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Abstract. Stereo correspondence algorithms typically produce a single depth map. In addition to the usual prob-
lems of occlusions and textureless regions, such algorithms cannot model the variation in scene or object appearance
with respect to the viewing position. In this paper, we propose a new representation that overcomes the appearance
variation problem associated with an image sequence. Rather than estimating a single depth map, we associate a
depth map with each input image (or a subset of them). Our representation is motivated by applications such as view
interpolation and depth-based segmentation for model-building or layer extraction. We describe two approaches to
extract such a representation from a sequence of images.

The first approach, which is more classical, computes the local depth map associated with each chosen reference
frame independently. The novelty of this approach lies in its combination of shiftable windows, temporal selection,
and graph cut optimization. The second approach simultaneously optimizes a set of self-consistent depth maps at
multiple key-frames. Since multiple depth maps are estimated simultaneously, visibility can be modeled explicitly
and disparity consistency imposed across the different depth maps. Results, which include a difficult specular scene

example, show the effectiveness of our approach.
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1. Introduction

Stereo correspondence, 3D reconstruction, and motion
estimation have long been central research problems
in computer vision. Early work was motivated by the
desire to recover depth maps and coarse shape mod-
els for robotics and object recognition applications.
More recently, depth maps obtained from stereo and
correspondence maps obtained from motion have been
combined with texture maps extracted from input im-
ages in order to create realistic 3D scenes and envi-
ronments for virtual reality and virtual studio applica-
tions (McMillan and Bishop, 1995; Szeliski and Kang,
1995; Kanade et al., 1996; Blonde et al., 1996), as well
as for motion-compensated prediction in video pro-
cessing applications (Le Gall, 1991; Lee et al., 1997;

de Hann and Beller, 1998). Unfortunately, the qual-
ity and resolution of most of today’s algorithms falls
quite short of that demanded by these new applications,
where even isolated errors in correspondence become
readily visible when composited with synthetic graph-
ical elements.

One of the most common errors made by these al-
gorithms is a mis-estimation of depth or motion near
occlusion boundaries. Traditional correspondence al-
gorithms assume that every pixel has a correspond-
ing pixel in all other images. Obviously, in occluded
regions, this is not so. Furthermore, if only a sin-
gle depth or motion map is used, it is impossible to
predict the appearance of the scene in regions which
are occluded (Fig. 1). Other problems include dealing
with untextured or regularly textured regions, and with
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Figure 1. Slice through a motion stereo sequence spatio-temporal
volume. A standard estimation algorithm only estimates the motion
at the center frame (=), whereas our multi-view approach produces
several additional estimates (— ). A layered motion model would use
two (or more) layers to describe this motion, whereas a volumetric
approach would assign one voxel to each “streak”.

viewpoint-dependent effects such as specularities or
shading.

One novel approach to tackling these problems is
to build a disparity space or 3D volumetric model
of the scene (Yang et al., 1993; Bobick and Intille,
1999; Collins, 1996; Scharstein and Szeliski, 1998;
Seitz and Dyer, 1999; Szeliski and Golland, 1999;
Saito and Kanade, 1999). The scene volume is dis-
cretized, often in terms of equal increments of dis-
parity. The goal is then to find the voxels which lie
on the surfaces of the objects in the scene. The ben-
efits of such an approach include the equal and effi-
cient treatment of a large number of images (Collins,
1996), the possibility of modeling occlusions (Bobick
and Intille, 1999), and the detection of mixed pixels
at occlusion boundaries (Szeliski and Golland, 1999).
Unfortunately, discretizing space volumetrically intro-
duces a large number of degrees of freedom and leads
to sampling and aliasing artifacts. To prevent a system-
atic “fattening” of depth layers near occlusion bound-
aries, variable window sizes (Kanade and Okutomi,
1994), shiftable windows (Okutomi et al., 2002), or it-
erative evidence aggregation (Scharstein and Szeliski,
1998) can be used. Sub-pixel disparities can be esti-
mated by finding the the analytic minimum of the local
error surface (Tian and Huhns, 1986; Matthies et al.,
1989) or using gradient-based techniques (Lucas and
Kanade, 1981), but this requires going back to a single
depth/motion map representation.

Another active area of research is the detection of
parametric motions within image sequences (Wang and
Adelson, 1994; Irani et al., 1995; Sawhney and Ayer,
1996; Black and Jepson, 1996; Weiss and Adelson,
1996; Weiss, 1997). Here, the goal is to decompose
the images into sub-images, commonly referred to as
layers, such that the pixels within each layer move

with a parametric transformation. For rigid scenes,
the layers can be interpreted as planes in 3D being
viewed by a moving camera, which results in fewer
unknowns (Baker et al., 1998). This representation fa-
cilitates reasoning about occlusions, permits the com-
putation of accurate out-of-plane displacements, and
enables the modeling of mixed or transparent pix-
els. Unfortunately, initializing such an algorithm and
determining the appropriate number of layers is not
straightforward, and may require sophisticated opti-
mization algorithms such as expectation maximization
(EM) (Torr et al., 2001).

Thus, all current correspondence algorithms have
their limitations. Single depth or motion maps can-
not represent occluded regions not visible in the refer-
ence image and usually have problems matching near
discontinuities. Volumetric techniques have an exces-
sively large number of degrees of freedom and have
limited resolution, which can lead to sampling or alias-
ing artifacts. Layered motion and stereo algorithms re-
quire combinatorial search to determine the correct
number of layers and cannot naturally handle true
three-dimensional objects (they are better at represent-
ing “cardboard cutout” or shallow scenes (Sawhney
and Hanson, 1991)). Furthermore, none of these ap-
proaches can easily model the variation of scene or
object appearance with respect to the viewing position.

In this paper, we propose a new representation that
overcomes most of these limitations. Rather than esti-
mating a single depth (or motion) map, we associate
a depth map with each input image (or some subset
of them, Fig. 1). We define a depth image as a depth
map with texture (i.e., color and depth per pixel). Fur-
thermore, we try to ensure consistency between these
different depth image estimates using a depth compat-
ibility constraint and reason about occlusion relation-
ships by computing pixel visibilities.

To generate this representation, we propose two
methods. The first method computes a depth map for
a single reference image using multiple input images.
The depth map is computed using shiftable windows
and view selection, followed by global optimization
with smoothness. To produce the multiple depth image
representation, this method has to be applied multiple
times independently, each time for a different refer-
ence view. As an alternative, we also propose another
method that computes all the depth maps simultane-
ously with visibility handling.

Our new approach is motivated by several target
applications. One application is view interpolation,
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where we wish to generate novel views from a col-
lection of images with associated depth maps. The
use of multiple depth maps and images allows us to
model partially occluded regions and to model view-
dependent effects (such as specularities) by blend-
ing images taken from nearby viewpoints (Debevec
et al., 1996). Another potential application is motion-
compensated frame interpolation (e.g., for video com-
pression, rate conversion, or de-interlacing), where the
ability to predict bi-directionally (from both previous
and future keyframes) yield better prediction results
(Le Gall, 1991). (See Szeliski (1999) for more details
on how our multi-view framework applies to general
2D motion estimation and compensation.) A third ap-
plication is as a low-level representation from which
segmentation and layer extraction (or 3D model con-
struction) can take place.

1.1. Previous Work on Stereo

A substantial amount of work has been done on stereo
matching; recent surveys can be found in Dhond
and Aggarwal (1989), Szeliski and Zabih (1999) and
Scharstein and Szeliski (2002). Stereo can generally
be described in terms of the following components:
matching criterion, aggregation method, andwinner se-
lection (Scharstein and Szeliski, 1998; 2002).

1.1.1. Matching Criterion. The matching criterion is
used as a means of measuring the similarity of pix-
els or regions across different images. A typical error
measure is the RGB or intensity difference between
images (these differences can be squared, or robust
measures can be used (Black and Rangarajan, 1996)).
Some methods compute subpixel disparities by com-
puting the analytic minimum of the local error surface
(Tian and Huhns, 1986; Matthies et al., 1989) or using
gradient-based techniques (Lucas and Kanade, 1981;
Shi and Tomasi, 1994; Szeliski and Coughlan, 1997).
Birchfield and Tomasi (1998) measure pixel dissimilar-
ity by taking the minimum difference between a pixel
in one image and the interpolated intensity function in
the other image.

1.1.2. Aggregation Method. The aggregation method
refers to the manner in which the error function over
the search space is computed or accumulated. The most
direct way is to apply search windows of a fixed size
over a prescribed disparity space for multiple cameras
(Okutomi and Kanade, 1993) or for verged camera

configuration (Kang et al., 1995). Other approaches
use adaptive windows (Okutomi and Kanade, 1992),
shiftable windows (Arnold, 1983; Bobick and Intille,
1999; Tao et al., 2001; Okutomi et al., 2002), or mul-
tiple masks (Nakamura et al., 1996). Another set of
methods accumulates votes in 3D space, e.g., the space
sweep approach (Collins, 1996) and voxel coloring and
its variants (Seitz and Dyer, 1999; Szeliski and Golland,
1999; Kutulakos and Seitz, 2000). More sophisticated
methods take into account occlusion in the formula-
tion, for example, by erasing pixels once they have been
matched (Seitz and Dyer, 1999; Szeliski and Golland,
1999; Kutulakos and Seitz, 2000), by estimating a depth
map per image ((Szeliski, 1999) and this paper), or us-
ing prior color-based segmentation followed by itera-
tive analysis-by-synthesis (Tao et al., 2001).

1.1.3. Optimization and Winner Selection. Once
the initial or aggregated matching costs have been
computed, a decision must be made as to the correct
disparity assignment for each pixel d(x, y). Local
methods do this at each pixel independently, typically
by picking the disparity with the minimum aggregated
value. Multiresolution approaches have also been
used (Bergen et al., 1992; Hanna, 1991; Szeliski and
Coughlan, 1997) to guide the winner selection search.
Cooperative/competitive algorithms can be used to
iteratively decide on the best assignments (Marr and
Poggio, 1979; Scharstein and Szeliski, 1998; Zitnick
and Kanade, 2000).

Dynamic programming can be used for com-
puting depths associated with edge features (Ohta
and Kanade, 1985) or general intensity similarity
matches. These approaches can take advantage of one-
dimensional ordering constraints along the epipolar
line to handle depth discontinuities and unmatched re-
gions (Geiger et al., 1992; Belhumeur, 1996; Bobick
and Intille, 1999). However, these techniques are lim-
ited to two frames.

Fully global methods attempt to find a disparity
surface d(x, y) that minimizes some smoothness
or regularity property in addition to producing
good matches. Such approaches include surface
model fitting (Hoff and Ahuja, 1986), regularization
(Poggio et al., 1985; Terzopoulos, 1986; Szeliski and
Coughlan, 1997), Markov Random Field optimization
with simulated annealing (Geman and Geman, 1984;
Marroquin et al., 1987; Barnard, 1989), nonlinear
diffusion of support at different disparity hypotheses
(Scharstein and Szeliski, 1998), graph cut methods
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(Roy and Cox, 1998; Ishikawa and Geiger, 1998;
Boykov et al., 2001), and the use of graph cuts in
conjunction with planar surface fitting (Birchfield and
Tomasi, 1999).

1.1.4. Layers and Regions. Some approaches use
layers to handle scenes with possible textureless re-
gions and large amounts of occlusion. One of the first
techniques, in the context of image compression, uses
affine models (Wang and Adelson, 1994). This was
later further developed in various ways: smoothness
within layers (Weiss, 1997), “skin and bones” (Ju et al.,
1996) and additive models (Szeliski et al., 2000) to han-
dle transparency, and depth reconstruction from multi-
ple images (Baker et al., 1998).

1.1.5. Dealing with Occlusions. While occlusions
are usually only explicitly handled in the dynamic
programming approaches (where semioccluded
regions are labeled explicitly), some techniques have
been developed for reasoning about occlusions in
a multiple-image setting. These approaches include
using multiple matching templates (Nakamura et al.,
1996; Okutomi et al., 2002), voxel coloring and its
variants (Seitz and Dyer, 1999; Szeliski and Golland,
1999; Kutulakos and Seitz, 2000), estimating a depth
map per image ((Szeliski, 1999) and this paper),
and graph cuts with the enforcement of unique
correspondences (Kolmogorov and Zabih, 2001).

1.2.  Overview

In this paper, we present two main techniques for recov-
ering view-dependent depth maps from multiple im-
ages. The first is more classical, where only a single
depth map is computed locally (Section 2) at one time.
In this case, visibility computation can be either im-
plicit or explicit. The second computes multiple depth
maps simultaneously, which allows visibility reasoning
to be explicit (Section 3). (The extension of this ap-
proach to general 2-D motion can be found in Szeliski
(1999).)

In the case of extracting a single depth map, we pro-
pose two complementary approaches to better deal with
occlusions in multi-view stereo matching. The first ap-
proach (Section 2.2) uses not only spatially adaptive
windows, but also selects a temporal subset of frames to
match at each pixel. The second approach (Section 2.3)
uses a global (MRF) minimization approach based on
graph cuts that explicitly models occluded regions with

a special label. It also reasons about occlusions by se-
lectively freezing good matching points and erasing
these from the set of pixels that must be matched at
depths farther back. In our case, we combine both ap-
proaches into a single system. We also demonstrate
a more efficient hierarchical graph cut algorithm that
works by overloading disparity labels at the first stage
and restricting search at the subsequent stage.

In Section 3, the problem of extracting multiple
depth maps from multiple images is directly cast as a
global optimization over the unknown depth maps. Ro-
bust smoothness constraints are used to constrain the
space of possible solutions. In Section 4, we show an
application of view interpolation using view-dependent
depth maps, and describe how we render this repre-
sentation in a seamless and photorealistic manner. In
Section 5, we discuss various performance issues, fol-
lowed by some concluding remarks.

2. Computing a Single Depth Map from Multiple
Images

In this section, we describe our approach to computing
a single high-quality depth map from a sequence of im-
ages. First, we define the multi-view stereo algorithm.
Then, we describe our approach, which consists of us-
ing spatially adaptive windows and temporal selection
in conjunction with graph cut optimization, as shown
in Fig. 2.

2.1. Problem Formulation

In a multi-view stereo problem, we are given a collec-
tion of images {ly(x, y),k = 0... K} and associated
camera matrices {Py, k = 0... K}. Ip(x, y) is the ref-
erence image for which we wish to compute a disparity
map d(x, y) such that pixels in Ip(x, y) project to their
corresponding locations in the other images when the
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Figure 2. Overview of our approach for computing single depth
maps.
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correct disparities are selected. Note that the issue of
camera calibration is outside the scope of our paper, as
there are textbooks that describe the various calibration
techniques. The camera parameters associated with the
image sequences we use in our paper (i.e., flower gar-
den, symposium, and University of Tsukuba sequences
shown in Figs. 6, 10 and 11, respectively) were com-
puted elsewhere and assumed accurate enough for our
work.

In the classic forward-facing multi-baseline stereo
configuration (Okutomi and Kanade, 1993), the camera
matrices are such that disparity (inverse depth) varies
linearly with horizontal pixel motion,

[i(x, y, d) = I(x + brd(x, y), y), ey

where I (x, y, d) is image I; warped by the disparity
map d(x, y). In a more general (plane sweep) multi-
view setting (Collins, 1996; Szeliski and Golland,
1999), each disparity corresponds to some plane
equation in 3D. Hence, the warping necessary to bring
pixels at some disparity d into registration with the
reference image can be represented by a homography
Hi(d),

[1(x,y,d) = Hy(d) o Ii(x, y), 2)

where the homography can be computed directly from
the camera matrices Py and P, and the value of d
(Szeliski and Golland, 1999). In this paper, we assume
the latter generalized multi-view configuration, since it
allows us to reconstruct depth maps from arbitrary col-
lections of images. (Note that this approach can also be
generalized to other sweep surfaces, such as cylinders
(Shum and Szeliski, 1999).)

Given the collection images warped at all candidate
disparities, we can compute an initial raw (unaggre-
gated) matching cost

Enaw(x,y,d, k) = p(lo(x, y) — Tx(x, y,d)),  (3)

where p(-) is some (potentially) robust measure of the
color or intensity difference between the reference and
warped image (see, e.g., Scharstein and Szeliski (1998,
2002) for some comparative results with different ro-
bust metrics). In this paper, we use a simple squared
color difference in our experiments.

The task of stereo reconstruction is then to compute
a disparity function d(x, y) such that the raw matching
costs are low for all images (or at least the subset where

a given pixel is visible), while also producing a “rea-
sonable” (e.g., piecewise smooth) surface. Since the
raw matching costs are very noisy, some kind of spa-
tial aggregation or optimization is necessary. The two
main approaches used today are local methods, which
only look in a neighborhood of a pixel before making
a decision, and global optimization methods.

2.2.  Local Techniques

The simplest aggregation method is the classic sum of
sum of squared distances (SSSD) formula, which sim-
ply aggregates the raw matching score over all frames

Esssp(x, y,d) =) Eu(u,v,d, k), (4)

k#0 (u,v)eEW(x,y)

where W(x, y) is an n x n square window centered
at (x, y). This can readily be seen as equivalent to a
convolution with a 3D box filter. This also suggests a
more general formulation involving a general convolu-
tion kernel, i.e., the convolved squared differences

ECSD('X7 y7 d) = W(xv y’ k) * Eraw(x’ y, d7 k)’ (5)

where W (x, y, k) is an arbitrary 3D (spatio-temporal)
convolution kernel (Scharstein and Szeliski, 1998).

After the aggregated errors have been computed, lo-
cal techniques choose the disparity with the minimum
SSSD error, which measures the degree of photocon-
sistency at a hypothesized depth. The best match can
also be assigned a local confidence computed using the
variance (across disparity) of the SSSD error function
within the vicinity of the best match (Matthies et al.,
1989).

While window-based techniques work well in tex-
tured regions and away from depth discontinuities
or occlusions, they run into problems in other cases.
Figure 3 shows how a symmetric (centered) window
may lead to erroneous matching in such regions. Two
ways of dealing with this problem are spatially shiftable
windows and temporal selection.

2.2.1. Spatially Shiftable Windows. The idea of spa-
tially shiftable windows is an old one that has re-
cently had a resurgence in popularity (Levine et al.,
1973; Arnold, 1983; Nakamura et al., 1996; Bobick
and Intille, 1999; Tao et al.,, 2001; Scharstein and
Szeliski, 2002; Okutomi et al., 2002). The basic idea
is to try several windows that include the pixel we
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Figure 3. A simple three-image sequence (the middle image is
the reference image), with a frontal gray square F, and a stationary
background. Regions B, C, D, and E are partially occluded. A regular
SSD algorithm will make mistakes when matching pixels in these
regions (e.g., the window centered on the black pixel in B), and also
in windows straddling depth discontinuities (the window centered
on the white pixel in F).
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Figure4. Shiftable windows help mitigate the problems in partially
occluded regions and near depth discontinuities. The shifted window
centered on the white pixel in F now matches correctly in all frames.
The shifted window centered on the black pixel in B now matches
correctly in the left image. Temporal selection is required to disable
matching this window in the right image.
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Figure 5. The spatio-temporal diagram (epipolar plane image) cor-
responding to the previous figure. The three images (middle, left,
right) are slices through this EPI volume. The spatially and tem-
porally shifted window around the black pixel is indicated by the
rectangle, showing the the right image is not being used in matching.

are trying to match, not just the window centered at
that pixel (Fig. 4). (When using square windows, find-
ing the best matching shifted window can be com-
puted by passing a min-filter over the original SSD
scores (Scharstein and Szeliski, 2002; Okutomi et al.,
2002).) This approach can improve the matching of
foreground objects near depth discontinuities (so long
as the object is not too thin), and also handle back-
ground regions that are being disoccluded rather than

occluded (the black pixel in the middle and left image of
Fig. 4).

To illustrate the effect of shiftable windows, consider
the flower garden sequence shown in Fig. 6. The effect
of using spatially shiftable windows over all 11 frames
is shown in Fig. 7 for 3 x 3 and 5 x 5 window sizes.
As can be seen, there are differences, but they are not
dramatic. The errors seen can be attributed to ignoring
the effects of occlusions and disocclusions.

2.2.2. Temporal Selection. Rather than summing the
match errors over all the frames, a better approach
would be to pick only the frames where the pixels
are visible. Of course, this is not possible in general
without resorting to the kind of visibility reasoning
present in volumetric (Seitz and Dyer, 1999; Szeliski
and Golland, 1999; Kutulakos and Seitz, 2000) or mul-
tiple depth map approaches (Section 3), and also in
the multiple mask approach of Nakamura et al. (1996)
and Okutomi et al. (2002). However, often a semi-
occluded region in the reference image will only be
occluded in the predecessor or successor frames, i.e.,
for a camera moving along a continuous path, objects
that are occluded along the path in one direction tend
to be seen along the reverse direction. (A similar idea
has recently been applied to optic flow computation
(Sun et al., 2000).) Figure 4 shows this behavior. The
black pixel in region B and its surrounding (shifted)
square region can be matched in the left image but
not the right image. Figure 5 show this same phe-
nomenon in a spatio-temporal slice (epipolar plane im-
age). It can readily be seen that temporal selection is
equivalent to shifting the window in time as well as in
space.

Temporal selection as a means of handling occlu-
sions and disocclusions can be illustrated by consid-
ering selected error profiles depicted in Fig. 9. Points
such as A, which can be observed at all viewpoints,
work without shiftable windows and temporal selec-
tion. Points such as C, which is an occluding point,
work better with shiftable windows but do not re-
quire temporal selection. Points such as B, however,
which is occluded in a fraction of the viewpoints,
work best with both shiftable windows and temporal
selection.

Rather than just picking the preceding or succeeding
frames (one-sided matching), a more general variant
would be to pick the best 50% of all images avail-
able. (We could pick a different percentage, if desired,
but 50% corresponds to the same fraction of frames
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Figure 6. 1st, 6th, and 11th image of the eleven image flower garden sequence used in the experiments. The image resolution is 344 x 240.

(a) (b)

(c)

(d)

Figure 7. Comparison of results, 128 disparity levels: (a) 3 x 3 non-spatially perturbed window, (b) 5 x 5 non-spatially perturbed window, (c)
3 x 3 spatially perturbed window, (d) 5 x 5 spatially perturbed window. Darker pixels denote distances farther away.

(d) == = (e)

- ! ®

Figure 8. Comparison of results (all using spatially perturbed window, 128 disparity levels): (a) 3 x 3 window, using all frames, (b) 5 x 5
window, using all frames, (c) 3 x 3 window, using best 5 of 10 neighboring frames, (d) 5 x 5 window, using best 5 of 10 neighboring frames,
(e) 3 x 3 window, using better half sequence, (f) 5 x 5 window, using better half sequence. Darker pixels denote distances farther away.

as choosing either preceding or succeeding frames.)
In this case, we compute the local SSD error for each
frame separately, and then sum up the lowest values
(this is called sorting summation in Satoh and Ohta,
1996). This kind of approach can better deal with ob-
jects that are intermittently visible, i.e., a “picket fence”
phenomenon.

‘We have experimented with both variants, and found
that they have comparable performance. Figure 8 shows

the results on the flower garden sequence. As can be
seen, using temporal selection yields a dramatic im-
provement in results, especially near depth discontinu-
ities (occlusion boundaries) such as the edges of the
tree. Similar improvements can also be observed in
Fig. 12 for the symposium and Tsukuba sequences.

In addition to experimenting with spatially shiftable
windows and temporal selection, we have also devel-
oped an adaptive window that does better at filling in
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Figure 9. Error profiles for three points in reference image. A: point seen all the time, B: point occluded about half the time, C: occluding
point. Left: Reference image, Right: Error graph at respective optimal depths with respect to the frame number (frame #6 is the reference).

Figure 10. Another example: 5-image symposium sequence, courtesy of Dayton Taylor. The 1st, 3rd, and 5th images are shown.

Figure 11. Another example: a 5-image sequence, courtesy of the University of Tsukuba. The 1st, 3rd, and 5th images are shown.

Figure 12. Local (5 x 5 window-based) results for the symposium and Tsukuba sequences: (a) and (c) non-spatially perturbed (centered)
window; (b) and (d) using better half sequence.
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textureless regions of the scene (Kang et al., 2001a,
2001b). However, since this approach does not work
as well as the global technique described next, we do
not describe it in this article.

2.3.  Global Techniques

The second general approach to dealing with ambigu-
ity in stereo correspondence is to optimize a global
energy function. Typically, such a function consists of
two terms,

Eg]obal(d(xa ¥)) = Edata + Esmooth- (6)

The value of the disparity field d(x, y) that minimizes
this global energy is chosen as the desired solution.
Because of the tight connection between this kind of
global energy and the log-likelihood of a Bayesian
model using Markov Random Fields, these methods are
also often called Bayesian or MRF methods (Geman
and Geman, 1984; Belhumeur, 1996; Boykov et al.,
2001).

The data term Eg,, is just a summation of the local
(aggregated or unaggregated) matching costs, e.g.,

Equa = Y _ Esssp(x. y.d(x, ). (7)
(x,y)

Because a smoothness term is used, spatial aggregation
is traditionally not used, i.e., the window W(x, y) in
the SSSD term is a single pixel (but see, e.g., Bobick
and Intille (1999) for a global method that starts with
a window-based cost measure, as well as the results
described in this paper).

The smoothness term FEgnoon Mmeasures the
piecewise-smoothness in the disparity field,

Eqmootn = Y _ [s2 ,¢(d(x, y) —d(x + 1, y))
(x.y)

+sy ,9dx, y) —dx, y+1)]. (8)

The smoothness potential ¢(-) can be a simple
quadratic, a delta function, a truncated quadratic,
or some other robust function of the disparity dif-
ferences (Black and Rangarajan, 1996; Boykov
et al.,, 2001). The smoothness strengths sfj!y and s |
can be spatially varying (or even tied to additional
variables called line processes (Geman and Geman,
1984; Black and Rangarajan, 1996)). The MRF
formulation used by Boykov et al. (2001) makes sf(’q y
and s; , monotonic functions of the local intensity

gradient, which greatly helps in forcing dispar-
ity discontinuities to be coincident with intensity
discontinuities.

If the vertical smoothness term is ignored, the global
minimization can be decomposed into an indepen-
dent set of 1D optimizations, for which efficient dy-
namic programming algorithms exist (Geiger et al.,
1992; Belhumeur, 1996; Bobick and Intille, 1999).
Many different algorithms have also been developed
for minimizing the full 2D global energy function,
e.g., Geman and Geman (1984), Poggio et al. (1985),
Terzopoulos (1986), Szeliski and Coughlan (1997),
Scharstein and Szeliski (1998), Roy and Cox (1998),
Ishikawa and Geiger (1998) and Boykov et al.
(2001).

In this section, we propose two extensions to the
graph cut formulation introduced by Boykov et al.
(2001) in order to better handle the partial occlu-
sions that occur in multi-view stereo, namely explicit
occluded pixel labeling and visibility computation.
We also describe a hierarchical disparity computation
method that improves the efficiency of the graph cut
algorithm.

2.3.1. Explicit Occluded Pixel Labeling. When us-
ing a global optimization framework, pixels that do not
have good matches in other images will still be assigned
some disparity. Such pixels are often associated with a
high local matching cost, and can be detected in a post-
processing phase. However, occluded pixels also tend
to occur in contiguous regions, so it makes sense to in-
clude this information within the smoothness function
(i.e., within the MRF formulation).

Our solution to this problem is to include an addi-
tional label d, that indicates pixels that are either
outliers or potentially occluded. A fixed penalty Eocc
is associated with adopting this label, as opposed to the
local matching cost associated with some other dispar-
ity label. The penalty should be set to be somewhat
higher that the largest value observed for correctly
matching pixels. The smoothness term for this label
is a delta function, i.e., a fixed penalty @ is paid
for every non-occluded pixel that borders an occluded
one.

The matching costin (4), (5), and (7) can be rewritten
as

Esssp(x, y,d) if d # docc
Eoccl ifd = doccl i

€))

Eéss])(x’ v, d)= !
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Figure 13. Effect of using the undefined label for 11-frame flower garden sequence (64 depth levels, no visibility terms, using best frames):
(a) Reference image is 1st image, (b) Reference image is 6th image, (c) Reference image is 11th image. The undefined label is black, while the

intensities for the rest are bumped up for visual clarity.

Meanwhile, the smoothness potential ¢() in (8) is
modified to

¢(p—¢q) if pand g # doca
¢'(p— @)=\ Pocel if por g = docet, p # q.
0 if p =¢q = docal
(10)

The occlusion penalty term E, was set to 18, and
the fixed smoothness penalty @, set to 10 in our
experiments.

Examples of using such alabel can be seen in Fig. 13.
The black regions are classified as the occluded re-
gions. Unfortunately, this approach sometimes fails to
correctly label pixels in occluded textureless regions,
since these pixels may still match correctly at the frontal
depth. In addition, the optimal occluded label penalty
setting depends on the amount of contrast in a given
scene.

2.3.2. Visibility Reasoning. An idea that has proven
to be effective in dealing with occlusions in volu-
metric (Seitz and Dyer, 1999; Szeliski and Golland,
1999; Kutulakos and Seitz, 2000) or multiple depth
map (Section 3) (Szeliski, 1999) approaches is that of
visibility reasoning. Once a pixel has been matched at
one disparity level, it is possible to “erase” that pixel
from consideration when considering possible matches
at disparities farther away from the camera. This is the
most principled way to reason about visibility and par-
tial occlusions in multi-view stereo. However, since the
algorithms cited above make independent decisions be-
tween pixels or frames, their results may not be optimal.

To incorporate visibility into the global optimization
framework, we compute a visibility function similar to
the one presented in Szeliski and Golland (1999). The

visibility function v(x, y, d, k) can be computed as a
function of the disparity assignments at layers closer
than d. Let o(x, y,d") = §(d’, d(x, y)) be the opacity
(or indicator) function, i.e., a binary image of those
pixels assigned to level d’. The shadow s(x, y,d’, d, k)
that this opacity casts relative to camera k onto another
level d can be derived from the homographies that map
between disparities d’ and d

s(x,y,d d, k)= (He(d)H ' (d)) oo(x,y,d). (11)

(We can, for instance, use bilinear resampling to get
“soft” shadows, indicative of partial visibility.) The vis-
ibility of a pixel (x, y) at disparity d relative to camera
k can be computed as

v, y.d k) =[] =stx,y.d' . d k). (12)
d'<d

Finally, the raw matching cost (3) can then be replaced
by

Eyis(x, y,d, k) =v(x, y,d, k)p(Io(x, y)— I (x, y, ).
(13)

The above visibility-modulated matching score thus
provides a principled way to compute the goodness
of a particular disparity map d(x, y) while explicitly
taking into account occlusions and partial visibility.
For any given labeling d(x, y), we can compute the
opacities, shadows, and visibilities, and then sum up the
visibility-modulated matching scores (13) to obtain the
final global energy (6). Unfortunately, it is not obvious
how to minimize such a complicated energy function.

One possibility would be to start with all pixels vis-
ible, and to then run the usual graph-cut algorithm.
From the initial d(x, y) solution, we could recompute
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Figure 14. Effect of applying incremental visibility-based graph cuts: (a, c, ) results using all frames; (b, d, f) results using all frames and
visibility. Note that we do not show the results involving the best half sequence (or best frames) data terms because there is no significant

improvement in adding visibility reasoning.

visibilities, and then re-optimize the modified energy
function. Unfortunately, this process may not converge,
since the energy function is being modified from iter-
ation to iteration, and the visibilities assumed for one
iteration may be undone by a re-assignment of labels
in that iteration.

The alternative we have come up with (inspired by
Chou’s Highest Confidence First algorithm (Chou and
Brown, 1990)) is to progressively commit the best-
matching depths (i.e., freeze their labels) and apply
graph cut on the remaining pixels. This approach is
related to the voxel coloring work (Seitz and Dyer,
1999), where voxels are tagged from front to back.
However, in our approach, the best 15% of the pix-
els (based on the current visibility-modulated match-
ing score (13)) whose depths have been computed by
the graph cut are frozen. The visibility function and
matching costs are then recomputed, which may af-
fect costs at more distal voxels. Within each iteration,
graph-cut labeling effectively takes into account neigh-
boring pixels’ preferences and tries to make the dispar-
ity function piecewise-smooth, whereas the voxel col-
oring approach only uses per-pixel photo-consistency.
After 12 iterations, the remaining uncommitted pixels
are frozen at their best value.

Figure 14 shows the results of adding visibility rea-
soning to the graph cut algorithm when starting with
all frames as the data cost (no temporal selection). The
improvement is significant for the Tsukuba sequence.
Note that we do not show the results involving the best
half sequence (or best frames) data terms because there
is no discernable improvement in adding visibility rea-
soning. This suggests that shiftable windows coupled

with temporal selection handle the occlusion problem
well.

2.3.3. Hierarchical Disparity Computation. While
the graph cut algorithm and its variants can produce
very good results, the problem of computing the exact
minimum via graph cuts is NP-hard (Veksler, 1999).
Furthermore, the complexity of the approximating -8
swap algorithm is quadratic in the number of labels. As
a result, we need to keep the number of labels (in the
form of disparities) to a minimum.

To reduce the severity of this problem, we first solve
the graph cut using a smaller number of labels, and
then solve for an assignment at the desired final reso-
lution level. In the first phase, each overloaded label
represents a range of disparity values, as indicated in
Fig. 15. The cost function associated with a label is

d-O 9

: —-— &,
b : :

d L] L]

(R }:>— &,
dR|k+1)-1 : B
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(EiR(N 1 - }:> d,N-l
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Figure 15. Overloaded disparity space. There are N disparity levels
in the lower resolution (overloaded) space (right) and RN disparity
levels in the original higher resolution space (left).
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Figure 16. Results of using hierarchical graph cut: (a, d, g) Results using full depth resolution graph cut (128 levels), (b, e, h) Intermediate
coarse results using hierarchical graph cut (32 levels), (c, f, i) Final results using hierarchical graph cut (128 levels). The results in the last two
columns look very similar, but the third column has better depth resolution (more gray levels).

the minimum of the costs associated with its range of
disparity values, i.e.,

C*(u,v,dy) = minC(u, v, d;). (14)
d;ed,,

Label swapping at this stage uses the full range of
the coarse levels. In the subsequent refinement stage,
we use higher resolution disparity levels in the graph-
cut algorithm. However, swapping between disparity
labels is now only permitted within its previous range
and its immediate neighbors.

Results using the proposed hierarchical graph cut
can be seen in Fig. 16. In these sets of experiments,
we represent a coarse disparity level with four original
disparity levels (reducing the number of levels from
128 to 32 initially). The results obtained are compara-
ble to those with the full resolution graph cut. While
there appears to be some degradation of quality in the
recovered depth maps, especially for the University of
Tsukuba sequence, the visual reconstruction remains

very good (see Figs. 17 and 18). The degradation is
due to the early commitment of depth, as can be seen in
Figs. 16(b, e, h).

The timings for the winner-take-all and graph cut
portions of our stereo algorithm can seen in Table 1.
The resolution of the 11-frame flower garden sequence
is 344 x 240, while that for the 5-frame University of
Tsukuba sequence is 384 x 288, and that for the 5-frame
symposium sequence is 384 x 256. The results were
produced using a PC with a 1 GHz processor, with 128

Table 1. Timings for the three sequences (all in “minutes:seconds”).
Note that in each case, the graph cut algorithm is iterated four times
for convergence.

Operation Flower garden Tsukuba Symposium
Winner-take-all 2:19 2:20 2:27
Graph cut (full) 48:40 56:50 59:32
Graph cut (hierarchical) 11:03 14:05 13:24
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Figure 17. Examples of view reconstruction using results of graph cut (3 x 3 window used): (a) Ist frame of original 11-frame sequence (5th
frame is the reference), (b, c) Reconstructed view using all frames (before and after graph cut), (e, f) Reconstructed view using best frames (before
and after graph cut), (h, i) Reconstructed view using best half sequence (before and after graph cut), (k) is the same as (h), (1) Reconstructed
view after hierarchical graph cut, (d, g, j, m) are the respective depth maps after graph cut.

disparity levels and maximum neighborhood span of 5 2.4.  Discussion of Results

frames. For the hierarchical graph cut (with N, = 4),

each overloaded label represents four original labels. Figures 17 and 18 show view reconstruction results
The timings for each sequence are reduced by a factor on the flower garden and Tsukuba sequences. (View

ranging from 4.0 to 4.4. reconstruction results for the symposium sequence
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Figure 18. Examples of view reconstruction using results of graph cut (3 x 3 window used): (a) 5th frame of original 5-frame sequence (3rd
frame is the reference), (b, c) Reconstructed view using all frames (before and after graph cut), (e, f) Reconstructed view using best frames (before
and after graph cut), (h, i) Reconstructed view using best half sequence (before and after graph cut), (k) is the same as (h), (1) Reconstructed
view after hierarchical graph cut, (d, g, j, m) are the respective depth maps after graph cut.

can be found in Kang et al. (2001b).) Note that the While our algorithm is targeted specifically towards
white cracks observed in the reconstructed views multi-view stereo (with sequences of more than two
are caused by transferring adjacent pixels with depth frames), it also produces reasonable results in two

discontinuities. frame situations. The temporal selection component
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is inoperative in this case. Our results compare
favorably with Boykov et al. (2001) (see Kang et al.
(2001b)).

3. Computing Multiple Depth
Maps Simultaneously

In the previous section, a single depth map was com-
puted using a combination of shiftable windows, tem-
poral selection, and optimization using graph cut. This
is the traditional representation for computing stereo.
In this section, we describe a new technique that com-
putes multiple depth maps simultaneously from a col-
lection of images. We refer to this as the multi-view
stereo reconstruction framework.

Our multi-view framework is motivated by several
requirements. These include the ability to accurately
predict the appearance of novel views or in-between
images and the ability to extract higher-level represen-
tations such as layered models or surface-based models.
Therefore, our goal is to estimate a collection of depth
maps associated with several images, such that other
images in the input collection can be predicted based
on these estimates (Fig. 1).

As before (see Section 2.1), we are given a collec-
tion of images {l;(x, y),k = 0...K}. First, we se-
lect some set S of keyframes (or key-views) for which
we will estimate depth estimates {d;, / € S}. The de-
cision as to which images are keyframes is problem-
dependent, much like the selection of / and P frames in
video compression (Le Gall, 1991). For 3D view inter-
polation, one possible choice could be a collection of
characteristic views. If view-dependent effects (such as
specularities) are present, then more key views might
be required (see Section 4).

Since we now have a collection of reference frames,
we need to extend the definition of the warped images
given in (1)—(2) to

I, y,d) = I(x + (b — bpd(x, y),y)  (15)
or
Ii(x,y,d) = H{(d) o It(x, y), (16)

where the homography H,ﬁ can be computed from the
camera matrices P; and P, and the value of d (Szeliski
and Golland, 1999).

The raw matching score given in (3) now depends
on/ as well,

Ew(x,y,d k1) = p(i(x, y) = T4 (x,y.d)), (17)
as does the visibility-modulated matching score (13),

Eyis(x,y,d, k., 1) = v(x, y,d, k,Dp(Ii(x, y)
—Ii(x, 5, d)). (18)

(we will define v(x, y, d, k, [) below).

The new global data term (replacing (7)) is therefore
the summation over all keyframes and all pixels of the
visibility-modulated matching scores corresponding to
the current disparity estimates d;(x, y), i.e.,

Ega=), Y wa ) Eu(x,y,d kD). (19)

€S keN() (x,y)

Comparing (19) with (7) shows that we now op-
timize over multiple depth maps simultaneously.
(See Kolmogorov and Zabih (2002) for more recent
work based on this framework.) Images I, k € N (k)
are neighboring frames (or views), for which we
require that corresponding pixel colors agree. The
constants wy; are the inter-frame weights that control
how much neighboring frame k will contribute to
the estimate of d;. (Note that we could set wy; = 0
for k ¢ N(I) and replace Y ; ;) With 3. Also, a
more geometrically plausible weighting would reflect
the degree of similarity between the viewing rays on
a pixel-by-pixel basis (Gortler et al., 1996; Buehler
et al., 2001), but we have not implemented this
idea.)

The complete cost function we use for multi-frame
matching consists of three terms (compare with (6) in
Section 2.3),

Eglobal = Edata + Esmoon + Ecompat (20)

where E 4., measures the brightness compatibility, i.e.,
the raw differences in corresponding pixel intensities
or colors, Egnoon Measures the disparity smoothness,
and Ecompa; measures the temporal disparity compati-
bility, i.e., the agreement between disparity estimates
in different frames. Note that Ecompa is the important
additional term in the cost function that is not present
in the case of the single reference depth map. Since
E a2 has been described above in (19) and Eyo0m 1S
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an analogous multiple depth map extension of (8) that
involves summing over all depth maps /, we only de-
scribe Ecompac here.

The controlled disparity compatibility constraint is
given by

Ecompat = Z Z Wiy Z v(x, y,d, k, l)pC(dl(x» y)

leS keS (x,y)
—dl(x. y. ). 1)

This constraint enforces mutual consistency between
disparity estimates at different neighboring keyframes,
i.e., frames for which iy, is non-zero.

The warped disparity field a?f((x, v, d) can be com-
puted in a manner analogous to the warped intensity
image (16). However, if the plane sweeps used to de-
fine the different disparity fields d; are not coincident,
we may have to re-scale the d; values by a projec-
tive transformation (Shade et al., 1998). For a scene
with objects far enough away or for cameras arranged
in a plane perpendicular to their optical axes (as in
our current experiments), the inverse depths to cor-
responding pixels are close enough that this is not a
problem.

The definition of the visibility function v(x,y,d,k,l)
is even simpler than in the case of a single depth map
((12) in Section 2.3.2). Once we have computed the
warped (resampled) depth map a?f( (x, v, d)asdescribed
above, we can simply compare the two depth maps and
set

v(x, y,d. k1) = ((di(x, y) — di(x, y, d)) <),
(22)

where § is a threshold to account for errors in estimation
and warping. This is because if (x, y)is visible in image
k, the values of dj(x, y) and d%(x, y, d) should be the
same. If (x, y) is occluded, then d;(x, y) < d\(x, y, d)
(assuming d =0 at infinity and positive elsewhere in
front of the camera). We set v(x, y, d, k, [) =0 when-
ever the pixel corresponding to (x, y) is outside the
boundaries of 7;. (We can think of the camera body as
being the occluder, in this case.)

3.1.  Estimation Algorithm

With our cost framework in place, we now describe our
estimation algorithm, which combines ideas from hier-
archical estimation (Quam, 1984; Bergen et al., 1992),

correlation-style search (Matthies et al., 1989; Kanade
and Okutomi, 1994), and sub-pixel motion/disparity
estimation (Lucas and Kanade, 1981; Matthies et al.,
1989).

Our algorithm operates in two phases. During an
initialization phase, we estimate the depth maps in-
dependently for each keyframe. Since we do not yet
have any good depth estimates for other frames, the
disparity compatibility term Ecompa 1S ignored, and no
visibilities are computed (i.e., v(x, y,d, k,l) = 1). In
the second phase, we enforce disparity compatibility
and compute visibilities based on the current collec-
tion of disparity estimates {d;}. A more detailed de-
scription of our algorithm can be found in Szeliski
(1999).

To compute the initial set of depth maps, we use
a hierarchical (coarse-to-fine) algorithm similar to
Bergen et al. (1992). (We could just as well use
the graph cut algorithm described in Section 2, but
our implementation for multi-view stereo matching
was done prior to our work on temporal selection
and graph cuts.) Hierarchical matching results in an
efficient algorithm, since fewer pixels are examined
at coarser levels. It can also potentially results in
better quality estimates, since a wider range of depths
can be searched and a better local minimum can be
found.

Within each level, we use correlation-style search,
i.e., we evaluate several disparity hypotheses at once,
and then locally pick the one that results in the low-
est local cost function. At the very first iteration, we
disable smoothness constraints, and then enable them
and reduce the amount of spatial aggregation for later
iterations. To obtain depth estimates with better accu-
racy, we compute a fractional depth estimate by fitting
a quadratic cost function to the cost function values
around the minimum and analytically computing its
minimum (Matthies et al., 1989). We ignore the results
of fractional disparity fitting if the distance of the an-
alytic minimum from the discrete minimum is more
than a half-step.

Once we have computed an initial set of disparity
estimates {d;}, we can now compute visibilities
v(x,y,d,k,I) = 1 and add in the disparity compat-
ibility constraint Ecompa. The multi-view estimation
algorithm can be repeated several times, at each
iteration obtaining better estimates of depth and
visibility. We currently perform this sweeping through
the keyframes, instead of performing a single global
estimation, because it is easier to implement and
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Figure 19. Results on the flower garden sequence: (a—c) first, second, and fourth (last) frame; (e—g) initial depth estimates; (i—k) refined
(multi-view) depth estimates. Warped (resampled) images: (d) after initial estimate; (h) with visibility computation; (1) with refined estimates;
(m-—p) results obtained using the algorithm with a single reference view (Section 2).

requires less memory. An alternative would be to
perform a full spatio-temporal regularization.

3.2.  Experiments

We have applied our multi-view matching algorithm to
a number of image sequences. Figures 19 and 20 show
some representative results and illustrate some of the
features of our algorithm.

In both sets of figures, images (a—c) show the first,
middle, and last image in the sequence (we used the

first 4 even images from the flower garden sequence
and 5 out of 40 images from the symposium sequence).
The depth maps estimated by the initial, independent
analysis algorithm are shown in images (e—g). The fi-
nal results of applying our multi-view estimation al-
gorithm with smoothness, disparity compatibility, and
visibility estimation are shown in images (i—k). Notice
the improved quality of the estimates obtained with the
multi-view estimation algorithm, especially in regions
that are partially occluded. For example, in Fig. 19,
since the tree is moving from right to left, the occluded
region is to the left of the tree in the first image, and
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Figure 20. Results on the symposium sequence: (a—c) first, third, and fifth (last) frame; (e—g) initial depth estimates; (i—k) refined (multi-view)
depth estimates. Warped (resampled) images: (d) after initial estimate; (h) with visibility computation; (1) with refined estimates; (m—p) results

obtained using the algorithm with a single reference view (Section 2).

to the right of the tree in the last one. Notice how the
opposite edge of the trunk (where disocclusions are
occurring) looks “crisp”.

Image (d) in both figures shows the results of warp-
ing one image based on the depth computed in an-
other image. Displaying these warped images as the
algorithm progresses is a very useful way to debug
the algorithm and to assess the quality of the depth
estimates. Without visibility computation, image (d)
shows how the pixels in occluded regions draw their
colors somewhere from the foreground regions (e.g.,
the tree trunk in Fig. 19 and the people’s heads in
Fig. 20).

Images (h) and (1) show the warped images with
invisible pixels flagged as black (the images were gen-
erated after the initial and final estimation stages, and
hence correspond to the depth maps shown to their left).
Notice how the algorithm correctly labels most of the
occluded pixels, especially after the final estimation.
Notice, also, that some regions without texture such
as the sky sometimes erroneously indicate occlusion.
Using more smoothing or adding a check that occluder
and occludees have different colors could be used to
eliminate this problem (which is actually harmless, if
we are using our matcher for view interpolation or mo-
tion prediction applications).
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Figures 19(m—p) and 20(m—p) also show the results
of applying the independent disparity estimation algo-
rithm described in Section 2. Compared to the results
in the third row, we see that these results have crisper
boundaries on both sides of depth discontinuities, e.g.,
on both sides of the tree in Fig. 19. This is because tem-
poral selection is being used. They also sometimes have
fewer errors (less variability) in the textureless regions,
because the graph cut minimization is being used. On
the other hand, because disparity compatibility is not
being enforced, some of the results in the textureless
regions are worse (e.g., the blue sky in the upper left
corner of Fig. 20(p). The graph cut results also exhibit
more blockiness, e.g., less smooth variation in slanted
regions, such as the flower beds in Fig. 19.

The simultaneous depth map computation method
is related to the method in Section 2 in that both
can be used to produce our proposed representation
of view-dependent depth images. These methods were
developed independently. As described earlier, the cur-
rent method optimizes by sweeping through the views,
and at each view, correlation-style search is performed
(with visibility handling), with the lowest local cost
function chosen. While it would be possible to apply
graph cut instead, this would require a huge memory
footprint and would be much more computationally
expensive.

4. Rendering View-Dependent Depth Images

One of the primary applications for view dependent
depth maps is photorealistic view interpolation using
multiple depth images (i.e., textured depth maps). We
believe that this representation is a good choice to rep-
resent many kinds of scenes, including scenes with
non-diffuse effects such as reflections and speculari-
ties (Fig. 23) (Swaminathan et al., 2002; Tsin et al.,
2003).

To render a novel view from a collection of depth im-
ages, we treat each depth image as a single sprite and
render it the same as described in Shade et al. (1998).
This is accomplished using a two-step rendering algo-
rithm based on the forward transfer equation

WXy X1
wyyy | =Hio | yi | +diero, (23)

w»y 1

where H, » is the homography that maps the source
viewpoint to the target viewpoint, and e;, is the

epipole. The rendering algorithm consists of the fol-
lowing two steps. First, we forward map the depth map
d; using (23) to generate the depth map d, associated
with the new view. (We do a small amount of morpho-
logical hole filling to close small gaps arising from the
forward splatting process.) Then, we inverse map (with
interpolation) the color image, using the homography
and per-pixel parallax to compute the source pixel ad-
dress in the sprite, i.e., using (23) with 1 and 2 inter-
changed (Shade et al., 1998).

In rendering multiple depth images, we render each
depth image into an image accumulator that keeps track
of the weighted sum of the color and sum of the weights.
In the experiments shown in this paper, we chose the
nearest two reference depth images, but we have also
experimented with using the three nearest. The global
weights applied to each reference depth image are com-
puted based on degree of visual overlap, described as
follows.

Suppose we wish to compute the visual overlap be-
tween depth images D; (with viewpoint V;) and virtual
viewpoint V,. Let N; be the number of points of D;
seen from V,, and &; be the proportion of the image oc-
cupied at V, by the reprojected D;. The visual overlap
is then defined to be

_&iN;
=N

; (24)

wj

where N; is the number of pixels per depth image
(Fig. 21). To simplify and speed up the weight com-
putation, we use a fronto-parallel plane with average
depth instead of the full depth distribution.

N, (out of N))
points seen at ¥,

Occupies & fraction
of virtual image

Figure 21. Illustration of visual overlap. D; is the ith depth image,
with V; the center of the ith camera. V, is the center of the virtual
camera.
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Figure 22. Comparison between actual and interpolated frames for the flower garden, Tsukuba, and symposium sequences. (a, c, e) Actual
frame, (b, d, f) Interpolated frame. Here, only two neighboring depth images are used in the interpolation. The insets in (c) and (d) highlight the
gap phenomena caused by misestimating depths of textureless regions while the insets in (e) and (f) show the result of rendering actifacts.

The color at pixel (p, g) for the virtual view, ¢, , .,
is computed using

/
Zie/\/(v) wianq;icp,q,i
Zie/\/’(v) Wilp,q,i

Cpgv = ) (25)

where c’p, 4.1 18 the color at (p, ¢) in the virtual view
after warping D;. np, 4.; is 1 if (p, q) is occupied; oth-
erwiseitissetto 0. ¢, 4, is computed using the nearest
depth images N '(v) (nearest two in our experiments),
and is set to the “empty” color (currently black) if the
denominator in (25) is zero (i.e., no part of any depth
image is mapped to (p, q)).

Some rendering results are shown in Fig. 22.
(These rendering results use outputs from our method

described in Section 2.) Figure 22(a, c, e) are the actual
3rd frames of their respective sequences, and (b, d, f)
were interpolated using depth images at the 2nd and
4th frames. The maximum neighborhood used to com-
pute each depth image is 5 frames, i.e., to compute the
depth map at the kth frame, frames (k —5)...(k+5)
are used (subject to indexing limits). The interpolated
views look very similar to the actual views, except that
they look less sharp and contain a few gaps. These
gaps are due to misestimation of depth in textureless
areas that are locally photoconsistent. One way of
dealing with these gaps is to perform automatic hole
filling, which was not implemented in our version
of rendering. We also observe some “ringing” at the
borders of depth discontinuities (Fig. 22(f) closeup),
but this is mostly due to the rendering artifacts caused
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Figure 23. A more difficult sequence with specularities. The original sequence has 48 frames; the interpolated views (b, d, f) were generated
using only 3 view-dependent depth images at frames 8, 24, and 39. The actual views, corresponding to frames 13, 36, and 42, are shown in (a,
¢, e). The insets in (a) and (b) show that certain highlights was not recreated well while the insets in (e) and (f) show that an example where a

highlight was adequately synthesized.

by splatting in the forward mapping stage and dilation
just prior to the inverse mapping stage.

Another example of why view-dependent depth im-
ages are necessary is shown in Fig. 23, which shows
interpolated views of a scene with specular surfaces.
Note that only three view-dependent depth images are
used to represent the original 48 image sequence. As
can be seen, many highlight areas were synthesized
well, with a few exceptions (an example of which is
shown in Fig. 23(a, b)). This problem can be allevi-
ated by adding more view-dependent depth images.
It is thus clear that using only a single depth image
would not adequately represent the non-diffuse effects
(without resorting to extracting the BRDF of the object
surfaces).

5. Discussion

Over the years, researchers have developed many dif-
ferent types of representations and algorithms for re-
covering scene geometry from multiple images. These
range from purely 3D representations, view-dependent
textures (Debevec et al., 1998), and view-dependent 3D
models (Pulli et al., 1997), which are more geometry-
based, to Concentric Mosaics (Shum and He, 1999),
Lumigraphs (Gortler et al., 1996), and Light Fields
(Levoy and Hanrahan, 1996), which are more image-
based. A description of the geometry-image tradeoff is
given in Kang et al. (2000).

Table 2 compares a number of popular approaches
to representing and rendering 3D scenes. The table lists
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Table 2. Comparison of multi-view representations and some of their tradeoffs.

Representation Space complex.  Comput. complex.  Discretization ~ View variation Rendering
Voxels WHD NWHD (x,y,d) No Voxel splatting
Layers WHL NWHDL? (x,y)x L No Two-pass rendering
3D surfaces WH NWHI? Adaptive No Traditional CG
View-dep. depth images WHM TMWHD? (x,y) Yes Blended 2-pass rendr.

The constants in the space and computational complexity columns are: W: width; H: height; D: depth/disparity resolution; N:
number of input images; L: number of layers; /: number of iterations; M: number of key views; T': size of temporal neighborhood,

T ~ O(N/M); p: exponent in graph cut algorithm (1-2).

the space and computational complexities of each ap-
proach (some of the computational complexities are
uncertain, so they are tagged with a “?”), as well as
the discretization involved in the representation, the
support of view-dependent effects, and the rendering
algorithms used. The space (storage) complexity of
view-dependent depth images is relatively small, al-
though not as compact as a single 3D model (which
cannot model view-dependent effects). The computa-
tional complexity is similar to other multi-view stereo
correspondence or refinement approaches. Additional
advantages of our approach are that there is no need
to discretize 3D space (which can result in rendering
artifacts), nor is there a need to segment the images into
coherent layers.

In choosing a representation, our goal was to pro-
vide adequately photorealistic view synthesis while
maintaining a reasonable database size and permitting
rendering at interactive speeds. Our proposed repre-
sentation fulfills these requirements. It is related to
the view-dependent 3D models used in Pulli et al.
(1997), except that their models were created using
accurate rangefinders and do not handle non-diffuse
effects. Our technique is more practical and flexible,
since we use only images and assume camera motion
to be computed using standard structure from motion
techniques.

Our representation can also be viewed as a form of
compression of the 3D scene. With a judicious choice of
the number and position of reference view-dependent
depth images, we can generate the appearance of the
captured 3D environment photorealistically. In this pa-
per, we have not discussed the issue of depth image
selection, but this is an area that we will be pursuing.
One important question is determining the appropriate
objective function to be used. Should a perceptually-
based metric be used, or will a simple SSD-based error
metric be adequate?

6. Conclusions

In this paper, we have proposed a view-dependent rep-
resentation of 3D scenes, and shown how to extract
such a representation from a sequence of images. We
described two main approaches. The first is more tradi-
tional, computing the depth map associated with each
chosen reference frame independently. The novelty of
our approach lies in the combination of shiftable win-
dows, temporal selection, and graph cut optimization.
Shiftable windows enable object boundaries to be ex-
tracted well, while temporal selection is the key to
(implicitly) handling occlusions. Finally, the graph cut
algorithm handles, to a reasonable extent, textureless
regions.

The second approach simultaneously optimizes a set
of self-consistent depth maps at multiple key-frames.
Since multiple depth maps are estimated simultane-
ously, visibility can be modeled explicitly, and indeed
is used in the optimization function. In addition to the
photoconsistency and smoothness terms, this approach
also imposes disparity consistency across the different
depth maps.

Results have shown that the first method produces
significantly crisper boundaries. This can be attributed
to the use of both shiftable windows and view selection
in the matching process. On the other hand, it is more
likely to produce less globally consistent depths at tex-
tureless regions, because disparity compatibility is not
enforced across the different depth maps. In addition,
the use of the graph cut for global optimization with
smoothness tends to produce depth maps that are more
blocky, e.g., less smooth variation in slanted regions
such as the flower beds in Fig. 19.

Either approach can be used to produce a set of
multi-view depth images, and both primarily rely on
photoconsistency to produce results. The resulting rep-
resentations capture both partially visible regions and
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potential variations in local appearance across cam-
era positions. The representation can therefore be used
as a basis for novel view synthesis and interpolation
applications.
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