machines four or-
ders of magnitude faster. Developers are strug-
gling to write, understand, and manipulate
large, complex software, while vast computa-
tional resources sit idle beneath their desks.

Microsoft Research has developed two gen-
erations of tools, some of which Microsoft de-
velopers already use to find and correct bugs.

These correctness tools help close the gap that
separates a programmer’s intent—which can of-
ten be concisely stated—from the vast amount
of code required to realize that goal. A devel-
oper’s job is to bridge this chasm; the job of cor-
rectness tools is to ensure that the resulting span
is straight, level, and connects the right points.

We don’t believe that better programming
tools—or faster computers—will turn software
development into a routine job. Programming is
a difficult intellectual task that requires talented
people to apply sustained and focused effort.
However, just as mechanical devices can unleash
creative potential by amplifying physical effort,
programming tools can improve software devel-
opment by helping developers manage details,
find inconsistencies, and ensure uniform quality.

Correctness tools
Program errors detectable by tools fall into

two broad categories:

feature
Righting Software

W
hat tools do you use to develop and debug software? Most of
us rely on a full-screen editor to write code, a compiler to
translate it, a source-level debugger to correct it, and a
source-code control system to archive and share it. These

tools originated in the 1970s, when the change from batch to interactive
programming stimulated the development of innovative languages, tools,
environments, and other utilities we take for granted.

correctness tools

Correctness tools can improve software development by
systematically detecting programming errors. Microsoft Research
has developed two generations of these tools that help programmers
find and fix errors early in the development process.

James R. Larus, Thomas Ball, Manuvir Das, Robert DeLine, Manuel Fähndrich,
Jon Pincus, Sriram K. Rajamani, and Ramanathan Venkatapathy,
Microsoft Research

� Errors in using a programming language
feature, such as referencing an uninitial-
ized variable. Tools such as compilers and
the Lint program1 find these errors (see the
“Related Work” sidebar).

� Errors in API usage, such as closing a file
descriptor twice. These errors are more
challenging than language errors because
they’re API specific. A vast number of
APIs exist, some public and widely used
and others private and used only by one
program. As a practical matter, tools for
these errors must be extensible, so that
programmers can specify new usage rules,
without aid from a tool’s developers.

Errors in both categories are typically
found through static program analysis, which
explores possible program executions without
actually executing the program. The alterna-
tive, testing, detects errors when a program
executes. The two approaches are complemen-
tary. Static analysis can explore all possible ex-
ecution paths, so it can find an error regard-
less of input data. However, it is less precise
than testing and sometimes identifies spurious
errors. Moreover, efficient analyses exist for
only a few relatively simple program proper-
ties. For now and the foreseeable future, test-
ing is the primary technique to ensure that a
program functions correctly and produces the
correct answer. Static analysis, however, is use-
ful in that it can find errors that do not mani-
fest during testing or errors that exist on paths
that testing doesn’t cover.

Underlying program analysis is Turing’s
halting problem, which shows the general im-
possibility of deciding whether a program will
execute an erroneous action. Consequently,
tools approximate a program’s behavior,
which leads to a fundamental tradeoff be-
tween soundness and completeness. A sound
program model ensures that every program er-
ror appears—sometimes including spurious
errors that are artifacts of analysis. A com-
plete program model ensures that each error
in the model is an error in the program, and so
none are spurious errors. Given the halting
problem, a sound and complete tool that an-
swers nontrivial program behavior questions
cannot exist, so tool designers must choose be-
tween one or the other. Most choose sound
analysis and tolerate the false error reports, al-
though many useful tools have been con-

structed from heuristics that are neither sound
nor complete.

To make this point more concrete, consider
the following code:

FILE* f;

if (complex_calc1())

f = fopen(...);

...

if (complex_calc2())

fclose(f);

The code executes correctly only if the condi-
tional statements’ predicates, complex_calc1
and complex_calc2, produce identical results.
A sound model would presume each condi-
tional could execute either way, so each file
operation could execute without its mate. Al-
though sometimes wrong, this approach
catches the error when the two functions are
uncorrelated. By contrast, a complete analysis
would report an error only when it could de-
termine the relationship between two predi-
cates—say, one was x < 0 and the other was

M a y / J u n e 2 0 0 4 I E E E S O F T W A R E 9 3

Many static analysis tools exist for finding bugs in programs. These
range from heuristic tools, such as the Unix utility Lint1 and its more modern
successors (such as LCLint2 and Engler’s Metal3), to tools based on sound
program analysis, such as theorem proving,4 model checking,5 type theory,6

and abstract interpretation.7

Microsoft’s original error-detecting tool, PREfix, differs from other heuris-
tic tools in that it can perform interprocedural analysis of ten-million-line
programs, it can handle the full complexity of C++, and it has extensive
error-filtering features. Microsoft’s subsequent correctness tools have pioneered
new techniques, such as software model checking, to soundly analyze pro-
grams of commercial size and complexity.

References
1. S.C. Johnson, “Lint, a C Program Checker,” Unix Programmer’s Manual, computer science

tech. report 65, AT&T Bell Laboratories, 1978.
2. D. Evans et al., “LCLint: A Tool for Using Specifications to Check Code,” Proc. ACM SIG-

SOFT 2nd Symp. Foundations of Software Eng., ACM Press, 1994, pp. 87–96.
3. D. Engler et al., “Checking System Rules Using System-Specific, Programmer-Written Compiler

Extensions,” Proc. 4th Symp. OS Design and Int’l (OSDI 2000), ACM Press, 2000, pp. 1–16.
4. C. Flanagan et al., “Extended Static Checking for Java,” Proc. ACM SIGPLAN Conf. Pro-

gramming Language Design and Implementation, ACM Press, 2002, pp. 234–245.
5. J. Hatcliff and M. Dwyer, “Using the Bandera Tool Set to Model-Check Properties of Concur-

rent Java Software,” Proc. 12th Int’l Conf. Concurrency Theory (CONCUR 2001), LNCS
2154, Springer-Verlag, 2001, pp. 29–58.

6. T. Jim et al., “Cyclone: A Safe Dialect of C,” Proc. Usenix Ann. Conf., Usenix Assoc., 2002,
pp. 275–288.

7. B. Blanchet et al., “A Static Analyzer for Large Safety-Critical Software,” Proc. ACM SIG-
PLAN Conf. Programming Language Design and Implementation (PLDI 03), ACM Press,
2003, pp. 196–207.

Related Work

x > 0. When the relationship was unknown,
the analysis would report nothing.

In practice, if a tool’s goal is to find errors,
it need not be sound or complete. Given a
choice, soundness is more attractive because it
catches all errors, and developers can handle
false reports using filtering and sorting tech-
niques. Also, only sound tools can conclu-
sively report that an error cannot occur.

At Microsoft, we divide our tools into two
generations. The first-generation tools, PREfix
and PREfast, use heuristic and unsound analy-
sis but are robust, production-quality tools.
Most of our development groups routinely ap-
ply these tools to their code. Our second-gen-
eration tools are a product of research into
sound program analysis and are only now en-
tering active use. Although these tools focus on
API usage errors, they explore a variety of pre-
cise and scalable program analysis techniques.

Microsoft’s first-generation tools
PREfix and PREfast take complementary

approaches to finding errors. PREfix performs
a detailed, path-by-path analysis of a complete
program to track information across function
boundaries. In contrast, PREfast is a light-
weight tool that looks for errors locally. It
parses individual functions and provides an in-
frastructure through which custom plug-ins
can traverse parse trees to identify and report
problematic idioms.

Both tools have proven very effective at find-
ing bugs and are routinely applied to most Mi-
crosoft products. Combined, the tools found
12.5 percent of the bugs fixed in Windows
Server 2003, which is a significant number
given the limited range of errors they detect.

PREfix

PREfix finds a fixed set of bugs in C and
C++ programs.2 Such bugs include null
pointer references, improper memory alloca-
tion and deallocation, use of uninitialized val-
ues, simple resource state errors, and improper
library use.

PREfix traverses a program’s call graph,
analyzing all functions in a bottom-up (leaves
to root) fashion. When it analyzes a function,
PREfix has already seen routines invoked by
the function and it uses models constructed
earlier to approximate the called code’s ef-
fects. Consider the leaf function in Figure 1,
for example. PREfix knows nothing about pa-
rameter j because the program could invoke
function myfunc at many places. PREfix thus
traces the two paths through the body and re-
ports an undefined variable reference along
one path. Then, considering both paths, it
produces a model recording that the parame-
ter has been referenced and the return value
could be uninitialized. PREfix uses this model
at calls to myfunc to ensure that when the ac-
tual argument is 0, it warns about the possi-
bility of referencing an undefined result.

PREfix’s heuristic analysis is neither sound
nor complete. It makes simplifying approxi-
mations to make analysis tractable for large
code bases with incomplete information.2 For
example, PREfix examines a fixed number of
paths (typically 100) through a function.
When the paths are carefully chosen, PREfix
can find many errors that occur along multiple
paths, though it can’t guarantee the absence of
a particular error. PREfix makes possibly un-
sound assumptions about missing functions to
reduce spurious errors, at the cost of missing
real errors.

PREfast
PREfast performs local analyses on C and

C++ programs to find idioms associated with
programming mistakes. Developers can easily
extend its functionality with plug-ins to aug-
ment its library of suspicious patterns. PRE-
fast uses the Microsoft Visual C++ compiler’s
parser to produce abstract syntax trees for
each C++ language construct. PREfast parses a
function and then invokes the plug-ins, each
of which traverses the function’s parse tree
looking for idioms that might indicate a mis-
understanding or error.

For example, in the code

9 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

int myfunc(int j)
{

 int k;

 if (j == 0)

k = 1;

 return k;
}

Path 1 Path 2

Reserve memory

Test: Is j
initialized?
Evaluate j == 0

Test: Is k
initialized?
No! Report

Assign: k = 1

Reserve memory

Test: Is k
initialized?
Assign: return = k

Test: Is j
initialized?
Evaluate j == 0

Figure 1. The PREfix
tool. PREfix traces two
paths through this
function, produces a
model, and analyzes it
for errors.

extern void my_wcsncpy(wchar_t *,

wchar_t *, size_t);

wchar_t pPtr1[5];

my_wcsncpy(ppPPttrr11, input,

ssiizzeeooff(ppPPttrr11));

PREfast identifies the bold-faced expressions as
a likely error, because the function my_wcsncpy
takes a Unicode string (wchar_t) as a param-
eter, but the last argument is the string’s length
in bytes, rather than the number of characters:

my_wcsncpy(pPtr1, input,

sizeof(pPtr1)/sizeof(pPtr1[0]));

PREfast relies only on local analysis. It thus
executes quickly, which facilitates adoption
and encourages its regular use. Because PRE-
fast uses the Microsoft Visual C++ compiler’s
parser, it can parse all source code and also
provide the infrastructure that a growing com-
munity of researchers and developers is using
to build more sophisticated correctness tools.

Microsoft’s second-generation tools
Although PREfix and PREfast are suc-

cessful, they find a limited set of errors and
are constrained by unsound analysis. Mi-
crosoft Research therefore developed tech-
nology to improve our correctness tools in
two important ways. First, the new tools
start with declarative descriptions of correct
and incorrect program behavior and thus
can be extended to new errors by writing
new rules for APIs. Second, the tools use
sound program analysis that does not miss
actual errors. As a result, this generation of
tools can certify that a particular error does
not occur in a program.

Slam

Incorrect event ordering frequently causes
errors. For example, code that acquires a lock
often fails to release it along all execution
paths. Sequencing rules are naturally described
by finite state machines that accept legal pro-
gram-event sequences and reject illegal ones.
Through their interfaces, FSMs offer a precise,
concise sequencing specification that a tool can
compare against a program’s actual behavior.

How it works. Slam starts with a C program
and a usage rule, and either finds plausible
program paths that violate that rule or deter-
mines that all paths respect the rule.3 Rules are
written in Simple Logic (SLIC), which ex-
presses state machines in a C-like notation.
For example, Figure 2 shows the rules govern-
ing a lock.

Slam simplifies the analyzed program by
eliminating details irrelevant to the target rule.
Even with complex rules, it can ignore most
program code and data or abstract it to a sim-
pler form. Slam’s simplified representation is a
Boolean program that contains C’s control-
flow constructs and only Boolean variables.
Each such variable tracks a predicate’s value
over the C program’s state. This simplification
offers two benefits:

� Termination. Because Boolean programs
have a finite number of Boolean variables
in scope at any point, they are amenable
to automated, terminating program analy-
ses such as dataflow analysis and model
checking.

� Soundness. Every API usage error in a C
program is also present in its Boolean pro-
gram, making Slam’s analysis sound.

M a y / J u n e 2 0 0 4 I E E E S O F T W A R E 9 5

Figure 2. The rules
governing a lock.

state {

enum { Unlocked, Locked} s = Unlocked; // FSM states

}

AcquireSpinLock.entry { // Transition on lock acquire

if (s == Locked) error;

else s = Locked;

}

ReleaseSpinLock.entry { // Transition on lock release

if (s == Unlocked) error;

else s = Unlocked;

}

Another key Slam feature is that it can re-
fine Boolean program abstractions. Because a
Boolean program generally has more possible
behaviors than its corresponding C program,
the Boolean program might contain spurious
error paths that are infeasible in the C code.
Slam uses a counterexample-driven refinement
technique to eliminate spurious paths in the
Boolean program.

Example. To illustrate Slam’s operation, we
can check the C code in Figure 3a against the
locking rule in Figure 2, which states that it’s
an error to acquire (or release) a lock twice in
succession. Slam first generates the Boolean
program in Figure 3b. At each C program
statement, Slam determines the statement’s ef-
fect on the rule predicates and encodes the ef-
fect in the Boolean program. All assignment
statements are abstracted to skip because they
don’t affect any of the predicates.

Slam’s next step determines whether there’s
a feasible path through the Boolean program
that violates the SLIC rule. In this crude model,
several paths exist, but Slam starts with the
shortest one [A, A], which is a double lock ac-
quisition. Next, Slam uses symbolic execution
to determine if this path is feasible in the origi-
nal C program. If feasible, Slam has found a
real error. If infeasible, Slam identifies a small
predicate set that “explains” the path’s infeasi-
bility. In this example, Slam determines that the
path is infeasible because it requires that the
predicate (nPackets=npacketsOld) be both

true and false, and it returns the predicate
(nPackets=nPacketsOld) to explain the in-
feasibility.

Slam uses this predicate to refine its model
(see Figure 3c). The Boolean variable (b) rep-
resents the predicate (nPackets=nPackets
Old). The original program’s assignment
statement, nPacketsOld = nPackets;makes
this predicate true, so the corresponding
Boolean program statement is b := true;.
Slam determines that when the predicate is
true before the statement nPackets++, it is
false afterward, and when the predicate is
false before, its outcome is unknown after-
ward. This relation is captured by the state-
ment b := b ? false : *.

The refined Boolean program now contains
enough information to show that all paths re-
spect the locking rule because the spin lock is
held at the loop’s end if and only if (nPack-
ets=nPacketsOld) is true. When this pred-
icate is true, the lock is held, the loop exits,
and the program releases the lock. When the
predicate is false, the lock is not held at the
loop’s end, and the loop iterates.

Discussion. We used Slam to analyze more
than one hundred Windows device drivers
against a collection of more than 30 rules, and
it found many errors. Slam is successful in this
domain because it can separate the driver’s
control path from its data path. Most driver
safety rules concern proper kernel resource
use, and Slam can abstract away the driver

9 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

(a) (b) (c)

void example() {
do {
A: AcquireSpinLock();
 nPacketsOld = nPackets;
 req = devExt->WLHV;
 if (req && req->status) {
 devExt = req->Next;
B: ReleaseSpinLock();
 irp = req->irp;
 if (req->status > 0)
 irp->IoS.Status = S;
 else
 irp->IoS.Status = F;
 nPackets++;
 }
 } while(nPackets!=nPacketsOld);
C: ReleaseSpinLock();
}

void example() {
do {
A: AcquireSpinLock();
 skip;
 skip;
 if (*) {
 skip;
B: ReleaseSpinLock();
 skip;
 if (*)
 skip;
 else
 skip;
 skip;
 }
 } while (*);
C: ReleaseSpinLock();
}

void example() {
do {
A: AcquireSpinLock();
 b := true;
 skip;
 if (*) {
 skip;
B: ReleaseSpinLock();
 skip;
 if (*)
 skip;
 else
 skip;
 b := b ? false : *;
 }
 } while (!b);
C: ReleaseSpinLock();
}

Figure 3. An example
Slam operation.
(a) Program P, which
Slam checks against
the locking rule code.
(b) In the first
refinement, Slam
generates a Boolean
program. (c) Slam
then refines the model
to eliminate infeasible
paths that produce
spurious results.
(A “*” indicates a
nondeterministic
choice.)

portion that shuttles data to hardware, so it
can focus on checking the control path. As a
result of Slam’s success with device drivers, the
Windows development organization has de-
ployed the tool within Microsoft.

ESP
Error detection via scalable program analy-

sis (ESP)4 is similar to Slam, except that it fo-
cuses on very large C and C++ code bases. Its
global analysis technique also differs from
Slam’s and trades precision for scalability.

ESP offers a pragmatic solution to the large-
program analysis problem by combining precise
analysis within a component with less precise
but more scalable analysis across components.
ESP ensures that the C or C++ program obeys a
rules set written separately in the simple Object
Property Automata Language (OPAL), which
combines an FSM with syntactic code patterns.
ESP is based on sound analysis, so it finds all in-
stances of a particular problem.

OPAL rules. Consider the following code,
which conditionally opens and closes two files:

void main ()

{

if (dump1) /* B1 */

fil1 = fopen(dumpFile1,”w”);

if (dump2) /* B2 */

fil2 = fopen(dumpFile2,”w”);

if (flag)

x = 0;

else

x = 1;

if (dump1) /* B3 */

fclose(fil1);

if (dump2) /* B4 */

fclose(fil2);

}

Code that manipulates a file must obey
well-known rules, such as that calling fclose
can close a file only if it has not been previ-
ously closed. OPAL formally states these rules
as shown in Figure 4.

The OPAL specification consists of two
parts. The first is an FSM consisting of three
states, two events, and state transitions labeled
by events. The other is a set of syntactic patterns
that identify events. Stateful file handles are cre-
ated by the Open event, which is triggered by
calls to fopen, and closed by the Close event.
File handles that the Open event creates move to
the Opened state. OPAL is an intentionally sim-
ple, restricted-rule language; it can only express
properties that we can check efficiently.

ESP analysis engine. We can explain the main
idea behind ESP’s analysis using the specifica-
tion just presented and the OPAL example in
Figure 4. One way to analyze code is to sym-
bolically evaluate each path through a program.
Along each path, ESP maintains a symbolic state
that records everything inferred about program
execution. In addition, the engine can update an
FSM at each event along a path. In the OPAL
code just presented, for example, this approach
might recognize the correlation between
branches B1 and B3. Unfortunately, the tech-
nique is impractically expensive, as the symbolic
states can double at each branch.

M a y / J u n e 2 0 0 4 I E E E S O F T W A R E 9 7

Figure 4. OPAL rules for
opening and closing
files.

State Closed

State Opened

State Error

Creation Event Open

{ _object_ FUNCTIONCALL { SYMBOL “fopen” } { _anyargs_ } }

Event Close

{ FUNCTIONCALL { SYMBOL “fclose” } { _object_ } }

Transition _ -> Opened on Open

Transition Opened -> Closed on Close

Transition Closed -> Error on Close “File already closed”

As an alternative, we could avoid tracking
paths by associating FSM states with locations
in a program. This offers an efficient analysis
but reports too many false errors. In our ex-
ample, a tool of this sort could only report
that the file might not be open at the two
fclose statements, because it couldn’t track
correlations between predicates and file state.

We based ESP’s algorithm on the insight
that most branches are irrelevant to a particu-
lar rule. In our example, the intermediate con-
ditional statement has no bearing on file be-
havior. ESP identifies and tracks relevant
branches with the heuristic that a conditional
statement is relevant if an FSM associated
with an object moves to different states along
the branch’s arms. If this happens, code later
in the program might again rely on the corre-
lation between the branch and the FSM state.
ESP tracks this correlation and doesn’t merge
information from the two arms. If, on the
other hand, the FSM state is identical along
both paths, ESP merges information and loses
track of the branch correlation. This heuristic
leads to a polynomial-time algorithm efficient
enough for large programs.

Another important analysis aspect is deter-
mining whether an event triggers a change in
an FSM for the target object. For instance,
does fclose(fil2) change the state of FILE
fil1? ESP answers these questions by per-
forming a sophisticated alias analysis and
tracking value flow through the program.

Discussion. We’ve used ESP to find buffer
overruns in large-scale system code and to val-
idate an OS kernel’s security properties. The

latter application demonstrates ESP’s strength:
the tool checked all execution paths in a mil-
lion-line code base against more than 500
properties, requiring only a few minutes per
property. ESP reported only 25 false errors.

Vault
The Vault project takes a different ap-

proach than Slam and ESP, incorporating er-
ror detection into a programming language
rather than a distinct tool.5 The Vault lan-
guage is a safe version of C. Its type system lets
developers record usage rules in an interface’s
type signatures, and its type checker ensures
that client code using the interface obeys the
rules. Like Slam and ESP, Vault’s rules describe
execution-ordering constraints.

A major difference between Vault and
other tools is Vault’s modular checking, which
lets developers independently check a compi-
lation unit (function). As with conventional
type checking, Vault’s type checking is efficient
and scalable to any program size. Its draw-
back is that a programmer must supply more
annotations. As with datatype declarations,
these annotations document a developer’s in-
tent and let the checker verify properties
quickly and locally. Moreover, annotations let
Vault find errors early, when developers first
compile their code.

Sockets example. Consider, for example, the
well-known socket API, which breaks the con-
nection-establishment process into several
steps. Omitting one or more steps is a com-
mon mistake. The bold-faced code in the Vault
interface describes the rules (see Figure 5).

9 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Figure 5. The bold-
faced annotations
identify the socket
value to be tracked and
specify a state machine
that describes the
acceptable sequences
of operations on values
of this type.

interface SOCKET {

type sock;

variant domain [`UNIX | `INET];

variant comm_style [`STREAM | `DGRAM];

ttrraacckkeedd((@@rraaww)) sock socket(domain, comm_style, int);

struct sockaddr { ... };

void bind(ttrraacckkeedd((SS)) sock, sockaddr) [[SS@@rraaww-->>nnaammeedd]];;

void listen(ttrraacckkeedd((SS)) sock, int) [[SS@@nnaammeedd-->>lliisstteenniinngg]];;

ttrraacckkeedd((NN)) sock accept(ttrraacckkeedd((SS)) sock, sockaddr)

[[SS@@lliisstteenniinngg,, nneeww NN@@rreeaaddyy]];;

void receive(ttrraacckkeedd((SS)) sock, byte[]) [[SS@@rreeaaddyy]];;

void close(ttrraacckkeedd((SS)) sock) [[--SS]];;

}

Vault’s interface associates abstract states
(raw, named, listening, ready) with
program objects to enforce the sequence of
steps required to create a connection. The
function socket creates a new socket. Its an-
notation, tracked(@raw), tells Vault to
track (at compile time) the returned value’s
state, which starts at raw. In the subsequent
tracked annotations, the name in parentheses
is a key, which is the compile-time name that
refers to an object at a particular point. A
function’s effect clause expresses pre- and
postconditions on an object’s state. For exam-
ple, the receive function requires that its
socket be in state ready, and the function
bind changes the socket from the required
state raw to state named.

This interface is simplified, as it ignores the
possibility of failure. In reality, function bind
returns an error code indicating whether the
operation succeeded. If bind is successful, the
socket’s new state is name; if it fails, it remains
raw. We can describe this situation precisely us-
ing a slightly more elaborate signature:

variant status<key K>

[`Ok {K@named}

| `Error(error_code) {K@raw}];

tracked status<S>

bind(tracked(S) sock, sockaddr)

[-S@raw];

The variant type status has two construc-
tors: `Ok for the successful case and `Error
for the failure case (which includes an error
code explaining the error). Both constructors
accept key K, which identifies the socket ob-
ject. In the `Ok constructor, the socket has the
state named, whereas in the `Error case, it
has state raw. The effect clause of the bind
function states that the socket must be in the
state raw on entry, but it’s unavailable on exit
(indicated by the “-” sign). The result status
effectively guards access to the socket after the
call. The result’s variant type forces a devel-
oper to check the status returned from bind
to regain access to the socket, which ensures
that they’re aware when bind fails.

Expressiveness. Vault goes beyond describing
an object’s finite-state protocols. An object
can be in one of (finitely) many states. Func-
tion signatures express preconditions on object

states and describe how an object’s state
changes as the result of a call. Vault can also
express resource allocation and deallocation
protocols through annotations that explicitly
state when objects are created and when they
become unavailable. The Vault checker ensures
that unavailable objects are not referenced.

Using these mechanisms, Vault can enforce
memory safety, even for programs using ex-
plicit deallocation (such as free) rather than
garbage collection. In addition to its value as a
general-purpose language, this unique aspect
makes Vault valuable for writing safe, low-
level system code. Even in garbage-collected
languages, enforcing correct resource manage-
ment offers benefits. In such languages, many
resources—such as file handles, database con-
nections, and so on—must be explicitly re-
leased by code. Vault can track and check
these resources.

Checking. Vault separately checks each pro-
gram function. The function’s effect is trans-
lated into a precondition and a postcondition
on each object parameter. The checker per-
forms a control-flow and dataflow analysis
along all function paths. At each statement, it
checks any statement-specific conditions
against objects’ compile-time state as follows:

� After each statement, the checker verifies
that no objects become inaccessible and
thus leak.

� At a function call, the checker verifies that
the current state satisfies the function’s
precondition. If so, the current state is up-
dated using the function’s postcondition.

� At control-flow join points, the checker
verifies that states on incoming edges are
compatible.

� Finally, at function exits, the checker veri-
fies that the state agrees with the func-
tion’s postcondition.

Checking is fast, simple, and feasible be-
cause the checker enforces strong heap in-
variants. If, for example, we have two
tracked objects at a program point that are
denoted by keys with distinct names, then the
two objects are distinct as well. This non-
aliasing property between tracked objects lets
the checker track object states without mak-
ing overly conservative assumptions about
pointer aliasing.

M a y / J u n e 2 0 0 4 I E E E S O F T W A R E 9 9

Vault
separately

checks each
program

function. The
function’s effect

is translated
into a

precondition
and a

postcondition
on each object

parameter.

M icrosoft Research’s correctness
tools are helping our developers
find and fix bugs, and we’re work-

ing on new tools that systematically detect
other types of bugs and are more easily exten-
sible. Microsoft is also actively working to
turn some of our correctness tools into prod-
ucts for the benefit of developers outside the
company. Further in the future, we can envi-
sion shipping software with rules, to provide
precise descriptions that can help developers
understand and correctly use APIs.

At the same time, our goals for these tools
are limited. Although they check important
and necessary properties, they’re far from suf-
ficient to ensure program correctness. A col-
lection of finite-state properties—no matter
how rich and varied—will never fully describe
the behavior of complex software.

A huge amount of work remains if we’re
to exploit computers’ potential to improve
software development. Machines are fast
enough, storage is deep enough, and program
analysis is well developed enough to produce
far more powerful tools. A deep understand-
ing of program semantics and behavior may
one day enable tools that handle routine
tasks, thereby freeing developers and testers
to focus on software development’s more cre-
ative aspects.

References
1. S.C. Johnson, “Lint, a C Program Checker,” Unix Pro-

grammer’s Manual, computer science tech. report 65,
AT&T Bell Laboratories, 1978.

2. W.R. Bush, J.D. Pincus, and D.J. Sielaff, “A Static Ana-
lyzer for Finding Dynamic Programming Errors,” Soft-
ware—Practice and Experience, vol. 30, no. 7, 2000,
pp. 775–802.

3. T. Ball and S.K. Rajamani, “The Slam Project: Debug-
ging System Software via Static Analysis,” Proc. 29th
ACM SIGPLAN-SIGACT Symp. Principles of Pro-
gramming Languages (POPL 2002), ACM Press, 2002,
pp. 1–3.

4. M. Das, S. Lerner, and M. Seigle, “ESP: Path-Sensitive
Program Verification in Polynomial Time,” Proc. ACM
SIGPLAN Conf. Programming Language Design and Im-
plementation (PLDI 02), ACM Press, 2002, pp. 57–69.

5. R. DeLine and M. Fähndrich, “Enforcing High-Level
Protocols in Low-Level Software,” Proc. ACM SIG-
PLAN Conf. Programming Language Design and Im-
plementation (PLDI 01), ACM Press, 2001, pp. 59–69.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

1 0 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

About the Authors

James R. Larus is an assistant director and senior researcher at Microsoft Research and
is an affiliate associate professor at the University of Washington. His research interests include
programming languages, compilers, and parallel computation. He received his PhD in com-
puter science from the University of California, Berkeley. Contact him at Microsoft Research,
One Microsoft Way, Redmond, WA 98052; larus@microsoft.com.

Thomas Ball is a senior researcher and head of the Testing, Verification, and Measure-
ment Research group at Microsoft Research. His research interests include applying program
analysis and programming language technology to hard problems in software correctness and
reliability. He received his PhD in computer science from the University of Wisconsin-Madison.
Contact him at Microsoft Research, One Microsoft Way, Redmond, WA 98052; tball@microsoft.com.

Manuvir Das leads the Scalable Program Analysis research group at Microsoft Research
and is an affiliate assistant professor at the University of Washington. His primary interests are
programming languages and compiler technology, and their application to software reliability.
He received his PhD in computer science from the University of Wisconsin-Madison. Contact
him at Microsoft Research, One Microsoft Way, Redmond, WA 98052; manuvir@microsoft.com.

Robert DeLine works in software engineering at Microsoft Research, most recently on
static tools for software verification. He received his PhD in computer science from Carnegie
Mellon University. Contact him at Microsoft Research, One Microsoft Way, Redmond, WA 98052;
rdeline@microsoft.com.

Manuel Fähndrich is a researcher at Microsoft Research. His research interests in-
clude program analysis and programming languages. He received his PhD in computer science
from the University of California, Berkeley. Contact him at Microsoft Research, One Microsoft
Way, Redmond, WA 98052; maf@microsoft.com.

Jon Pincus is a senior researcher at Microsoft Research, currently focusing on security
and privacy. He has previously developed and deployed program analysis-based tools such as
PREfix and PREfast and was founding CTO of Intrinsa. He received his MS in computer science
from the University of California, Berkeley. Contact him at Microsoft Research, One Microsoft
Way, Redmond, WA 98052; jpincus@microsoft.com.

Sriram K. Rajamani leads the Software Productivity Tools group at Microsoft Re-
search. His research interests are in tools and methodologies for building reliable systems. He
received his PhD in computer science from the University of California, Berkeley. Contact him
at Microsoft Research, One Microsoft Way, Redmond, WA 98052; sriram@microsoft.com.

Ramanathan Venkatapathy is a research development manager at Microsoft Re-
search. His interests include program analysis and parser and security tools development. He
received his MS in computer science from Indiana University, Bloomington. Contact him at Mi-
crosoft Research, One Microsoft Way, Redmond, WA 98052.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

