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ABSTRACT 
 

Spoken Language Understanding (SLU) addresses the problem 
of extracting semantic meaning conveyed in a user’s utterance. 
Traditionally the problem is solved with a knowledge-based 
approach. In the past decade many data-driven statistical models 
have been proposed, all of them are in the generative framework. 
In our previous study, we have introduced a HMM/CFG composite 
model. It is a generative model that integrates knowledge-based 
approach in a statistical learning framework. We have investigated 
similar integration of prior knowledge and statistical learning in 
the framework of conditional models recently. This extended 
summary describes our experiences and presents some preliminary 
results, which shows a 17% slot error rate reduction over the 
generative model. 
 
 

1. INTRODUCTION 
Spoken Language Understanding (SLU) addresses the problem 

of extracting semantic meaning conveyed in a user’s utterance. 
Traditionally the problem is solved with a knowledge-based 
approach. In the past decade many data-driven statistical models 
have been proposed for the problem. An introduction to these 
models can be found in [1]. All of the statistical leaning 
approaches exploit generative models for SLU. Data sparseness is 
one of the major problems associated with such approaches. In our 
previous study, we have proposed a HMM/CFG composite model, 
another generative model that integrates knowledge-based 
approach in a statistical learning framework. The inclusion of prior 
knowledge in the model compensates for the dearth of data for 
model training. The HMM/CFG composite model achieves the 
understanding accuracy at the same level as the best performing 
semantic parsing system based on a manually developed grammar 
in ATIS evaluation [2]. We have recently exploited conditional 
models for further improving the understanding accuracy. We have 
tried direct porting of the HMM/CFG composite model to Hidden 
Conditional Random Fields (HCRFs) [3]. We have failed to obtain 
any improvement mainly due to the local optimality of the hidden 
model and vast parameter space. We have then simplified the 
original model structure and remove the hidden valuables in the 
HCRF. With the introduction of important non-homogeneous 
features to the Conditional Random Field (CRF) [4], we have 
improved the slot insertion-deletion-substitution error rate by 17%. 
In this extended summary, we will first introduce the HMM/CFG 
generative model, then discuss the problem of directly porting the 
model to a HCRF, and finally introduce the CRF and the features 
we used to obtain the best SLU result on ATIS test data.  
 

2. THE GENERATIVE MODEL 
The HMM/CFG composite model [1] adopts a pattern 

recognition approach to SLU. Given a word sequence W , a SLU 
component needs to find the semantic representation of the 
meaning M that has the maximum a posteriori probability 

( )Pr |M W :   

 ( ) ( ) ( )ˆ arg max Pr | arg max Pr | Pr
M M

M M W W M M= = ⋅  

The composite model integrates domain knowledge by setting the 
topology of the prior model, ( )Pr M , according to the domain 
semantics; and by using PCFG rules as part of the lexicalization 
model ( )Pr |W M . 
The domain semantics define an application’s semantic structure 
with semantic frames. Figure 1 shows a simplified example of two 
semantic frames in the ATIS domain. Figure 2 shows a meaning 
representation according to the domain semantics.   
 

< frame name=“ShowFlight” toplevel=“true”>   
        <slot name=“Flight” filler=“Flight”/>   
< /frame>   
< frame name=“GroundTrans” toplevel=“true”>   
       < slot name=“City” filler=“City”/>   
< /frame>   
< frame name=“Flight”>   
        <slot name=“DCity” filler=“City”/>   
       < slot name=“ACity” filler=“City”/>   
< /frame>   

Figure 1. Simplified semantic frames in the ATIS domain. The two frames 
with “toplevel” attribute are also known as commands. The filler specifies 
the semantic object (covered by the corresponding CFG rule) that can fill a 
slot. For example, an object that is an instantiation of the Flight frame can 
be the filler for the Flight slot of ShowFlight frame, and a string covered 
by the “City” rule in a CFG can be the filler of the ACity (ArriveCity) or 
the DCity (DepartCity) slot. 

< ShowFlight”>   
      < Flight>   
          < DCity type=“City”> Seattle< /DCity>   
          <ACity type=“City”>Boston< /ACity>   
      < /Flight>   
< /ShowFlight>   

Figure 2. The semantic representation for “Show me the flights departing 
from Seattle arriving at Boston” is an instantiation of the semantic frames 
in Figure 1. 
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The HMM topology and the state transition probabilities comprise 
the semantic prior model. The topology is determined by the 
domain semantics defined by the frames and the transition 
probabilities can be estimated from training data. Figure 3 shows 
the topology of the underlying states in the statistical model for the 
semantic frames in Figure 1.  
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Figure 3. The HMM/CFG model’s state topology, as determined by the 
semantic frames in Figure 1. On the top is the transition network for the 
two top-level commands. State 1 and state 4 are called precommands. State 
3 and state 6 are called postcommands. States 2, 5, 8 and 9 represent slots. 
They are actually a three state sequence — each slot is bracketed by a 
preamble and a postamble (represented by the dots) that serve as the 
contextual clue for the slot’s identity. 

The lexicalization model, ( )Pr |W M , depicts the process of 
generating sentences from the topology. It models the distribution 
for words to emit from the states in the topology. It uses state-
dependent n-grams to model the precommands, postcommands, 
preambles and postambles, and uses CFG to model the fillers of a 
slot. The use of knowledge-based CFG rules compensate for the 
dearth of domain-specific data. 
 
Given the semantic representation (training examples) in Figure 2, 
the state sequence through the topology in Figure 3 is deterministic 
as show in Figure 4. The alignments of the words to the state in the 
shaded boxes are not labeled. The parameters in these n-gram 
models can be estimated with an EM algorithm that treats the 
alignments as hidden variables. 

 

Figure 4. Word/state alignments. The segmentation of the word sequences 
in the shaded region is hidden. The EM algorithm is applied to train state-
specific n-gram models. 

We evaluate the HMM/CFG composite model in the ATIS domain 
[2]. The model is trained with ATIS3 category A training data 
(~1700 annotated sentences) and tested with the 1993 ATIS3 
category A test sentences. Compared to the manually annotated 
labels, the test set slot ins-del-sub error rate is 5%. This leads to a 
5.3% semantic error rate in the standard ATIS evaluation, which is 
slightly better than the best manually developed system (5.5%).  

 

3. PORTING TO CONDITIONAL MODELS 

We investigated the application of conditional models to SLU. The 
problem can be formulated as assigning a label l  to each word in 
the word sequence 1

τo  of observation o . Here an observation o  

consists of a word vector 1
τo  and CFG non-termimals that cover 

subsequences of 1
τo , as illustrated in Figure 5. The task for the 

conditional model is to label “two” as the “NumOfTickets” slot of 
the “ShowFlight” command, and label “Washington D.C.” as the 
ArriveCity slot for the same task. To do so, the model must learn to 
resolves the following ambiguities: the filler/non-filler ambiguity 
(e.g. “two” as a NumTickets slot filler vs. as part of the preamble 
of ArriveCity); CFG coverage ambiguity (e.g. City vs. State for 
“Washington”); segmentation ambiguity (e.g. [Washington][D.C.] 
vs. [Washington D.C.]); and semantic label ambiguity (e.g. 
[ArriveCity Washington D.C.] vs. [DepartCity Washington D.C.]). 

 
Figure 5. Observation consists of a word sequence and the subsequences 
covered by CFG non-terminal symbols.  

3.1 CRFs and HCRFs 
Conditional Random Fileds (CRFs) [4] are undirected conditional 
graphical models that assign the conditional probability of a state 
(label) sequence with respect to a vector of the features 1 1( )sτ τ,f o . 
They are of the following form: 

 ( )1 1
1( ) exp ( )

( )
p s s

z
τ τλ λ

λ
| ; = ⋅ , .

;
o f o

o
 (1) 

The parameter vector λ  is trained conditionally (discriminatively). 
If we assume that 1

TS  is a Markov chain given O , then  
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In some cases, it may be natural to define feature vectors that 
depend on variables that are not directly observed. For example, 
the following feature may be defined in terms of an observed 
words and an unobserved state in the shaded region in Figure 4: 

( )
( 1) ( )

FlightInit,flights
1 if =FlightInit  = flights;

( )
0 otherwise                                

t t
t t s

f s s t− ⎧ ∧⎪, , , = ⎨
⎪⎩

o
o  

In this case, the state sequence 1
TS  is used in the model, but the 

sequence is only partially labeled in the observation as 
5 8( ) "DepartCity" ( ) "ArriveCity"l S l S= ∧ =  for the words “Seattle” 

and “Boston”. The state for the remaining words are hidden 
variables. To obtain the conditional probability of the partially 
observed label, we need to sum over all possible values of the 
hidden variables: 
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Here ( )lΓ  represents the set of all state sequences that satisfy the 
constraints imposed by the observed label .l  CRFs with features 
depending on hidden variables are called Hidden Conditional 
Random Fields (HCRFs). They are applied to tasks like Phonetic 
classification [3]. 



We train CRFs and HCRFs with gradient-based optimization 
algorithms that maximize the log conditional likelihood. The 
gradient of the log conditional likelihood is  
 

1 1
1 1( ) ( ) ( )

T TL S L S

T T
P PP PL S Sλ λ λ λ

, | , |

⎡ ⎤ ⎡ ⎤∇ = , ; − , ;⎣ ⎦ ⎣ ⎦O OO O
E f O E f O% %  (4) 

which is the difference between the conditional expectation of the 
feature vector given the observation sequence and label, and its 
conditional expectation given only the observation sequence. Due 
to the Markov assumption we made earlier in Eq. (2), these 
expectations can be computed using forward-backward like 
dynamic programming algorithm. In the results reported in this 
summary, we applied stochastic gradient decent (SGD) [5] for 
model training. 
 
3.2 Porting HMM/CFG Model to HCRF 

Our original objective of applying conditional models was to 
exploit their discriminative training capability. Initially, we used 
the same state topology and features as the one we used in the 
HMM/CFG composite model. 

Because the state sequence is only partially labeled, a HCRF is 
used to model the conditional distribution of labels. The following 
features are included in the model: 

1. Command prior features capture the likelihood of observing 
different top-level commands:  

( )
( 1) ( ) 1 if =0 C( )

( ) , CommandSet.
0 otherwise              

t
PR t t

c
t s c

f s s t c− ⎧ ∧ =⎪, , , = ∀ ∈⎨
⎪⎩

o

Here C(s) stands for the name of the top-level command that 
corresponding to the transition network containing s. 

2. Transition features capture the likelihood of transition from 
one state to another: 

( 1) ( )
( 1) ( ) 1 2

1 2 1 2

,1 2

1 if 
( ) ,   

0 otherwise              
, |  is a legal trasnition in model topology.

t t
TR t t
s s

s s s s
f s s t

s s s s

−
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⎪⎩
∀ →

o
 

3. Unigram and bigram features capture the words that a state 
emits: 

( )
( 1) ( )

1

( 1) ( ) 1
( 1) ( ) 1 2

1

,

, ,1 2

1 if 
( ) ,

0 otherwise              

1 if 
( ) ,

0 otherwise                                                
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∀
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The model is trained with SGD with two different ways to 
initialize the parameters. The flat start initialization set all 
parameters to 0. The generative model initialization converts 
the parameters of the HMM/CFG composite model to the 
conditional model. 
Figure 6 shows the test set slot error rates at different training 
iterations. The flat start initialization (top curve) never catches up 
the 5% baseline error rate of the HMM/CFG composite model. The 
generative initialization reduces the error rate to 4.8% at the first 
two iterations but quickly gets over-trained afterwards. 

The failure of the direct porting of the generative model to the 
conditional model can be attributed to the following reasons: 

1. The conditional log-likelihood function is no longer a convex 
function due to the summation over hidden variables. This 
makes it highly likely that model training will settle on a local 
optimum. The fact that the flat start initialization failed to 
catch up the accuracy of the generative initialization is a clear 
indication of the problem. 

2. The generative model needs to account for the words in test 
data. For that purpose, the n-grams models are properly 
smoothed with backed-offs to the uniform distribution over 
the vocabulary. This results in a huge parameter space, and 
many of the parameters cannot be estimated reliably in the 
conditional model, given that model regularization is not as 
well studied as in the n-gram generation model.  

3. The hidden variables also contribute to the unreliable estimate 
of parameters with a small amount of training data. 
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Figure 6. Test set slot error rates (in %) at different training iterations. The 
top curve is for the flat start initialization. The bottom curve is for the 
generative initialization. 

3. CRFS FOR SPOKEN LANGUAGE 
UNDERSTANDING 

An important lesson we have learned from the previous experiment 
is that we should not think generatively when we apply conditional 
models. We only need to find the important cues that help identify 
slots. There is no need to accurately estimate the distribution of 
generating every word in a sentence. Hence the separation of 
precommands, preambles, postcommands and postambles is no 
longer necessary. Every word that appears between two slots is 
labeled as the preamble state of the second slot, as illustrated in 
Figure 7. This effectively removes the hidden variables and greatly 
simplifies the model to a CRF. This not only improves the speed of 
model training, but also avoids settling at a local optimum because 
the log conditional likelihood is a convex function in CRF. 

 
Figure 7.  The state sequence is deterministic once the slots are marked in 
the simplified model topology. The fully marked state sequence leaves no 
hidden variables and results in a CRF model. 

The same command prior and state transition features (with fewer 
states) are used as in the HCRF model. For unigram and bigram 
features, only the unigrams and bigrams that occur in front of a 
CFG non-terminal that can be the filler of a slot are included as the 
features for the preamble state of that slot: 
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One advantage of CRFs over generative models is that we can 
introduce more non-independent, non-homogeneous features to the 
model. The first additional feature set we introduce to the model 
addresses a side effect of not modeling the generation of every 
word in a sentence. If a preamble state has never occurred in a 
position that is confusable with a filler of a slot, and a word in the 
filler has never occurred as part of the preamble, then the unigram 
feature of the word for that preamble has weight 0. In such case, 
there is not penalty for mislabeling the word as the preamble. This 
is one of the most common errors we observed in the development 
set. The chunk coverage features are introduced for the model to 
learn the likelihood of a word covered by a CFG non-terminals 
being labeled as a preamble: 

( ) ( )
( 1) ( )

,

1 if  C( ) covers( , )  isPre( )
( )

0 otherwise                                                   

t t t
CC t t

c NT

s c NT s
f s s t− ⎧ = ∧ ∧⎪, , , = ⎨

⎪⎩

o
o

Here isPre( )s indicates that s is a preamble state.  

In many cases the identity of a slot depends on the preambles of 
the slot in front of it. For examples, “at two PM” is a DepartTime 
in “flight from Seattle to Boston at two PM” but an ArriveTime in 
“flight departing from Seattle arriving in Boston at two PM.” In 
both cases, its previous slot is ArriveCity, so the transition features 
will not be helpful for slot identity disambiguation.  The identity of 
the time slot depends on the preamble of the ArriveCity slot. The 
previous slot’s context features introduce this dependency to the 
model: 

( 1) ( )
1 2 1

( 1) ( )
1 1 2, ,1 2

if ( , , 1)
1

( )  isFiller( )  Slot( ) Slot( )
0 otherwise                                               

t t
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f s s t s s s
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⎪
⎩

o
o

Here the condition 1isFiller( )s  restricts that 1s  is a slot filler (not a 
slot preamble.) Slot( )s  stands for the semantic slot associated with 
the state ,s  which can be the slot’s filler or its preamble. 

1( , , 1)s tΘ −o  is a set that contains the two words in front of the 
longest sequence that ends at position 1t − and that is covered by 
the filler non-terminal for 1Slot( )s .  
 
The next set of features helps prevent the model from making 
mistakes like segmenting “Washington D.C.” into two different 
cities. The slot boundary chunk coverage feature is activated when 
a slot boundary within a task is covered by a CFG non-terminal 
NT: 

( )
1

( 1) ( ) ( 1) ( ) ( 1) ( )
,

if  C( ) covers( , )
1

( )  isFiller( )  isFiller( )
0 otherwise                                                     

t t
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o
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This feature shares its weight with 
,

( 1) ( )
1( ).

t NT

CC t tf s s tτ− , , ,o  So no extra 

model parameters are introduced. 
 
Table 1 shows the Number of new parameters and the slot ins-del-
sub error rate after each new feature set is introduced into the 
model, taken from the training iteration that obtains the best 
accuracy on the development set. The inclusion of new features 
makes the model more accurate in predicting slot identity and 
reduces the error rate by 17% relatively over the generative 
HMM/CFG composite model. 
 

Features # of Parameters Slot Error Rate
Task prior 6   
+Slot Transition +1377   
+Unigrams +14433 8.40% 
+Bigrams +58191 7.87% 
+ChunkCoverForWords +156 6.87% 
+PrevSlotContext +290 5.46% 
+ChunkCoverSlotBoundaries +0 4.17% 

Table 1. Number of additional parameters and the slot ins-del-sub error 
rate after each new feature set is introduced into the model. 

It is important to note that features similar to ,  and CC SB PCf f f  
could not be easily introduced in the generative model. The 
capability of incorporating non-homogeneous features is the key 
benefit of CRFs. This is consistent with the findings in that work 
that used conditional model for POS tagging [Lafferty, 2001 
#141]. 

4. DISCUSSIONS AND CONCLUSIONS 
We have shown that conditional model reduces SLU slot error rate 
by 17% over the generative HMM/CFG composite model. The 
improvement was mostly due to the introduction of the new 
features into the model. We have also discussed about our 
experience in direct porting a generative model to a conditional 
model, and demonstrated that it may not helpful at all if we still 
think generatively in conditionally modeling --- more specifically, 
using the same feature set as a generative model in a conditional 
model may not help much. The key benefit that the conditional 
models bring is their capability of incorporating non-independent 
and non-homogeneous features.  
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