
A Primal-Dual Algorithm for Computing Fisher
Equilibrium in the Absence of Gross

Substitutability Property

Dinesh Garg1, Kamal Jain2,�, Kunal Talwar3, and Vijay V. Vazirani4

1 Department of Computer Science and Automation,
Indian Institute of Science,
Bangalore - 560 012, India
dgarg@csa.iisc.ernet.in

2 One Microsoft Way, Redmond, WA 98052
kamalj@microsoft.com

3 One Microsoft Way, Redmond, WA 98052
kunal@microsoft.com

4 College of Computing, Georgia Institute of Technology,
Atlanta, GA 30332-0280
vazirani@cc.gatech.edu

Abstract. We provide the first strongly polynomial time exact com-
binatorial algorithm to compute Fisher equilibrium for the case when
utility functions do not satisfy the Gross substitutability property. The
motivation for this comes from the work of Kelly, Maulloo, and Tan [15]
and Kelly and Vazirani [16] on rate control in communication networks.
We consider a tree like network in which root is the source and all the
leaf nodes are the sinks. Each sink has got a fixed amount of money
which it can use to buy the capacities of the edges in the network. The
edges of the network sell their capacities at certain prices. The objec-
tive of each edge is to fix a price which can fetch the maximum money
for it and the objective of each sink is to buy capacities on edges in
such a way that it can facilitate the sink to pull maximum flow from
the source. In this problem, the edges and the sinks play precisely the
role of sellers and buyers, respectively, in the Fisher’s market model. The
utility of a buyer (or sink) takes the form of Leontief function which is
known for not satisfying Gross substitutability property. We develop an
O(m3) exact combinatorial algorithm for computing equilibrium prices
of the edges. The time taken by our algorithm is independent of the val-
ues of sink money and edge capacities. A corollary of our algorithm is
that equilibrium prices and flows are rational numbers. Although there
are algorithms to solve this problem but they are all based on convex
programming techniques. To the best of our knowledge, ours is the first
strongly polynomial time exact combinatorial algorithm for computing
equilibrium prices of Fisher model under the case when buyers’ utility
functions do not satisfy Gross substitutability property.

� Corresponding author.

X. Deng and Y. Ye (Eds.): WINE 2005, LNCS 3828, pp. 24–33, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Primal-Dual Algorithm for Computing Fisher Equilibrium 25

1 Introduction

The study of market equilibrium has occupied central stage within both positive
(or descriptive) and normative (or prescriptive) economics. The notion of mar-
ket equilibrium was first proposed by Walras [19] This equilibrium is popularly
known as competitive or Walrasian equilibrium. Contemporary to Walras, Irving
Fisher [18] also independently modeled the market equilibrium in 1891. However,
Fisher’s model turns out to be the special case of Walras’ model. Fisher’s market
model assumes that there are two kinds of traders in the market: buyers and
sellers who trade over a finite set of commodities. Buyers have money and utility
functions for goods. Sellers have initial endowment of goods and want to earn
money. The equilibrium prices are defined as assignment of prices to goods, so
that when every consumer buys an optimal bundle then market clears i.e. all the
money is spent and all the goods are sold. If money is also considered as a com-
modity then it is easy to see that Fisher model is a special case of Walras model.

The existence of market equilibrium is a deeply investigated problem. It is the
seminal work of Arrow and Debreu [1] which proved the existence of competitive
market equilibria under quite general setting of concave utility functions by
applying Kakutani’s fixed point theorem. The proof outlined by Arrow-Debreu
is highly non-constructive in nature and, therefore, the natural question down
the line is the existence of an efficient computation process which establishes
equilibrium. In this paper, we provide the first strongly polynomial time exact
combinatorial algorithm to compute Fisher equilibrium for the case when utility
functions do not satisfy the Gross substitutability property. The time complexity
of our algorithm is independent of the values of input data. We also show that
output of our algorithm consists of only rational numbers.

2 Related Work

The recent papers by Papadimitriou [17] and Deng et al. [3] have raised and
partly answered the question of efficient computability of Walrasian equilib-
rium. The problem of developing an efficient algorithm for computing Walrasian
equilibrium has been addressed from many perspectives. Some of the algorithms
are based on solving nonlinear convex programs [13, 20], following the classical
approach of Eisenberg and Gale [7]. The other known algorithms are primal-
dual-type, initiated by Devanur et al. [4], and auction-based introduced by
Garg et al. [9].

For the special case of linear utility functions, Deng et al [3] first developed
a polynomial-time algorithm for the case when the number of goods or agents
is bounded. Devanur et al [4] have proposed a polynomial-time algorithm via a
primal-dual type approach for Fisher’s equilibrium under liner utility - a spe-
cial case of Walrasian equilibrium. [5] et al have further proposed an improved
approximation scheme for the same problem. Jain, Mahadian, and Saberi [12]
have proposed a fully polynomial time approximation algorithm to compute
Walrasian equilibrium for the case when utility functions satisfy Gross substi-
tutability property. Garg et al. [9] have also proposed a fully polynomial time

26 D. Garg et al.

approximation algorithm for the same problem but they use auction based ap-
proach. Jain [13] gives a convex program for the linear version of Walrasian
model and uses the ellipsoid algorithm and diophantine approximation to ob-
tain a polynomial time algorithm for this case as well, thereby settling the open
problem of computing the market equilibria efficiently under the scenario when
utilities are linear. However, designing efficient market equilibrium algorithms
for general convex utility functions is still an open problem.

The problem of computing the market equilibrium with linear utilities is com-
paratively simpler because they satisfy the gross substitutability, i.e., increasing
the price of one good cannot decrease the demand for another. Hence for such
utility functions, monotonically raising prices suffices. In contract, concave and
even piecewise-linear and concave, utility functions do not satisfy gross substi-
tutability, hence requiring the more involved process of increasing and decreasing
prices. Therefore, designing market equilibrium algorithms for them remains an
outstanding open problem.

3 Fisher Equilibrium and Gross Substitutability

Consider a market consisting of n buyers and m divisible goods. Buyer i has,
initially, a positive amount of money mi. The amount of good j available in the
market is cj . Let for buyer i, Xi ⊂ �m

+ represents the consumption set, i.e., the
set of bundles of m goods which buyer i can consume. Let ui : Xi �→ � be the
utility function for buyer i. Given the prices p1, . . . , pm, it is easy to compute
the bundle xi ∈ Xi which will maximize buyer i’s utility subject to his budget
constraint. The prices p1, . . . , pm are said to be Fisher or market equilibrium
prices if after each buyer is assigned such an optimal bundle, there is no surplus
or deficiency of any goods. If x∗

ij denotes the amount of good j bought by buyer
i at prices p∗1, . . . , p

∗
m, then it can be verified [1] that this price vector p∗1, . . . , p

∗
m

is Fisher equilibrium iff it satisfies the following conditions:

–
(∑n

i=1 x∗
ij − cj

)
≤ 0 ∀j = 1, . . . , m;

– p∗j
(∑n

i=1 x∗
ij − cj

)
= 0 ∀j = 1, . . . , m

– x∗
i maximizes ui(xi) over the set

{
xi ∈ Xi|

∑m
j=1 xijp

∗
j ≤ mi

}

– p∗j ≥ 0 ∀j = 1, . . . , m

The Arrow-Debreu theorem [1] says that if the utility functions ui(.) are concave
then such an equilibrium price vector always exists. It is easy to see that in
equilibrium, each buyer must spend his full budget.

Gross substitutability is a well-studied property [10] that has useful economic
interpretation. Goods are said to be Gross substitutes for a buyer iff increasing
the price of a good does not decrease the buyer’s demand for other goods. Note
that, whether goods are Gross substitutes or not for a given buyer i depends
solely on his own utility function ui(xi). It can be shown that not all concave
utility functions satisfy this property. Computing Fisher equilibrium when the
buyers utility functions do not satisfy Gross substitutability property is far more

A Primal-Dual Algorithm for Computing Fisher Equilibrium 27

difficult problem than the case when they satisfy this property. A frequently
arising utility functions that do not satisfy this property are Leontief utility
function. A Leontief utility function for buyer i in Fisher’s model is something
like this: ui(xi) = minj(xij). We will be using this utility function in our problem.

4 Problem Statement

The precise problem we solve is the following: Let T = (V, E) be a tree with
integer capacities on edges. Let root of the tree be a source node and T =
{t1, . . . , tk} be the sink nodes. Without loss of generality, we can assume that
each sink ti is the leaf node and conversely each leaf node is a sink.1 The sinks
have budgets m1, . . . , mk, respectively. Each sink can use its budget to buy
the capacities of the edges in the network. The edges of the network sell their
capacities at certain prices. The objective of each edge is to fix a price which
can fetch maximum money for it and, at the same time, objective of each sink
is to buy capacities on edges in such a way that it can facilitate the sink to pull
maximum flow from the source. In order to map this problem to Fisher’s market
model, we view edges as the sellers who are trying to sell their capacities and
sinks as buyers who are trying to buy the capacities on the edges and whose
Leontief utilities are given by ui(xi) = minj|j∈Pi

(xij), where xij is amount of
the capacity bought by sink ti on edge j and Pi is the collection of edges that
forms a unique path from source to sink ti. The problem is to determine Fisher
equilibrium prices for all edges and flows from the source to the sinks. It is
easy to verify from previous section that edge prices pe∀e ∈ E and flows fi

from source to each sink ti, form Fisher equilibrium iff they satisfy the following
conditions:

1. fe ≤ ce∀e ∈ E
2. For any edge e ∈ E, if pe > 0, then fe = ce

3. For any edge e ∈ E, if fe < ce, then pe = 0
4. fi = mi��

e|e∈Pi
pe

�

5. pe ≥ 0∀e ∈ E, fi ≥ 0∀ti ∈ T

where ce and fe are the capacity and total flow, respectively for the edge e ∈ E.
The Pi is the set of edges which forms a unique path in the tree T from source to
the sink ti. For each edge e ∈ E, the total flow fe is given by flow conservation
equation fe =

∑
ti|e∈Pi

fi. Note that the first condition corresponds to capacity
constraint, the second, third, and fourth conditions correspond to three equilib-
rium conditions, and the fifth condition is obviously a nonnegativity constraint.
Also note that in view of the first condition, the second condition can be relaxed
slightly and fe=ce can be replaced by fe ≥ ce.

1 If a sink ti is an internal node then we can always add an additional leaf edge of
infinity capacity at that particular internal node and push the sink ti to this newly
generated leaf node. Similarly, if a leaf node is not a sink then we can just remove
the corresponding leaf edge from the tree.

28 D. Garg et al.

5 Convex Programs and Equilibrium

It is interesting to see that the problem of computing market equilibrium that we
sketched in previous section is captured by following Eisenberg-Gale type convex
program that maximizes sum of logarithms of flows, weighted by budgets, subject
to capacity constraints on the flows.

Maximize
∑

ti∈T

mi log fi (1)

subject to
∑

ti|e∈Pi

fi ≤ ce ∀e ∈ E

fi ≥ 0 ∀ti ∈ T

Let pe’s be the dual variables (also called Lagrange multipliers) corresponding
to the first set of constraints; we will interpret these as prices of edges. Using
KKT conditions, one can show that fi’s and pe’s form an optimal solution to
primal and dual problems, respectively, iff they satisfy:

1. Primal Feasibility:∑
ti|e∈Pi

fi ≤ ce ∀e ∈ E
fi ≥ 0 ∀ti ∈ T
2. Dual Feasibility:
pe ≥ 0 ∀e ∈ E.

3. Complementary Slackness:
pe(ce −

∑
ti|e∈Pi

fi) = 0 ∀e ∈ E
4. Lagrange Optimality:
fi = mi��

e|e∈Pi
pe

� ∀ti ∈ T

It is easy to verify that above conditions are precisely the same as the six condi-
tions mentioned in the previous section which must be satisfied by the output of
our algorithm. Thus, we basically develop a strongly polynomial algorithm for
this problem. Our primal variables are flows and dual variables are edge prices.
We observe that equilibrium prices are essentially unique in the following sense:
for each sink ti, the cost of the path from source to the sink is the same in all
equilibria. We call the cost of the path from source to the sink ti as price(ti) and
it is given by

∑
e|e∈Pi

pe. A corollary of our algorithm is that equilibrium prices
and flows are rational numbers. We show that this does not hold even if there
are just two sources in the tree.

Eisenberg [6] generalized the Eisenberg-Gale convex program to homothetic
utility functions (and thus to Leontief). An approach based on Eisenberg’s result
[6] was used by Codenotti et al. [2] to address the same problem that we are
solving here.2

6 The Algorithm

Here is a high level description of our algorithm: We start with zero prices of
the edges and iteratively change prices. Since prices are zero initially, all the
sinks draw infinity flows and hence all the edges are over-saturated; we itera-
tively decrease the number of such edges. We maintain the following invariants
throughout our algorithm
2 We were not aware of these references while preparing the manuscript. Our special

thanks to the referee for point out these important references.

A Primal-Dual Algorithm for Computing Fisher Equilibrium 29

I1. For any edge e ∈ E, if pe > 0, then fe ≥ ce

I2. For any edge e ∈ E, if fe < ce, then pe = 0
I3. fi = mi��

e|e∈Pi
pe

� ∀ti ∈ T

I4. pe ≥ 0∀e ∈ E, fi ≥ 0∀ti ∈ T
I5. fe =

∑
ti|e∈Pi

fi∀e ∈ E

Thus, we maintain dual feasibility, complementary slackness, and Lagrange opti-
mality conditions throughout the algorithm. The only condition that is not main-
tained is primal feasibility. Thus, our algorithm would terminate at the point
where primal feasibility is attained. At such point, all KKT conditions would
have been met and the current values of fi and pe would be the desired solution.
At any instant during the course of the algorithm, each edge would be marked
either red or green. If an edge e is marked as green then it means that primal fea-
sibility condition fe ≤ ce is being satisfied at that edge. Initially, all the edges are
red and the subroutine make-green converts at least one red edge into green.
Later we will show that this algorithm also maintains the following invariants.

I6. The parameter price(ti) to each sink ti is non-decreasing throughout the
algorithm, and flows fi are non-increasing.

I7. At any instant, the price of a red edge is zero and the set of red edges forms
a subtree containing the root of the original tree.

6.1 Feasible Flow

We will say that vertex u is lower than v if there is a path from v to u in T .
Similarly edge (u, v) is lower than (a, b) if there is a path from b to u in T .

Consider a partition P of E into red and green edges. Let pe be the current
assignment of prices to the edges. Let this partition-price pair (P , p) satisfies the
invariant I7. A flow f is said to be feasible for this partition-price pair (P , p) if
it satisfies the five invariant conditions I1 through I5 mentioned earlier.

We present a subroutine below called make-green. Given a partition-price
pair (P , p) which satisfies the invariant I7, and a feasible flow for this partition-
price pair, f , make-green converts at least one red edge into green. It re-
turns the new partition, new prices for edges, and a feasible flow for the new
partition-price pair. The partition and the new edge prices returned by make-
green respect the invariant I7. Subroutine make-green accomplishes this in
O(m2) computations (see Section 7). make-green accomplishes this via an in-
volved process that increases and decreases prices on edges. Clearly, O(m) calls
of make-green suffice. The lemmas in Section 7 lead to:

Theorem 1. O(m3) computations suffice to find an optimal solution to con-
vex program (1) and the corresponding equilibrium prices and flows for trees.
Furthermore, such trees always admit a rational solution.

Lemma 1. The time taken by the algorithm does not depend on actual values of
sink money and edge capacities and therefore the algorithm is strongly polynomial.

30 D. Garg et al.

6.2 Subroutine Make-Green

Subroutine make-green works iteratively. It starts by picking a topologically
lowest red edge (u, v), i.e., all edges lower than (u, v) are green. If in the given
feasible flow f , the edge (u, v) carries a flow less than or equal to its capacity
then turn this edge into green. Otherwise, let Z be the set of vertices reachable
from v by following green zero price edges. Z is called a zero component of the
edge (u, v). Let A be the set of edges both whose end points are in Z. Let B
be the set of edges incident on Z, excluding the edge (u, v). Clearly, all edges in
A must be green and must have zero prices and all edges in B must be green
and must have positive prices. Let T1 ⊂ T be the set of sinks that are sitting
inside the zero component Z, T2 ⊂ T be the set of sinks that are sitting outside
the zero component Z but are lower than vertex v, and T3 ⊂ T be the set of
remaining sinks. Note that it is quite possible that T1 is an empty set.

Now the idea is following. Increase the price of the red edge (u, v) and decrease
the price of each edge in the set B by the same amount. This will result in
price(ti) to be undisturbed for all the sinks in the set T2 as well as in the set T3.
However, this would decrease the price(ti)for all the sinks in the set T1. After
changing these prices we would recompute the flows fi for each sink by using
the formula given by invariant I3. Note that fi would remain unchanged for all
the sinks in the set T2 as well as in the set T3. However, fi would decrease for
all the sinks in the set T1. Thus, the flow on edge (u, v) may decrease.

The obvious question now is how much to increase the price of red edge (u, v).
Note that during this process of increasing the price of edge (u, v), any one of
the following two events may occur.

E1: The flow on edge (u, v) hits its capacity
E2: The price of some edge in the set B goes to zero.

If the event E1 occurs then turn the red edge (u, v) into green and this will
give a new partition with an extra green edge, the new prices for edges, and
a feasible flow for the new partition-price pair. If the event E2 occurs then we
freeze the price of edge (u, v) and the edges in the set B at their current values.
Now we need to reconstruct the zero component Z and the sets A, B, T1, T2, and
T3. We now repeat the process of increasing the price of red edge (u, v) from its
current value. In order to identify which one of these two events has occurred,
we maintain the following quantities:

min =
∑

ti∈T1

mi, fgreen =
∑

ti∈T2

fi, pmin = min (pe|e ∈ B)

Now we distinguish between two cases:

– Case 1: (fgreen > c(u,v))
It is easy to see that if this is the case then next event would be E2.

– Case 2: (fgreen ≤ c(u,v))
Under this case, it is east to verify that if min

C(u,v)−fgreen
− p(u,v) ≤ pmin then

event E1 will occur, otherwise event E2 will occur.

A Primal-Dual Algorithm for Computing Fisher Equilibrium 31

Algorithm 1 gives the pseudo code for the subroutine make-green.

Algorithm 1. Subroutine make-green
Procedure make − green(V,E, m, mark[.], f, p):
1: find topologically lowest edge e such that mark[e] = red
2: if fe ≤ ce then
3: mark[e] ← green
4: return
5: else
6: construct zero component Z, sets B, T1, and T2 for the edge e
7: min ←

�
ti∈T1

mi

8: fgreen ←
�

ti∈T2
fi

9: pmin ← min (pe|e ∈ B)
10: if fgreen > ce then
11: pe′ ← pe′ − pmin ∀e′ ∈ B
12: pe ← pe + pmin

13: fti ← mi
pe

∀ti ∈ T1

14: Go to line number 6
15: else if

�
min

Ce−fgreen
− pe

�
≤ pmin then

16: pe′ ← pe′ −
�

min
Ce−fgreen

− pe

�
∀e′ ∈ B

17: pe ← min
Ce−fgreen

18: fti ← mi
pe

∀ti ∈ T1

19: mark[e] ← green
20: return
21: else
22: Go to line number 12
23: end if
24: end if

7 Analysis

In this section we state key observations and facts pertaining to the algorithm.
We have omitted the proofs due to paucity of space. However, most of the proofs
are quite straightforward and follow directly from the way we have structured
the algorithm.

Lemma 2. If an edge e becomes green in an iteration then it will remain green
in all the future iterations.

Corollary 1. The number of iterations executed by subroutine make-green is
bounded by O(m) and its running time is bounded by O(m2). The running time of
make-green is independent of actual values of sink money and edge capacities.

Lemma 3. The invariant I7 is maintained throughout the algorithm.

Theorem 2. The flow maintained by the algorithm is feasible.

32 D. Garg et al.

Theorem 3. The prices p and flow f attained by the algorithm at its termina-
tion are equilibrium prices and flow.

Lemma 4. The invariant I6 is maintained throughout the algorithm.

7.1 Rational Solution

The results in this section highlights the fact that the solution given by our
algorithm consists of only rational numbers.

Theorem 4. As long as all the sinks in the tree draw their flow from single
source, the convex program (1) has a rational solution.

Lemma 5. Even if there are multiple equilibria for convex program (1), the path
price for each sink ti , i.e. price(ti), is unique.

Lemma 6. The path price for each sink ti , i.e. price(ti), is a rational number.

7.2 Multiple Sources and Irrational Solution

If there are multiple sources present in the tree then it may give rise to irrational
equilibrium prices and flows. For example, consider a tree on three nodes, {a, b, c}
and two edges {ab, bc}. Let the capacity of (a, b) be one unit and the capacity of
(b, c) be two units. The source sink pairs together with their budgets are: (a, b, 1),
(a, c, 1), (b, c, 1). Then the equilibrium price for ab is

√
3 and for bc it is

√
3

1+
√

3
.

8 Discussion

The primal-dual schema has been very successful in obtaining exact and ap-
proximation algorithms for solving linear programs arising from combinatorial
optimization problems. [4] and our paper seem to indicate that it is worthwhile
applying this schema to solving specific classes of nonlinear programs. There
are several interesting convex programs in the Eisenberg-Gale family itself, see
[14] and the references therein. Another family of nonlinear programs deserv-
ing immediate attention is semidefinite programs. Considering the large running
time required to solve such programs, it will be very nice to derive a combina-
torial approximation algorithm for MAX CUT for instance, achieving the same
approximation factor as [11].

Extending our algorithm to handling arbitrary directed cyclic graphs is an-
other challenging open problem. Also interesting will be to obtain approximation
algorithms for the cases where the solution is irrational. Another interesting ques-
tion is to obtain an auction-based algorithm for tree (or acyclic graphs) along the
lines of [8]. Such an algorithm will be more useful in practice than our current
algorithm.

Acknowledgment

We would like to thank Philip A. Chou for several useful discussions.

A Primal-Dual Algorithm for Computing Fisher Equilibrium 33

References

1. K. Arrow and G. Debreu. Existence of an equilibrium for a competitive economy.
Econometrica, 22:265–290, 1954.

2. B. Codenotti and K. Varadarajan. Efficient computation of equilibrium prices for
markets with leontief utilities. In Proceedings of ICALP, 2004.

3. X. Deng, C.H. Papadimitriou, and S. Safra. On the complexity of equilibria. In
STOC 2002, 2002.

4. Nikhil R. Devanur, Christos H. Papadimitriou, Amin Saberi, and Vijay V. Vazi-
rani. Market equilibrium via a primal-dual-type algorithm. In 43rd Symposium on
Foundations of Computer Science (FOCS 2002), pages 389–395, November 2002.

5. Nikhil R. Devanur and Vijay V. Vazirani. An improved approximation scheme for
the computing arrow-debreu prices in the linear case. In Proceedings of Foundations
of Software Technology and Theoretical Computer Science, 2003, 2002.

6. E. Eisenberg. Aggregation of utility functions. Management Science, 7(4):337–350,
1961.

7. E. Eisenberg and D. Gale. Consensus of subjective probabilities: The pari-mutuel
method. Annals of Mathematical Statistics, 30:165–168, 1959.

8. R. Garg and S. Kapoor. Auction algorithms for market equilibrium. In STOC,
2004.

9. Rahul Garg and Sanjiv Kapoor. Auction algorithms for market equilibrium. In
Proceedings of the 36th Annual ACM Symposium on the Theory of Computing,
2004.

10. Rahul Garg, Sanjiv Kapoor, and Vijay Vazirani. An auction-based market equi-
librium algorithms for the separable gross substitutability case. In APPROX-
RANDOM 2004, pages 128–138, 2004.

11. M. X. Goemans and D. P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal
of ACM, 42:1115–1145, 1995.

12. K. Jain, M. Mahdian, and A. Saberi. Approximating market equilibrium. In Work-
shop on Approximation Algorithms for Combinatorial Optimization (APPROX
2003), 2003.

13. Kamal Jain. A polynomial time algorithm for computing the arrow-debreu market
equilibrium for linear utilities. In FOCS, 2004.

14. Kamal Jain, V. V. Vazirani, and Yinyu Ye. Market equilibria for homothetic,
quasi-concave utilities and economies of scale in production. In Proceedings, 16th
Annual ACM-SIAM Symposium on Discrete Algorithms, 2005.

15. F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate control in communication
networks. Journal of Operational Research Society, 49:237–252, 1998.

16. FP Kelly and Vijay V Vazirani. Rate control as a market equilibrium. In Prepa-
ration, 2003.

17. Christos H. Papadimitriou. Algorithms, games, and the Internet. In ACM
STOC’01, Hersonissos, Crete, Greece, July 6-8 2001.

18. H. Scarf. The computation of economic equilibria (with collaboration of t. hansen).
In Cowles Foundation Monograph No. 24. Yale University Press, New Haven, 1973.

19. L. Walras. Éléments d’économie politique pure ou théorie de la richesse sociale
(Elements of Pure Economics, or The Theory of Social Wealth). Lausanne, Paris,
1874 (1899, 4th Ed., 1926, Rev. Ed., 1954, Engl. Transl.).

20. Yinyu Ye. A path to arrow-debreu competitive market equilibrium. Preprint, 2004.

	Introduction
	Related Work
	Fisher Equilibrium and Gross Substitutability
	Problem Statement
	Convex Programs and Equilibrium
	The Algorithm
	Feasible Flow
	Subroutine Make-Green

	Analysis
	Rational Solution
	Multiple Sources and Irrational Solution

	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

