
Using Sharing to Simplify System Management 
 

Michael D. Schroeder 
Microsoft Research Silicon Valley 

9 April 2003 

The cost of ownership for many computer systems in non-home environments is 
dominated by ongoing system management. This paper addresses the management issues 
around storage-intensive systems that serve many network-attached clients, particularly 
file servers, mail and calendaring servers, and database servers. The paper begins by 
describing a three-layer structure for large server systems that is often employed where 
availability and scale considerations require the use of multiple computers to implement a 
single service. It then contrasts a system organization called the uniserver model, in 
which the permanent state is partitioned among the application servers, with an 
organization called the multiserver model, in which the permanent state is shared among 
all the application servers. Reviewing the relative advantages and disadvantages of the 
two models suggests the option of combining them by using a multiserver as a uniserver. 
The sharing from the multiserver model makes a system easier to manage than a 
uniserver. But if the sharing is avoided in normal operation, as in a uniserver, then the 
combined system avoids many of the drawbacks of both models. 

Three-layer systems 

A useful structure for a multi-computer system that maintains significant permanent state 
and has network-attached clients is to organize the hardware components into three layers 
by function. 

Network interface to clients 

 

At the bottom is the storage subsystem, consisting of large numbers of disks and their 
controllers. These days the storage subsystem is usually interconnected with a storage 
area network, such as Fibre Channel, to which all the computers are also attached. In the 
middle layer are the computer systems that implement the service: file servers, mail 
servers, or database servers. At the top layer are the computer systems that front the 
system to the network. They collect client requests from the network and distribute them 

Top layer 
Directors 

Middle layer 
Application servers 

Bottom layer 
Storage subsystem 



to the middle-layer computers. These top-layer computers can be simple directors that 
pass requests directly to the middle layer, or they can be web servers that implement the 
visible interface and formulate the needed middle-layer requests. 

The bottom-layer storage subsystem is usually responsible for reliably storing the 
permanent state, although in some systems the middle layer participates, too. Reliability 
is achieved by using data redundancy techniques such as RAID, as well as by replicating 
the controllers and network components. Data is usually backed up to offline media. In 
addition, if the bottom layer provides storage virtualization then it can do things like load 
balancing to improve performance. This possibility is discussed later. 

The three-layer system organization can be used in two different ways: uniserver or 
multiserver. With the uniserver model, each middle-layer server acts on a unique partition 
of the permanent state of the system stored by the bottom layer. With the multiserver 
model, each middle-layer server can act on all of that permanent state. These two models 
have different strengths and weaknesses. 

The uniserver model 

Today, the most common organization for dividing the work among the middle-layer 
servers is to partition the permanent state of the system among them. I call this 
organization with partitioned state the uniserver model. 

For example, in a file system, different sub-trees of the naming hierarchy will be 
implemented by different file servers in the middle layer; in an email system, different 
sets of user accounts will be implemented by different mail servers; in a database system, 
different tables of the database will be implemented by different database servers. The 
top-layer directors understand the partitioning scheme and direct each request to the 
middle-layer server that “owns” the permanent storage needed to answer it. Sometimes a 
request needs to be divided into several pieces, each of which is directed to a different 
server, and the results combined in order to respond to the client, although atomicity is 
usually not provided for requests spanning multiple servers 

As the patterns of client requests evolve and as the system state grows, it is sometimes 
necessary to redistribute the state among the middle-layer servers and add new ones to 
maintain good performance. Available tools can detect load pattern changes and 
overloaded servers, suggest optimal partitioning of the state, and reorganize the storage 
layers to achieve the optimum. 

Another reason for changing the distribution pattern is the failure of a middle-layer 
server. If high availability is a goal, the system will be provisioned with extra standby 
servers to take over from failed servers. Failover requires detecting the failure, detaching 
the associated permanent state from the failed server, attaching it to a standby server, 
starting the standby server with the transferred state, and cleaning up any unfinished 
business found in that state. The top-level directors are then told to direct requests to the 
new owner of that partition of the permanent state. 



There is some global shared state in a uniserver system: the list of member servers and 
the characterization of the partition of the data they each serve. This global state needs to 
change when the partitioning is changed and when failover occurs, but it changes 
infrequently and is small. 

The uniserver organization is sometimes called the shared-nothing approach because 
middle-level servers share no permanent state. The partitions of the permanent state are 
attached to one middle-level server at a time. The shared-nothing approach was once 
mandatory, since there were no storage interconnects that enabled disks to be accessed by 
more than one computer at a time. But as this constraint has been removed by the march 
of technology, people continue to argue the enduring value of the shared-nothing 
approach. The shared-nothing model is used widely in commercial products. For 
example, Microsoft’s SQL, Exchange, or NTFS servers deployed on Microsoft Cluster 
Server [1] are examples of this organization. I use the term “uniserver” instead of 
“shared-nothing” because uniserver contrasts better with its alternative, the multiserver 
model, discussed below. 

The multiserver model 

An alternative to uniserver model for a three-layer systems is the multiserver model. In 
this approach all middle-layer servers in a system can operate on all the permanent state 
contained in the bottom-layer storage subsystem. For example, with a multiserver file 
system a single (large) hierarchical name space is served by all servers in the middle 
layer. Any of the servers can operate on any folder or file. Over the last ten years or so, 
progress in storage area networks, systems area networks, and local area networks has 
made shared access to storage affordable and scalable with good performance. With the 
multiserver model the top-layer director function is still required in order to do load 
balancing and avoid failed servers. In the case of a multiserver, however, the directors 
can make dynamic decisions that are not completely dictated by data location.1 The 
multiserver model makes extra demands on the implementation of the middle-layer 
servers. In particular they need to coordinate their access to the permanent state. 
Coordination is usually done using a global locking service that allows middle-layer 
servers to set locks on portions of the permanent state. A lock prevents conflicting access 
from other servers. Choosing the best granularity for the locking, e.g., per folder, per file, 
or per byte range in the case of a file service, depends on the pattern of expected client 
requests. The need to coordinate also complicates the management of data caches in the 
servers. 

                                                 

1  For both uniserver and multiserver systems it is possible to put the director function in a clerk module 
in the clients. The clerk module retrieves configuration information directly from the middle-level 
servers and uses it to send each client request directly to the appropriate server. With this structure the 
top-layer directors are bypassed. Clerk modules work best when clients are modest in number and 
well-connected to the server system. For large-scale systems with many distant clients, it is best to 
have the director run on top-layer servers of the system, as described here. 

 



Expanding a multiserver system is done by attaching a new middle-layer server to the 
storage subsystem, updating the membership list so that the top-layer directors know 
about the new server, and letting the new server initialize itself by reading from the 
permanent state. 

Failure of a middle-layer server can be covered by directing requests to another server, 
because all servers can operate on all parts of the permanent state. When servers 
encounter locks still held by the failed server, they must take a special action to recover 
the lock and complete or abort the operations it protected. This is similar to cleaning up 
the unfinished business of a failed server when doing failover for a uniserver system. In 
both cases the new server reads and acts on the operation log written by the failed server. 

Multiserver systems have been around for some time. An early successful example was 
the DEC VAX/VMS cluster [2] that provides a multiserver file system. More recently the 
Frangipani global cluster file system prototype [3] has demonstrated good performance 
and automatic operation using these techniques. 

Arguments in favor of uniservers 

Uniserver systems realize several benefits directly from their organization. By having 
each partition of the permanent data under control of a single server, undesirable 
interactions among the servers are minimized. Each server has a free hand in managing 
and caching that data and in accessing the permanent state without the interference of 
other servers. Lack of interference can lead to good performance. It also allows the server 
to be “near” its data, in the sense that the connection from the data storage subsystem to 
the server for the associated partition doesn’t need to go anywhere else until a failover or 
repartitioning occurs. When a server crashes it cannot affect the operation of other servers 
or other partitions. This lack of unwanted interaction contributes to system stability. 
Finally, failover is an activity confined to the chosen standby server, without system-wide 
repercussions other than temporary unavailability of data from the affected permanent 
state. 

Arguments against uniservers 

The partitioning of the permanent state that characterizes the uniserver organization also 
generates some problems. Perhaps most important is that partitioning is a major 
management burden in operating such a system. Growth in the load, changes in the 
access patterns, and growth of the permanent state require repartitioning the system. Such 
repartitioning can involve copying the data. Repartitioning can be time intensive and can 
take the system entirely or partially offline. In typical implementations failover is slow: 
getting the standby server up to speed from scratch can take minutes. Addressing this 
problem by having a hot standby mitigates some of the simplicity and non-interference 
advantages mentioned earlier. 



Arguments in favor of multiservers 

Multiserver systems also have their benefits. Requests can be dynamically distributed 
according to load. Requests to read-only hot spots in the data, for example, can be 
satisfied from multiple middle-level servers in parallel without any pre-positioning of the 
data. The needed data would find its way from the shared storage subsystem into the 
caches of all the servers where it could be accessed rapidly at each, increasing throughput 
of the overall system. Recovery from the failure of a middle-level server can be fast 
because all other servers are automatically “hot.” Repartitioning the permanent state is 
never necessary since all servers can access all permanent state. The result is that 
management overhead for such a system is low and there are no lengthy outages for 
reconfiguration. 

Arguments against multiservers 

Problems with the multiserver organization include interference between servers needing 
temporary exclusive access to the same data. Such lock conflicts can result in 
unpredictable performance. Also, implementing the global lock service as a high-
performance, scalable, distributed program is complex. With a multiserver system, 
failures can impact the operation of all other servers as they recover the locks held by the 
failed server and take over the load. Another negative for the multiserver organization is 
that many existing commercial file servers, mail servers, and database servers are not 
designed to share access to their permanent data. While there is general ignorance about 
how hard fixing this would be, it clearly would be a major development task. Finally, the 
storage subsystem has to be able to deliver all permanent state to all servers with good 
performance, a requirement that has been difficult to achieve. 

Using a multiserver as a uniserver 

It seems possible to combine the advantages of the uniserver and multiserver models and 
lose most of drawbacks. The idea is to use the top-layer directors and distribution tables 
from a uniserver system on a multiserver system with the same permanent state. The 
uniserver directors will route requests in a pattern that prevents the multiservers from 
sharing items from the permanent data, even though they could share. Under this scheme, 
at system start-up or reconfiguration there would be an initial flurry of activity at the 
global locking service while each application server collects the locks it needs as requests 
come in. There would never be contention for these locks, since the directors are 
implementing the same routing decisions that they would for the uniserver system having 
a partitioned permanent state. Eventually lock requests would largely stop occurring as 
each server obtained all the locks it needed. The steady state would be characterized by a 
background level of lock renewals without contention. The performance concerns 
surrounding contention in a multiserver system would not surface with this scheme. 

But have we gained any of the advantages of multiservers? I think we have. 
Repartitioning, scaling, and failover can happen faster and with less management 
intervention or service disruption in a multiserver system. Consider each in turn. 



Repartitioning — As with a uniserver system, monitoring tools watch for signs 
that “repartitioning” is needed. In addition to server load, lock contention is a 
good tell tale. For the multiserver, however, repartitioning is accomplished by 
changing only the routing pattern implemented by the top-layer director 
computers. No changes in the organization of the storage subsystem are required. 
As the middle-layer servers start seeing requests that require access to new parts 
of the permanent state they obtain the corresponding locks and fulfil the requests. 
The previous lock holders release their claim because of these requests for 
contending locks from other servers. After some interval, locking service activity 
would drop to a background level again. The system continues offering service 
while the reconfiguration is stabilizing, perhaps with some small loss of 
performance due to increased locking traffic. 

 Scaling — An added middle-layer server attaches itself to the permanent storage 
of the system and internalizes the meta-data it needs to commence operation. All 
state needed is available to the new server either in the shared storage subsystem 
or in the membership list and locking service. The membership list for the system 
is updated to record the new server and the distributors adjust the routing 
algorithm to allow the new server to operate on a virtual partition of the 
permanent state. Again, no management intervention is required other than policy 
direction as appropriate. The system continues to provide service during scaling. 

Failover —A failure of a middle-layer server is detected by monitoring 
mechanisms that are largely similar in the uniserver and multiserver cases. Once 
detected, the multiserver system adjusts the routing decisions made by the top-
layer distributor computers to effectively assign the failed partition of the 
permanent data to one or more other servers. In the multiserver case, as with the 
uniserver case, there can be standby servers waiting to receive the load. Lock 
redistribution follows until the locking service activity quiesces in the new state. 
When acquiring broken locks abandoned by a failed server, a new server inspects 
the operations log of the failed server, available from the storage subsystem, to 
determine the cleanup actions required. 

In summary, use of the multiserver organization, but with directors that minimize or 
eliminate actual sharing among active middle-layer servers, can substantially reduce the 
cost of management for such systems without much impact on system performance, 
reliability, or cost. 

More on the storage subsystem 

As described so far, the bottom-layer storage subsystem is a collection of disks, 
controllers, and network components with the property that all middle-layer servers can 
access all disks. Storage reliability is achieved by the use of redundancy within the 
storage subsystem. This black-box model of the storage subsystem is appropriate for 
discussing the distinction between uniserver and multiserver systems. Achieving 
minimum intervention management and good performance for the overall system, 
however, may demand additional functionality from the storage subsystem. The extra 



features are equally useful in uniserver and multiserver systems. In particular, it may be 
useful for the storage subsystem to implement load balancing, incremental growth, and 
failover on its own. The key technique for adding these features is storage virtualization, 
in which the storage subsystem implements one or more virtual storage volumes that are 
addressed like very large disks. A mapping from the blocks of the virtual volume to the 
physical storage hides the redundancy scheme and the distribution of the data among 
controllers and disks. 

Using a volume virtualization scheme, failed disks and controllers can be replaced and 
new disks and controllers added on demand. The only change the middle-layer servers 
see is that the virtual volumes get larger. Automatic algorithms operating in the 
background copy data among the attached disks to achieve capacity and load balance and 
to restore the desired level of data redundancy. No management intervention is required. 
Operator intervention is required to replace or add hardware, but not to configure it. The 
Petal storage management system [4] is one example of this kind of storage 
virtualization. 

A shared storage subsystem with volume virtualization clearly would be an asset to a 
uniserver system as well as a multiserver system and would mitigate some of the 
management burden associated with uniserver systems. 

Discussion 

The multiserver organization requires distributed systems software in addition to shared 
physical access to the storage subsystem. Over the last ten years considerable progress 
has been made on this software technology. There now are good algorithms for the global 
state management needed to maintain the system membership list. Perhaps the best 
algorithms are those in the Paxos family.[5] A global locking service built using leases 
and depending on server operation logs for lock recovery, as in the Frangipani example, 
can have good performance and scaling characteristics. This design is a simplification of 
the traditional distributed lock manager [6]. Because a partitioned multiserver system 
operates in a way that minimizes or eliminates actual sharing, the locking service and the 
coordination mechanisms for the server data caches are not stressed.  

The distinction between uniserver and multiserver systems focuses on two ends of a 
spectrum of implementations. Many of the ideas I have associated with multiservers can 
be applied in some form to uniservers. For example, in a uniserver using standby servers 
for failover, the idea of hot standbys can be pushed to the point where the standby server 
is tracking the active server, operation by operation, so that its internal state is almost 
complete and up-to-date when the failover occurs. This can make failover faster. In this 
case the experienced system designer will be wary, however, since we would be adding a 
special purpose mechanism used only to support the unusual case of failover, whereas the 
similar machinery in a multiserver would be part of the base functionality of the system 
and thus more likely to be correct. 



Summary 

In this paper I have argued that sharing is a good organizational technique for a multi-
computer server system, especially if the system is configured so that sharing is not on 
the critical path of high-volume operations. Instead, the sharing mechanisms can make 
the inevitable system transitions caused by reconfiguration, failure, and growth fit more 
seamlessly into system operation, minimizing the management attention required to 
perform them. A system organization that combines the good features of the uniserver 
and multiserver models has the potential to realize this goal. 

Acknowledgements 

These ideas have benefited from discussions with my colleagues Kurt Friedrich, Jim 
Gray, Chandu Thekkath, and Chad Verbowski. In addition Ulfar Erlingsson, Andrew 
Herbert, Michael Isard, Bill Laing, Butler Lampson, Roy Levin, Fred Schneider, Leslie 
Schroeder, Chuck Thacker, and Lidong Zhou made useful suggestions. 



References 

1. MICROSOFT, Windows server 2003: server cluster architecture, available as 
http://www.microsoft.com/windowsserver2003/docs/ServerClustersArchitecture.doc 

2. KRONENBERG, N., LEVY, H. AND STECKER, W., ‘VAXClusters: a closely-coupled 
distributed system,’ ACM Transactions on Computer Systems, vol. 4 no. 2 ,May 1986, 
130-146. 

3. THEKKATH, C., MANN, T. AND LEE, E., ‘Frangipani: a scalable distributed file system,’ 
Proc. 16th ACM Symposium on Operating Systems Principles, ACM ,October 1997, 
224-237. 

4. LEE E. AND THEKKATH, C., ‘Petal: distributed virtual disks,’ Proc. 7th International 
Conference on Architectural Support for Programming Languages and Operating 
Systems, ASPLOS-VII, ACM, October 1996, 84-92. 

5. LAMPORT, L., ‘The part-time parliament,’ ACM Trans. on Computer Systems, vol. 16 
no. 2,May 1998, 133-169. 

6. SNAMAN, W. JR., AND THIEL, D., ‘The VAX/VMS distributed lock manager,’ Digital 
Technical Journal, vol. 1 no. 5, Sept 1987, 29-44. 

 


