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ABSTRACT
Many scenarios involve merging of two B-tree indexes, both cov-
ering the same key range. Increasing demand for continuous avail-
ability and high performance requires that such merging be done
online, with minimal interference to normal user transactions. In
this paper we present an online B-tree merging method, in which
the merging of leaf pages in two B-trees are piggybacked lazily
with normal user transactions, thus making the merging I/O effi-
cient and allowing user transactions to access only one index in-
stead of both. The concurrency control mechanism is designed to
interfere as little as possible with ongoing user transactions. Merg-
ing is made forward recoverable by following a conventional log-
ging protocol, with a few extensions. Should a system failure oc-
cur, both indexes being merged can be recovered to a consistent
state and no merging work is lost. Experiments and analysis show
the I/O savings and the performance, and compare variations on the
basic algorithm.

1. INTRODUCTION
Many application and system maintenance scenarios require merg-
ing of two B-tree indexes covering the same key range. Two such
scenarios occur during data migration in a parallel database system
where data partitioning is not by key range, but by other meth-
ods such as hashing. First, for load balancing, data partitions may
move from a “hot” node to a “cool” node. Second, when a node
is to be deleted, the data on that node has to be distributed to other
nodes. Accordingly, at the destination node, any primary B-tree in-
dex (with data in the leaf pages) and all secondary B-tree indexes
(with references to data in the leaf pages) should be updated. For
this purpose, temporary B-trees may need to be constructed on the
moved data and merged later with the already existing B-tree in-
dexes.

A third scenario occurs during batch data insertion in a centralized
database system. For high efficiency, temporary B-tree indexes on
newly inserted data may need to be constructed and merged into
existing indexes. Yet another scenario occurs during the mainte-
nance of a partitioned B-tree index [5]. In a partitioned B-tree, the
whole tree is partitioned according to an artificial leading column.
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Each partition is a B-tree. During system maintenance, different
partitions may need to be merged.

1.1 Straightforward Approaches
First let us look at some straightforward approaches to B-tree merg-
ing and describe some of their drawbacks.

Off-line Approach: In off-line B-tree merging, both indexes are
X-locked until the merging is finished. All incoming user transac-
tions will wait until the locks are released. Thus user transactions
are forbidden access to the indexes while the indexes are being
merged. This is the simplest approach but may incur an unaccept-
able amount of waiting time for user transactions.

Eager Approach: Another approach requires all user transactions
to access both indexes while merging is going on and has separate
non-user transactions move batches of entries eagerly. The system
source code for operations such as exact-match searching, range
searching, insertion, deletion and updating on B-trees must be ex-
tensively changed to adjust to the requirement of accessing both
indexes. This complicates user transaction logic (or B-tree access
module logic if the B-tree access module accesses both indexes on
behalf of user transactions).

Background Approach: A third approach makes a copy for each
index, merges them in the background, then catches up changes by
applying log records from the indexes in use, finally switches the
merged index online. This approach involves higher complexity,
and suffers from extra space requirements and I/O cost for copying
(thus low efficiency), especially when the indexes are very large.
In addition, as in the eager approach, user transactions must access
both indexes while merging is taking place.

For continuous availability, the merging of two B-tree indexes should
be done online, allowing concurrent user transactions, including
searches and modifications. For stable system performance, the
merging process should be efficient, without slowing down the con-
current user transactions too much. In addition, for practicability,
the merging algorithm should be relatively easy to integrate into
realistic DBMS implementations. None of the straightforward ap-
proaches just discussed satisfies all these requirements. We have
sought to improve on the straightforward approaches.

1.2 Lazy Approach
This paper presents an online B-tree merging approach where merg-
ing is piggybacked lazily on user transactions. We designate one
B-tree index as the main-index and the other (usually the smaller
one) as the second-index. User transactions operate through the
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main-index only. Upon reaching a leaf page, say L, of the main-
index, if L has not yet been updated to include the entries from the
second-index belonging to L’s key range, a system transaction takes
over from the user transaction and performs the merging: moving
all entries in L’s key range from the second-index to L, and split-
ting L if necessary. At this point, the user transaction resumes. In
this way, only the system transaction deals with merging. The user
transaction does not have to interface with both indexes as would
occur in the eager and the background approaches.

Because the I/Os on the main-index required separately by the merg-
ing are piggybacked onto user I/Os, the I/O cost for merging is
reduced considerably. Compared to the eager and the background
approaches, our approach is more I/O efficient, especially when the
second-index is much smaller than the main-index and large parts
of it therefore can be found in buffer frequently during merging
(true for most application and system maintenance scenarios). Fur-
thermore, lazy merging is incrementally beneficial, because future
user transactions which access merged parts of the main-index will
have a shorter execution path.

We do not piggyback all of the merging however. To speed up
completion of the merging, we also proactively merge index en-
tries using a background thread which is usually activated when
the system is not busy. This has an additional benefit of condens-
ing the unmerged part of the second-index and further reducing the
merging I/O cost.

So in our approach, a leaf page of the main-index is merged either
when it is accessed by a user transaction (saving merging I/Os) or
by the background thread (during low system load).

To provide high concurrency, only the smallest number of index
pages required for merging one main-index leaf page correctly are
made unavailable during a piggybacked merge operation. These
pages are released as soon as the leaf page is merged and then con-
trol is returned to the user transaction. Compared to the off-line
approach, our approach has much better availability.

Forward recovery for merging is made simple by following a con-
ventional logging protocol with a few extensions. Should a system
failure occur, both indexes being merged can be recovered to a con-
sistent state. A system failure does not affect correctness, nor does
it imply starting over again from the beginning.

In addition, since most modifications to DBMS code are only in
the B-tree access module and no user transaction logic needs to be
modified, the integration of this approach would be relatively easy.

In summary, the contribution of this paper is that it provides an
efficient, recoverable and practical online B-tree merging method.
It has cleaner code and less I/Os than the eager and the background
approaches, and far better availability than the off-line approach.

1.3 Organization
The rest of the paper is organized as follows. Section 2 surveys re-
lated work. Section 3 describes the lazy B-tree merging algorithm
in detail. Section 4 explains how to complete the merging and dis-
cusses recovery issues. Section 5 presents the performance analysis
and experimental results, including comparison with the eager and
the off-line approaches (not with the background approach due to
its obvious drawbacks). Section 6 concludes this paper. We use
boldface when defining terms and italics for emphasis.
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Figure 1: A1 � is the tree after attaching B1 to A1.

2. RELATED WORK
Several papers have considered creation and maintenance of B-tree
indexes. A method to create indexes without disabling updates to
the table was presented in [16]. Both [18] and [21] described meth-
ods to rebuild B-tree indexes online. Paper [4] presented a method
to generate efficient execution plans for bulk deletes, where delet-
ing entries from indexes in batch is done off-line. Without consid-
ering recovery issues, [1] described techniques to update indexes
along with data movement in shared nothing parallel databases.
These papers do not discuss B-tree merging.

Both [7] and [17] exploit the idea of merging in-memory data struc-
tures (possibly B-trees) with disk-resident data of large volume and
user queries have to search both the persistent and in-memory data
structures. In both the k-way merge algorithm in [7] and the rolling
merge algorithm in [17], the only type of update by the user trans-
actions is insertion into the in-memory data structures, and B-trees
participating in the merge are never used for updates. Neither paper
gives details about how to merge two B-trees online.

To migrate data in a parallel database system partitioned by key
range, [9] proposed the idea of integrating one B-tree into another.
The B-trees merged cover disjoint key ranges, thus one B-tree can
be simply “attached” to the other. Such an attachment algorithm
can not be used to merge two trees which have the same key range.
This is illustrated in Figure 1. Trees A1 and B1 cover disjoint key
ranges and thus they can be simply pasted together, while A2 and
B2 cover the same key range and cannot use this method.

The idea of exploiting I/O from user transaction requests to piggy-
back necessary index updates was used in [22]. That work deferred
the updates to references in indexes after the data records had been
physically moved, and piggybacked them with user transactions.
Although we also use the idea of piggybacking on user transactions,
our algorithms are very different. We are dealing with merging two
trees, not applying updates from a dynamically changing list, and
we do not modify the buffer manager as is done in [22].

3. LAZY B-TREE MERGING
In this section, we present our B-tree merging algorithm, which
is described as a lazy algorithm because merging is normally trig-
gered by user transactions. Without loss of generality, we assume
that the main-index has at least two levels. First we briefly present
some background on B-trees and on the safe-node concurrency
control protocol assumed in this section. Then we describe our
merging algorithm in detail. In the end of this section, we show
that our algorithm can be adapted to B-link trees [10], merging of
which has simpler concurrency control.
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3.1 Background: B-Tree Concurrency Con-
trol

We describe our algorithm in the context of B
�

-trees [3]. Leaf
pages in a B

�
-tree are linked together left-to-right through forward

side pointers, while pages at the same internal level are not linked
together. We shall refer to B

�
-trees simply as B-trees in the re-

mainder of the paper.

We distinguish latches from database locks. Latches (sometimes
called lightweight locks) are semaphores on buffer pages [6]. No
deadlock detection will be made on latches. Instead latches are
always obtained in a top-down or left-to-right (the leaf level) order
to prevent deadlock. Database locks are locks held by transactions
on data items. These locks are normally held to end of transactions
and are kept in a lock table. For database locks, deadlocks are not
prevented but are detected by standard techniques such as finding
cycles in a waits-for graph.

The concurrency control for B-tree traversal on both indexes dur-
ing merging is based on the optimistic safe-node latching protocol
from [2]. In this protocol, searchers latch-couple (i.e. release the
latch on a parent only after the latch on the child is acquired) down
to the leaf level with S-latches. An updater latch-couples down to
the parent-of-leaf level with S-latches and then obtains an X-latch
at the leaf. In the case when an entry is to be inserted in a leaf page
of a B-tree and insertion causes a split, the updater gives up all
latches and starts again at the root, this time requesting X-latches
and only releasing latches on the ancestors of the safe node (non-
full page), thus ensuring that X-latches are held on all pages on
the path to the leaf which might need updating. A similar protocol
is followed for deleters, where the safe node in this case is a page
which is not so sparse that it would require consolidation if an entry
is removed.

3.2 Detection of Non-Merged Pages
To ensure that the benefit of the incremental merging is available to
user transactions as early as possible, we need some mechanism to
find out whether a main-index leaf page has already been merged
or not, so that merging is not attempted where it is not needed.

We will use the log sequence number (LSN) of a page which indi-
cates the number of the log record corresponding to the most recent
update on the page. In the case the page is a leaf, we call this a
leafLSN. We introduce a system variable, reorgLSN which is the
system LSN at the time the whole merging process begins. Before
the merging process begins, this reorgLSN is stored both on disk
and in memory. Any main-index leaf page that is updated (due to
merging or user index accesses) while the whole merging process
is going on will have a leafLSN larger than the reorgLSN.

However, if a main-index leaf page has no matched entries in the
second-index (thus need not be merged), and if the page is not up-
dated by the user transaction index access either, it is possible that
the page maintains a leafLSN smaller than the reorgLSN through-
out the whole merging process. Subsequent user requests to this
page, without any knowledge that this page has already been looked
at, will continue to trigger merging (which is unnecessary). This
will not be incorrect, but it will be inefficient.

Without introducing auxiliary durable structures, we use no-op log
records to prevent unnecessary triggering of merging attempts. For
a main-index leaf page having no matched entries, we can write a
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Figure 2: A2 � and B2 � are the trees after the key range of the
right most leaf page of A2 was merged with entries from B2.

special no-op log record and increment the leafLSN just to indicate
that this page has been looked at. We show later that in most cases,
a large percentage of the main-index leaf pages require merging.
Thus the number of no-op log records should be small.

3.3 Basic Lazy Merging Algorithm
In this section we present the basic algorithm for lazy merging.
Suppose some B-tree access traverses down the main-index search-
ing for key k. In order to completely merge the leaf L whose key
range R contains k, we need to know this key range R. Normal
B-tree top-down traversal can derive R by the time it reaches L.
When L is found not merged yet, a system transaction (similar to
the concept of nested top actions in [15]) is triggered to merge L.
The system transaction merges all second-index entries in the key
range R into the main-index and commits independently from the
triggering user transaction, after which the normal B-tree access
may resume. This system transaction always changes the leafLSN
on L, either because L is updated with newly inserted entries from
the second-index, or by using a no-op log record. If this merging
triggers a split, the resumed B-tree access will retraverse the main-
index.

Figure 2 shows an example: the right most leaf page of the main-
index A2 was accessed by a user transaction, thus the key entries of
B2 in that corresponding key range

�
11 � in f inite � were merged into

A2 by a system transaction.

Since this merging process involves concurrent accesses on two B-
trees, we require that all latches on the main-index are issued before
latches on the second-index. If one thread needs to request latches
on the main-index while holding latches on the second-index, the
latches on the second-index should be released first. This orders
the resources being latched and prevents deadlocks involving both
indexes.

The basic lazy merging algorithm used by a B-tree top-down access
T looking for k is outlined as follows. Figure 3 illustrates the logic,
with the modification to normal B-tree top-down access rendered
inside the dashed-line box.

Basic lazy merging

1. While holding an S-latch on the parent P of the leaf L, T
acquires a latch on L (S-latch for search or X-latch for
update). At this point, the key range R for L is known.

2. T checks the LSN of L, lea f LSN:

(a) If leafLSN � reorgLSN, no merge is needed. T
releases the S-latch on P and proceeds to step 5.

(b) Otherwise (leafLSN � reorgLSN), if the latch T
has on L is an X-latch, T proceeds to step 3; other-
wise, T releases the S-latch on L and re-acquires
an X-latch on L, then repeats step 2. (The S-latch
on the parent P is still held, so no retraversal is
required.)
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Retraverse following safe−node protocol
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Figure 3: Basic lazy merging.

3. At this point T has an X-latch on L. T releases the S-
latch on P and accesses the second-index in the key
range R to decide the space required to hold entries to
be moved in, then attempts to merge:

(a) If L does not need to be split to hold the matched
entries to be moved in, T triggers the merging as
a system transaction. After the merging is done, T
proceeds to step 5.

(b) Otherwise (split needed), T releases the X-latch
on L and all latches on the second-index, and fol-
lows the safe-node algorithm to retraverse looking
for k, with all pages to be updated by this merging
X-latched.

i. If T finds that L has not been merged (by check-
ing the leafLSN), T triggers the merging as a
system transaction.

ii. T releases all X-latches on the main-index and
proceeds to step 4.

4. T retraverses the main-index using the same key k, and
proceeds to step 6.

5. If T holds an X-latch on L and T ’s original request was
an S-latch, T downgrades the X-latch to an S-latch.

6. T accesses page L, which is up to date at this point.

Step 2(b) utilizes the fact that keeping an S-latch on the parent P
while releasing any latch on L itself ensures that L is neither split
nor deallocated, so that L can be re-latched later without retraversal
and k is still in L’s key range. After retraversal in step 4, the leaf
page whose key range contains k may not be L any longer.

Before the merging begins, all pages in the main-index to be up-
dated have been X-latched. Before the merging ends, all latches on
the second-index should be released. After a leaf page is merged,
retraversal is required only when the merging involved a split.

The matched entries are removed from the second-index during the
merging. It is tempting to try to make the second-index read-only,
and just deallocate it at the end of merging. However, we would
then be unable to tell when merging of all second-index entries has
finished and the read-only second-index would occupy more buffer

Table 1: Interface for MergeEvents.
set

�
L � latchType � request to set a mergeEvent

noti f ySplit
�
L � notify a mergeEvent of a required split

reset
�
L � reset a mergeEvent

space during the merging than otherwise (removing entries from
the second-index during the merging), thus degrading performance.

When a split is required, it is possible that two or more concurrent
B-tree accesses will attempt merging and splitting the same leaf
page. For example, a B-tree access T1 gets the X-latch on L and
finds that L needs to be merged. After accessing the second-index
(to decide the space required to hold matched entries), T1 releases
its X-latch because a split is needed, and further T1 is swapped
out. Then another B-tree access T2 obtains the X-latch on L and
also finds that L needs to be merged. After accessing the second-
index, T2 also releases its X-latch. Whichever gets all required X-
latches in step 3(b) first will perform the merging. Then the other
one will also obtain the same X-latches later only to discover that
the merging has been finished.

This scenario happens because there is no means for other concur-
rent B-tree accesses to identify whether the merging is in progress,
accordingly there is no way to promptly stop their attempts to merge
the same leaf page. In the following section we propose a low-cost
optimization for this split-related situation.

3.4 Optimization for The Split Case
For this optimization, we introduce a new type of lightweight lock
called a mergeEvent, to indicate the merging for a main-index leaf
page is in progress. Using a mergeEvent, only one B-tree access
will attempt to merge a given leaf page. Our later experiments ver-
ify that this optimization eliminates the CPU cost from unneces-
sary attempts in a high-split and high-contention situation without
incurring much overhead in other situations.

The mergeEvent can be implemented simply by two semaphores
[6]. It is dynamically created for any main-index leaf page, and
requires no deadlock detection. The interface for mergeEvents is in
Table 1. In this table, latchType means the type of latch (S or X)
currently on a leaf page L held by the requestor.

After determining that merging is needed on a leaf page L, a B-
tree access will request to set a mergeEvent on L. When requesting
to set a mergeEvent, the requestor holds an S-latch on the parent
P. Only the first requestor on L will attempt to trigger the merg-
ing. Other subsequent requestors are immediately blocked until the
merging is finished.

Suppose TS is one of the subsequent requestors which are blocked
while the merging of L takes place. We do not want TS to be re-
quired to retraverse after the merging if the merging did not involve
a split. So in this case (no split) we would like TS to keep its S-latch
on the parent P. Later TS can re-latch L without retraversal and the
search key k is still in the key range of L.

On the other hand, if a split is required, TS must release its S-latch
on P, so that the first requestor can X-latch P and do the split for
merging. Since TS does not access the second-index, it has no di-
rect information about whether or not a split is required. This is
the purpose of the call noti f ySplit

�
L � , by which the first requestor
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indirectly notifies all subsequent requestors that a split is required.

The complete behavior of mergeEvents is as follows:

� For the first request to set a mergeEvent on page L, the call
set

�
L � latchType � returns 1. If the latchType on L held by this

requestor is S, the S-latch is released and an X-latch is re-
quested. The call does not return until the X-latch is granted
(after other requestors (if any) have released latches on L).

� For any subsequent request to set the same mergeEvent, this
requestor will be blocked. But before being blocked, two ac-
tions take place: (1) the latch on L is released so that the first
requestor can obtain its X-latch, and (2) if there has already
been a notification that a split is required for the merging, the
S-latch on P is released.

� When the first requestor finds that a split is required, it calls
noti f ySplit

�
L � , which causes other requestors being blocked

on the same mergeEvent to be unblocked, to release their S-
latches on P, and then to be blocked again (entering a second
waiting queue of this mergeEvent). This also provides a sig-
nal to subsequent requestors to release their S-latches on P.

� When the first requestor finishes the merging, it resets the
mergeEvent, which causes other requestors being blocked on
the same mergeEvent to be unblocked, with 0 returned to the
call set

�
L � latchType � if there was no split, or -1 returned if

there was a split.

The lazy merging algorithm with mergeEvents used by a B-tree
top-down access T is described as follows, with only step 2 and
step 3 different from the basic algorithm.

Lazy merging with mergeEvents

2. T checks the LSN of L, lea f LSN:

(a) If leafLSN � reorgLSN, T releases the S-latch on
P and proceeds to step 6.

(b) If leafLSN � reorgLSN, T requests to set a merge-
Event on L. If the request returns 1, T proceeds to
step 3. If the request returns � 1, T proceeds to
step 4. Otherwise (returning 0), T re-requests X-
latch (for update) or S-latch (for search) on L, then
releases the S-latch on P and proceeds to step 6.

3. (Only the first requestor for the mergeEvent reaches
this step.) T releases the S-latch on P and accesses
the second-index in the key range R to decide the space
required to hold entries to be moved in, and attempts to
merge:

(a) If L does not need to be split to hold the matched
entries to be moved in, T triggers the merging as
a system transaction. After the merging is done, T
resets the mergeEvent on L and proceeds to step 5.

(b) Otherwise (split case), T notifies the mergeEvent
that split is required, releases the X-latch on L
and all latches on the second-index, then follows
the safe-node algorithm to retraverse looking for
k, with all pages to be updated by this merging X-
latched. Then T triggers the merging as a system
transaction. After the merging is done, T resets
the mergeEvent on L, releases all X-latches on the
main-index and proceeds to step 4.

leafLSN > reorgLSN

S/X latch L

Release S−latch on P

S/X latch L

Downgrade X−latch
on L, if necessary

Use L

Release all X−latches

Retraverse

Set mergeEvent on L

S latch parent P of leaf page L

Release S−latch on P and decide the
space required to hold matched entires

Retraverse following safe−node protocol

Is split required at L

Release X−latch on L and latches on second−index
Notify mergeEvent of the split

Reset mergeEvent
Trigger merging

Reset mergeEvent
Trigger merging

Yes

No

0−1

1

Yes

No

Figure 4: Lazy merging with mergeEvents.

Figure 4 illustrates the logic. It is unnecessary to check the leafLSN
against the reorgLSN after L is X-latched again in step 3(b), be-
cause only the first requestor to set the mergeEvent will proceed to
step 3 and trigger the merging, and the leafLSN does not change
before L is re-latched again during the retraversal in step 3(b).

3.5 Range Scans with Lazy Merging
So far we have presented the two lazy merging algorithms with a B-
tree top-down access. Another type of B-tree access is a range scan,
which involves left-to-right access following forward side pointers
at the leaf level.

Normally a range scan consists of two parts: first searching top-
down from the root to the left-most leaf page in the search key
range, then possibly scanning left-to-right at the leaf level. For the
first part, when the left most leaf page L in the search key range is
reached, the key range for L is known. Thus L can be merged using
the lazy merging algorithms with a B-tree top-down access.

For the second part, when a leaf page LS reached by a forward side
pointer is not merged yet (by checking the leafLSN), we have to
merge it first, but we cannot merge LS if we do not know its key
range.

One way to obtain the key range for LS is to retraverse top-down
from the root. To ensure to reach LS (or if LS is deleted by other user
transactions, the next leaf in the search range) during retraversal,
we utilize the key range R of the left sibling of LS. Normally, leaf
key ranges are half-open intervals. If R is of form

�
k1 � k2 � , we

choose k2 as the search key during retraversal. Otherwise (R is
of form

�
k1 � k2 � ), we search for the smallest value which is greater

than k2 (where duplicate keys are allowed, we make them unique
by concatenating the B-tree keys with disk addresses (RIDs) or in
a primary key (not RID) based system, concatenating the B-tree
(secondary) keys with the primary keys [14]).

On the other hand, if each leaf page contains information about
their own key range, e. g., if it contains the value of the highest key
allowed in the leaf, we do know the range of LS when we visit it
via a forward side pointer. In this case, the left sibling of LS plays
the role of its “parent” in the lazy merging algorithm. Although
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holding a latch on the left sibling of a leaf page does not prevent
this leaf page from being split by another user transaction, this does
not matter for range searches.

In addition, backward range scans are allowed to some degree in
many realistic systems, where backward side pointers are imple-
mented at the leaf level. To avoid deadlock with forward range
scans, a backward scan does not use latch-coupling, instead, the
whole tree is locked. Accordingly, the key range for a leaf page
can be obtained easily by accessing its ancestor(s).

When a leaf page is split, the backward side pointer of its origi-
nal right sibling should be updated to point to the new allocated
page. In order not to complicate the presentation, we present only
a simple solution: that backward side pointer is not updated im-
mediately, instead, since we always have the correct forward side
pointers from which all backward side pointers can be derived, that
backward side pointer will be fixed later when a backward range
scan occurs.

3.6 Deadlock-Freeness
Our concurrency control for merging uses latches and mergeEvents.
The latching order follows top-down within an index and left-to-
right at the leaf level. All latches on the main-index are obtained
before latches on the second-index. Such resource ordering ensures
that no deadlock is introduced by these latches.

If one B-tree access is to be blocked while requesting to set a
mergeEvent (waiting for the completion of merging a main-index
leaf page), before being blocked, all latches held by it which will
conflict with required latches of the first requestor (the merger)
are released. If two requestors are blocked (neither of them is
the merger), the latches (if any) held by them do not conflict with
each other (they are S-latches). So no deadlock is introduced by
mergeEvents.

User transactions may of course deadlock on other database items,
but not with latches or mergeEvents used for merging. After merg-
ing, the user thread may hold a latch on the merged leaf page. As
is well known [15], this latch can cause deadlock if the user thread
holds it while waiting for a database lock. In this case, the latch is
released.

3.7 Lazy Merging of B-Link Trees
An important structural difference of B-link trees [10] from ordi-
nary B-trees is that B-link trees have forward side pointers even at
internal levels. Concurrency and recovery of B-link trees including
node consolidations and deletions were studied in [11, 12, 13]. B-
link trees were shown to have better concurrency than B-trees in [8,
20].

We assume that in B-link trees each page has an additional field
called the highest key. (To keep the advantage of B-link trees, each
page should contain information about its own key range anyway.)
For a leaf page, this field indicates the highest key this page can
hold. For an internal page, this field indicates the highest key the
subtree rooted at this page can hold. Accordingly, the key range of
each page is a half-open interval of form

�
k1 � k2 � .

Whenever a split occurs, we post to the parent the separation key
for the split page. A natural choice of the separation key is the field
highest key of this split page.

Any page in a B-link tree except the root can be reached either via a
child pointer or via a forward side pointer. When a page is reached
via a child pointer, we can know its key range from the information
in the parent. When a page is reached via a forward side pointer,
its key range is

�
k1 � k2 � , where k2 is its highest key, and k1 is the

highest key of its left sibling.

The lazy merging algorithm used by a B-link tree top-down or left-
to-right access T is described below, which is simpler and more
efficient than B-tree merging.

Lazy merging of B-link trees

1. While holding a latch on the previous page P (either the
parent or the left sibling of the leaf L), T acquires a latch
on L (S-latch for search or X-latch for update). At this
point, the key range R for L is known.

2. T checks the LSN of L, lea f LSN:

(a) If leafLSN � reorgLSN, no merge is needed. So T
releases the latch on P and proceeds to step 4.

(b) Otherwise (leafLSN � reorgLSN), if the latch T
has on L is an X-latch, T proceeds to step 3; other-
wise, T releases the S-latch on L and re-acquires
an X-latch on L, then repeats step 2. (The latch on
P is still held, so that L can be re-latched directly.)

3. At this point T has an X-latch on L. T releases the latch
on P and triggers the merging system transaction to
merge the matched entries within the key range R from
the second-index into the leaf level of the main-index. If
L was split, posting of the split is scheduled in separate
system transactions.

4. If T holds an X-latch on L and T ’s original request was
an S-latch, T downgrades the X-latch to an S-latch.
Then T accesses page L, which is up to date at this
point.

It is unnecessary to immediately post a split boundary to the parent
after the split takes place, because the forward side pointer allows
a newly allocated page to be accessible from its left sibling. Ac-
cordingly it is not required to X-latch pages to be updated at up-
per levels at once before the actual merging (different from B-tree
merging). It is also unnecessary to access the second-index before
the actual merging to decide how much space is required to hold
the matched entries and which upper levels should be updated. All
matched entries are merged into the leaf level immediately at step
3. This results in shorter duration of X-latches at upper levels and
thus higher concurrency.

With this lazy merging algorithm for B-link trees, only the first B-
link tree access which finds that a main-index leaf page has not been
merged and has X-latched this leaf page will attempt to access the
second-index and do the merging, even if there will be a split. Other
accesses which find that this leaf page has not been merged will
wait on X-latching this leaf page and find later that this leaf page
has already been merged. So unnecessary attempts are prevented.
MergeEvents as used in the B-tree merging algorithm for the split
case are unnecessary for the merging of B-link trees.

4. CLEANUP AND RECOVERY
In this section we describe how to merge entries into leaves which
are never visited by user transactions to speed up completion of the
merging and how to modify recovery to handle merging.
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4.1 Background Cleanup Thread
One potential problem with lazy merging is that some main-index
leaf pages may never be merged since they may never be accessed
by user transactions, thus the second-index may exist forever. It is
desirable to finish the merging process in a reasonable amount of
time and bring the system back to its normal operating state.

To solve this problem, we use a special background cleanup thread
which will trigger merging. It first looks up the smallest key in the
second-index, then searches the main-index for this key. This will
trigger the lazy merging of the main-index leaf page whose key
range contains this key. (It releases latches on the second-index
after reading the smallest key, to avoid deadlock with user threads
which are issuing lazy merging system transactions.)

Normally the background cleanup thread will become active when
the system is not busy, so that even if the merging triggered by the
background thread causes disk I/Os, it does not affect performance
experienced by user transactions.

When the background cleanup thread is used and keys are short
(thus key comparison is not expensive), a further optimization is
possible. The smallest key value in the second-index is regarded
as the lower bound of the merging. Then when a main-index leaf
page is found not merged yet, if the upper bound of its key range is
smaller than this smallest key value, this page does not need to be
considered by the lazy merging. This smallest key value is main-
tained as a system variable and updated by the background cleanup
thread.

4.2 Recovery
Our algorithms require only a few mechanisms other than normal
logging to ensure correct recovery. Changes to the main-index and
the second-index during merging are in system transactions inde-
pendent from user transactions which trigger the merging. Even if
the triggering user transactions fail or the system crashes, these sys-
tem transactions will complete eventually. In particular, any inter-
rupted merging system transaction should be completed before the
system resumes because otherwise the leafLSN of the leaf pages
may be changed without the merging taking place. Thus merging
requires forward recovery (this is different from ordinary system
transactions required by tree structural changes such as splits).

After the system comes back from a crash, as is usual, first all ac-
tions are redone. Then as in [12, 15], any finished merging system
transaction is not undone, even if the enclosing database transac-
tion is unfinished and thus undone. This is because merging is an
independent top-level system transaction. But we must go one step
further. Any incomplete merging must be completed, because it
may have already changed the leafLSN of the page to be merged.
Thus the begin-merge log record (for the beginning of the merging
system transaction) contains a key from the leaf page in the main-
index to be merged. If the merge was not complete at the time of
the crash, this leaf page would not have been updated or split by any
other transaction because it would have been latched by the thread
of the merging transaction at the time of the crash. After gathering
all such keys, the recovery thread must merge these pages before
new user transactions start. To make this simple, we assume that
the incomplete system transaction is first undone as is usual [12,
15] (normally undo changes page LSNs), and then at the end of
recovery, it is re-triggered using the key in the begin-merge log
record. This avoids having to determine what part of the merging
has completed before the crash.

Table 2: System Configuration.
CPU number 1
CPU service discipline processor sharing
CPU speed 1GHz
disk number 1
disk service discipline first come, first served
disk seek time average 4ms
disk rotation delay average 2ms
disk page size 4KB
disk transfer speed 75MBPS
buffer replacement policy LRU

The re-triggered merging will not test the leafLSN against the re-
orgLSN, because it may have been modified and already be greater
than the reorgLSN. The mergeEvents are unnecessary, because there
is only one thread (the recovery thread) accessing the leaf page dur-
ing recovery.

Since the deletion from the second-index and the insertion of those
entries into the main-index are enclosed in forward recoverable sys-
tem transactions, after the whole system recovers, the second-index
will contain exactly those entries which had not yet been triggered
to be merged at the time of the system failure.

5. PERFORMANCE ANALYSIS AND MEA-
SUREMENTS

In this section, we present performance analysis and experimental
results for the lazy merging approach. We will evaluate the effect of
mergeEvents, analyze and measure I/O savings (compared with the
eager approach), measure the degradation of the throughput and
the response due to lazy merging (including comparison with the
off-line approach), and finally measure the merging speedup by the
background cleanup thread. The experimental setting is given first.

5.1 Experimental Setting
We implemented the top-down B-tree access with lazy merging on
top of the CSIM-19 [19] simulator engine. This implementation
also verifies correctness of the lazy B-tree merging algorithms. The
configuration of the experimental system is listed in Table 2.

The fan out of both the main-index and the second-index is 100.
Each leaf page in both indexes can hold 100 entries. The main-
index is populated with 400K distinct odd integer keys whose val-
ues are uniformly chosen from 1 to 1800K. Each page of the main-
index is 80% full. The second-index is populated with distinct even
keys uniformly chosen from the same key range. Each page of the
second-index is 100% full. For the low-split case, the second-index
has 40K keys (10% of the main-index). For the high-split case, the
second-index has 120K keys (30% of the main-index). After merg-
ing, the height of the main-index will keep at 3 for the low-split
case, while for the high-split case, the height of the main-index
will become 4. The size of the buffer is set to 10 times the number
of all upper level pages of both indexes. In this way, throughout the
merging process almost all upper level pages and around 10% of
all leaf pages could reside in buffer.

Each top-down B-tree access issued by a user thread is counted as
a user transaction. Each user transaction either modifies (50%
possibility) or searches a merged leaf page. But the modification
requested by user transactions does not change the structure of
the main-index. We coded the experiments this way because user-
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Table 3: Time Cost of Basic Operations.

hash access to locate a page in buffer or a mergeEvent 400
latch a page already in buffer without waiting 100
unlatch a page 100
find an empty slot in the buffer 200
find the page to be replaced by LRU 1,000
set a mergeEvent without waiting 200
reset a mergeEvent 200
create a mergeEvent 150
destroy a mergeEvent 100
notify a mergeEvent of a split 200
binary search in a page (about 100 entries per page) 1,000
calculate number of required new pages for a merge 250
modify a page including logging 2,000
copy a page 2,000
compare two index entries 150
disk seek 4,000,000
disk rotation 2,000,000
disk page transfer 53,000

transaction-caused structural changes are not relevant to our study.
All user threads run at the same priority and continuously access
keys randomly chosen from 1 to 1800K.

The smallest time unit in the simulation is one instruction time
(one second � 1G time units). The time cost of basic operations
are listed in Table 3 (partly based on [20] and communication with
commercial DBMS implementors). A mergeEvent is not a database
lock and it can be implemented by two semaphores. Setting a
mergeEvent without waiting costs about twice as much as latch-
ing a page already in buffer without waiting. The cost of merging
a main-index leaf page depends on the number of second-index en-
tries merged into the key range of this page. If the number of entries
is small, they can be inserted one by one, and the cost for merg-
ing a page (the upper bound) is, C1

� NumO f Entries � � costbinarySearch
�

costmodi f yPage � . If, on the other hand, the number of entries is large
enough, it is more efficient to simply create a copy of the page, do
a sorted merge with the second-index entries, and write back the
result. In this case the cost for merging a page (the upper bound) is,
C2

� costcopyPage
�

NumO f ResultedPages � � f an out � costentry � comparison
�

costcopyPage ���
We use minimum

�
C1 � C2 � as the merging cost.

5.2 Effect of MergeEvents
To see the effect of mergeEvents, we compared the lazy merging
algorithm with mergeEvents to the basic lazy merging algorithm.
Each user thread continuously runs until 90% of the entries in the
second-index have been merged. (After 90%, few user transactions
trigger merging.) We vary the number of concurrent user threads
and compare the times required to finish. In this set of experi-
ments, I/O cost is not included. It is reasonable to exclude I/O
cost, because the two algorithms under comparison incur almost
identical I/O cost due to the LRU buffer replacement policy. The
same experiment is done under two settings: one is the combination
of high-split and high-contention, and the other is the combination
of low-split and low-contention. To construct a scenario of high-
contention, all user threads access the same sequence of random
keys at the same pace, while for the low-contention case, each
user thread accesses a different sequence of random keys.

Figure 5 shows the result. For both settings, around 12K random
keys should be accessed to finish merging 90% of second-index
entries. For the setting of high-split and high-contention, because
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Figure 5: CPU Time to finish merging 90%.

all threads access the same sequence of random keys, the time re-
quired to finish becomes longer as the number of threads increases.
When the number of threads is greater than 1, the algorithm with
mergeEvents takes less time than the basic algorithm, because in
the algorithm with mergeEvents, only one user transaction will try
to merge the same main-index leaf page, while in the basic algo-
rithm, more than one user transaction will access the second-index
and try to merge the same main-index leaf page. As the number of
threads increases, the performance advantage becomes more obvi-
ous. When there are 20 threads, there is around 17% advantage.

For the setting of low-split and low-contention, the time required
to finish keeps almost constant as the number of concurrent user
threads increases, because each user thread accesses a different se-
quence of random keys, and 90% of the second-index will always
be merged after around 12K user transactions have been issued no
matter how many concurrent user threads are running. The algo-
rithm with mergeEvents takes slightly more time to finish (invisible
in Figure 5) because of the extra overhead of mergeEvents, regard-
less of the number of the user threads.

Although the algorithm with mergeEvents wins only when there is
high-split and high-contention, in practice, it can be always adopted
because the overhead of mergeEvents is minor. In later experi-
ments, the algorithm with mergeEvents is always used and I/O cost
is included.

5.3 I/O Saving
To analyze I/O saving due to lazy merging, we first make a prob-
abilistic analysis for the number of merges, that is, the number of
main-index leaves which require merging. Based on this, we pre-
dict the number of no-op log records (for leaves not needing merg-
ing) and estimate the number of I/Os we can save. Secondly, we
present results from experiments which verify our analysis. Finally,
we show the I/O saving improvement by the background cleanup
thread.

5.3.1 Analysis for I/O Saving
Table 4 lists the parameters used in the analysis. We assume the
keys in both the main-index and the second-index are uniformly
distributed and we consider neither upper level index pages, nor
the effect of the background cleanup thread.

To compute the number of merges, let us consider an arbitrary
main-index leaf page, say p. This page will be accessed if it hap-
pens that a second-index key falls in the range of p. An arbitrary
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Table 4: Parameters Used in Analysis.
m number of leaf pages in main-index
s number of leaf pages in second-index
n number of key entries in second-index

key falls in the range of p with probability 1 � m since there are m
leaf pages and the keys are uniformly distributed. After we have
examined n keys, the probability that at least one key falls in the
range of p is 1 � �

1 � 1
m � n � 1 � e � n � m. The approximation is valid

for large m. Since there are m main-index leaf pages, the total num-
ber of leaf pages that have at least one key falling in their ranges is
approximately m

�
1 � e � n � m � .

This is the approximate number of merges. Intuitively, if n � m,
then m

�
1 � e � n � m � � m and almost every leaf page of the main-

index will have new keys falling in its range. On the other hand, if
n � m, then e � n � m � 1 � n

m and m
�
1 � e � n � m � � n.

Generally, as long as n is not too small, almost every leaf page of
the main-index must be merged. Thus there are hardly any no-op
log records. Each merge may involve two random I/Os (one read
and one subsequent write) on a main-index leaf page. For the lazy
merging approach, all such reads can be piggybacked in user read
requests. Further if a user request is a write, the write for merging
can also be piggybacked in the user write request. Thus compared
to any other non-piggybacking approach, the number of I/Os on
the main-index saved by the lazy approach is between m and 2 � m
(when all user requests are read-only, it is m; and when all user
requests are writes, it is 2 � m).

On average, a leaf page of the second-index is merged with at most�
m � s � leaf pages of the main-index. The lazy approach merges

one leaf page of the main-index at a time, thus each leaf page of
the second-index will be accessed for

�
m � s � times. Further since

user transactions access leaf pages of the main-index randomly, the
second-index is left sparse during the merging process. Accord-
ingly, if the second-index is relatively large (compared to the main-
index) and the buffer space is very tight for merging (due to the
current system load), each access to a leaf page of the second-index
may involve two random I/Os (one read and one subsequent write).
Based on this analysis, in the worst case the lazy approach incurs
around 2 � s � �	�

m � s � � I/Os on the second-index.

Any approach requires at least 2 � s I/Os on the second-index (the
theoretically minimal case). Thus the I/O loss on the second-index
for the lazy approach (the extra I/Os needed beyond the minimal
case) is 2 � s � �	�

m � s � � 1 � in the worst case.

Combining the I/O saving on the main-index and the I/O loss on
the second-index, the total I/O saving of the lazy approach (I/O
saving on the main-index � I/O loss on the second-index) in the
worst case is m � 2 � s � �	�

m � s � � 1 � (which equals 2 � s � m when
m mod s � 0 and becomes negative further when m � 2 � s). This
might occur when all user transactions are read-only, the second-
index is relatively very large and high-split is involved for merging.
The total I/O saving of the lazy approach in the best case is 2 � m.
This occurs when all user transactions are write, and the second-
index is small and no splits are involved for merging so that the
number of I/Os on the second-index approaches the minimal case.

However, user transactions usually involve read and/or write. When

Table 5: I/O Counts. L and H stand for low-split and high-split,
respectively. MI and SI stand for main-index and second-index,
respectively.

lazy, L eager, L lazy, H eager, H
read, MI 10,692 14,678 11,896 15,377
write, MI 7,699 9,770 12,063 13,474
total, MI 18,391 24,448 23,959 28,851
read, SI 3,865 2,295 8,573 6,097
write, SI 2,651 1,360 4,630 2,836
total, SI 6,516 3,655 13,203 8,933

total, MI+SI 24,907 28,103 37,162 37,784
allocate, MI 2 0 3,552 3,556

deallocate, SI 91 363 683 1,090
no-op log 0 0 0 0

half of the user transactions are write, the I/O saving on the main-
index is 1 
 5 � m. And for most application scenarios (data migration
and data batch insertion, etc.) where the main-index is merged with
a much smaller second-index and thus normally the merging does
not involve high-rate splits, the leaf pages of the second-index to
be accessed can be found in buffer frequently. Thus the number of
I/Os on the second-index is much smaller than 2 � s � ���

m � s � � . In
this case the total I/O saving approaches 1 
 5 � m.

5.3.2 I/O Saving Measurement
To verify our analysis and provide more insight into practical set-
tings, we carried out a number of experiments. We implemented
an approach for merging without piggybacking, a very simplified
eager approach, in which a merging thread continuously reads the
smallest key from the second-index and then looks up that key in
the main-index. Such a lookup will trigger the merging of the main-
index leaf page whose key range contains that key. The user thread
in the eager approach will simply access a random key in both in-
dexes without merging, first the main-index, then the second-index.
Each access is either search (50% possibility) or modification with-
out structural changes. When the key to be accessed is smaller than
the current smallest key in the second-index (maintained as a sys-
tem variable and updated by the merging thread), the user thread
will skip accessing the second-index.

Without loss of generality, in both the lazy and the eager approaches,
there is only one user thread. In the lazy approach, there is no
background cleanup thread and the user thread stops after 90% of
second-index entries have been merged. In the eager approach, the
user thread stops after the same number of user transactions as in
the lazy approach have been issued, and the merging thread stops
after 90% of second-index entries have been merged.

We measured the numbers of read and write I/Os, new allocated
pages and/or deallocated pages for both the main-index and the
second-index. The same experiment is done for both the low-split
case and the high-split case. For either case, around 12K user trans-
actions have been issued after 90% are merged. Table 5 lists the
resulting I/O counts.

The number of leaf pages in the main-index is 5K. In the low-split
case, the number of newly allocated pages in the main-index is
around 2, while in the high-split case, the number of newly allo-
cated pages in the main-index is around 3.5K. For either case, the
exact numbers of newly allocated pages in the main-index for the
lazy approach and for the eager approach are not equal, because the
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Table 6: I/O Savings with Different Second-index Sizes. The
percentage indicates the entry number in the second-index rel-
ative to that in the main-index.

percentage 5% 10% 30% 50% 80% 100%
I/O saving 5,328 3,196 622 247 33 13

two approaches may have merged different leaf pages of the main-
index and different sets of the entries in the second-index, and the
last page merged may increase the proportion beyond 90%.

In the low-split case, for the lazy approach compared to the eager
approach, the I/O saving on the main-index is 6057 (24448 � 18391)
and the I/O loss on the second-index is 2861 (6516 � 3655), so the
total I/O saving is 3196 (6057 � 2861). Notice that the LRU buffer
replacement policy introduces some randomness in the results and
that write I/Os are also saved sometimes by being piggybacked.

In the eager approach, as merging is done in key order, the second-
index shrinks rapidly and once some entries in a leaf page of the
second-index have been merged, the subsequent merges for the rest
entries in that leaf page will find that leaf page in buffer with a
large probability (access locality). In contrast, in the lazy approach,
since we deallocate leaves of the second-index only-on-empty as
usual and since the merging into the main-index is by random key
ranges, the second-index becomes sparser and occupies more pages
than in the eager approach. This is verified by the following data:
after 90% of second-index entries have been merged, the number of
deallocated pages in the second-index in the eager approach is 363,
while the number in the lazy approach is only 91. The sparseness
of the second-index and the relative non-locality of access on the
second-index account for the I/O loss on the second-index for the
lazy approach. However since the second-index is relatively small,
the I/O loss is small.

In the high-split case, the second-index is relatively larger and many
main-index leaf pages are split. The sparseness of the larger second-
index and the newly allocated pages of the main-index cause the
buffer space for merging to be tight. Thus the I/O loss on the
second-index becomes larger (4270 � 13203 � 8933), and the I/O
saving is much smaller (622=37784 � 37162) than the low-split case.

In addition, in all cases, the number of no-op log records is 0,
which means all main-index leaf pages have at least one entry to
be merged from the second-index. This verifies that the number of
no-op log records is expected to be small.

We further measured the I/O savings when the second-index is even
smaller or larger. Table 6 lists all the results (including previous re-
sults). When the second-index is much smaller than the main-index
and the merging involves low-split (which occurs when the percent-
age is less than 20%, due to 80% fullness of the main-index), the
I/O saving is large and along with the decease of the second-index
size, the I/O saving becomes larger and approaches the theoretical
maximum 6750 ( � 1 
 5 � 5K � 90%). This is the most likely setting
for most applications. On the other hand, along with the increase
of the second-index size, the I/O saving becomes smaller, espe-
cially when the merging involves high-split (when the percentage
is greater than 20%). However, even with a relatively large second-
index involving high-split to merge, the lazy approach incurs no
more I/Os than the eager approach.

Table 7: I/O Saving Improvement with Increase of Background
Thread Activity (1 per x User Transactions). The number of en-
tries in the second-index is 30% of that in the main-index. Deal-
locate means the number of pages deallocated in the second-
index for the lazy approach.

x infinite 100 50 20 10 0
deallocate 683 698 707 748 789 944
I/O saving 622 700 837 954 1,121 1,385

5.3.3 I/O Saving Improvement
The above results suggest that a benefit of the background cleanup
thread in the lazy approach is to shrink the second-index and reduce
the sparseness caused by random user-transaction-induced merges.
This helps reduce the number of I/Os on the second-index. When
the second-index is relatively large, the background cleanup thread
can be made more active to shrink the second-index. In addition,
when the background thread is active enough, its access on the
second-index will present locality (finding second-index leaf pages
in buffer frequently).

To demonstrate this, we make the frequency of the background
thread activity to be one background transaction every x user trans-
actions, where x changes from 0 to 100. When x is 0, it means
the background thread continuously queries the smallest key of the
second-index and triggers merging. This is the same as the merging
thread in the eager approach. Both threads (1 user thread and the
background cleanup thread) stop when 90% of second-index en-
tries are merged. The counterpart in the eager approach issues the
same number of user transactions as in the lazy approach.

Table 7 lists the total I/O savings for a case when the I/O loss on
the second-index is large (thus the total I/O saving is small). When
x � in f inite, it means there is no background cleanup thread. As
the frequency becomes higher, more pages in the second-index are
deallocated (for comparison, the number of deallocated pages in the
second-index for the eager approach is always 1090), and the I/O
saving becomes larger. However the background thread should not
be made too active or eager in practice, otherwise the throughput
of concurrent user transactions will degrade.

5.4 Throughput and Response Degradation due
to Lazy Merging

To see how much slowdown is incurred by concurrent user trans-
actions due to lazy merging, we measured the throughput and the
response time of user transactions during lazy merging where user
transactions access a sequence of random keys on the main-index.
This way is actually very “eager”, because most user transactions
will trigger merges at the early stage of merging. We first worked
with one user thread (there is no background thread) and recorded
the response time of each user transaction and throughput (the num-
ber of user transactions per second) from the beginning of lazy
merging until all second-index entries are merged.

The same experiment is done for both the high-split case and the
low-split case 20 times, with a different seed for the random key
generator each time. For each run, the response time is taken as
the average over every 600 user transactions and the throughput is
taken as the average over every 10 seconds. Figures 6 and 7 show
the results of one run for both cases. For either case, all 20 runs
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Figure 6: Response time during lazy merging (1 thread).
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Figure 7: Throughput during lazy merging (1 thread).

have similar results.

The performance degradation is basically decided by the number
of concurrent merges triggered. For either case, in the beginning
of lazy merging, many user transactions triggered merging, so the
response time is large and the throughput is low. As the merg-
ing progresses, fewer user transactions triggered merging, so the
response time decreases and the throughput increases, especially
quickly for the high-split case. This also verifies that the merging
is incrementally beneficial. When around 25K user transactions are
issued, 99% of second-index entries have been merged and the re-
sponse time begins to become stable. The low-split case takes less
time to finish, its throughput is higher and its response is quicker
than the high-split case.

In addition, for both cases, we measured the time to finish merging
by an off-line approach, where a thread eagerly merges entries from
the second-index to the main-index, similar to the merging thread
in the eager approach. (Sequential I/Os cannot be exploited, since
the leaf pages of the main-index are not stored in order.)

Table 8 list performance values. All values for the lazy merging are
averages taken over 20 runs. For the high-split case, the response
time at the beginning (when almost every user transaction triggers
a merge) is less than four times of that in the end (when hardly
any user transaction triggers a merge), and for the low-split case,
it is less than two times. These values are explained by the I/Os
involved for merging and/or splits. Similarly, the throughput at the
beginning is more than one fourth of that in the end for the high-
split case, and more than one half for the low-split case. This shows
that the amount of splitting has a large impact on the performance.
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Figure 8: Response time during lazy merging (20 threads).
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Figure 9: Throughput during lazy merging (20 threads).

In the off-line approach, for either case, the total time (Doff) is less
than the total time in the lazy approach (Dlaz). However, all concur-
rent user transactions must wait for the entire merging time (Doff).
This means for the high-split case that the response time for those
user transactions is more than 115s, as opposed to 29.2ms, which is
the response time of the worst case in the lazy approach.

We further measured the response time and the throughput during
the lazy merging when there are 20 concurrent user threads. Each
thread has a different seed for its random key generator. When
there are multiple user threads, as shown in Figure 9, the through-
put is basically the same as in the single thread case. However, the
response time is around the number of threads times the response
time of the single thread case, as shown in Figure 8. This is be-
cause all threads compete for the single disk and the single CPU
concurrently and the response time is bottlenecked by disk I/Os.

Table 8: Performance Values. Doff is the duration (total time)
of off-line merging. Dlaz is the duration of lazy merging. RE
stands for the response time. T stands for the throughput. The
subscripts b, o and e stand for the beginning of lazy merging,
the time (during lazy merging) when off-line merging would be
ending, and the end of lazy merging, respectively. H and L stand
for high-split and low-split, respectively.

Doff Dlaz REb REo REe Tb To Te
H 115s 535s 29.2ms 20.7ms 7.7ms 36 47 129
L 61s 426s 13.7ms 12.0ms 7.3ms 73 84 137
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Figure 10: Time to finish merging (1 user thread).

Notice that in Figure 8, for the high-split case, around 64K user
transactions have to be issued before merging is finished, while
only around 38K user transactions are required for the low-split
case. This difference (26K) mainly lies in the difference of the
numbers of user transactions that do not trigger merging after most
merging has been done: After 90% merging has finished, only
around 0.5K user transactions with merging are issued for either
case, but the numbers of non-merging user transactions are differ-
ent for the two cases. For the high-split case, around 51.5K non-
merging user transactions are issued, while for the low-split case,
only around 26.6K non-merging user transactions are issued. Cor-
respondingly, the high-split case takes much longer time to finish
as shown in Figure 9.

5.5 Merging Speedup by Background Cleanup
Thread

To see how much speedup for merging is due to the background
cleanup thread (which is usually activated when the system is not
busy), we measured the times to finish merging by varying the fre-
quency of the background thread activity (one background transac-
tion every x user transactions). Without loss of generality, there is
only one user thread. Both threads stop when all second-index en-
tries are merged. We also obtained the time required when there is
no background thread. In all runs, the user thread has the same seed
for its random number generator. The same experiment is done for
both the low-split case and the high-split case.

Figure 10 shows the results. When the frequency of background
thread activity is the same, it takes more time to finish for the high-
split case than for the low-split case. For either case, as the fre-
quency becomes higher, it takes less time to finish. Even when the
frequency is quite low such as one every 100 user transactions, the
time required is already reduced by more than one third compared
to the time required when there is no background thread.

6. CONCLUSIONS
We have presented three variations on lazy merging for trees with
the same key range: the basic algorithm and the algorithm with
mergeEvents for B-trees, and the algorithm for B-link trees. We
have shown deadlock-freeness and we have discussed range search-
ing, cleanup and recovery. Finally, we have analyzed and measured
the performance of our lazy B-tree merging algorithms.

Our performance results show benefits in overhead reduction from
mergeEvents, in I/O saving from lazy merging (especially for merg-
ing an index with another much smaller index), and in merging

speedup and in second-index shrinking (which affects I/O saving
and performance) from the background cleanup thread. In addi-
tion, experiments showed that although running merges concur-
rently with user transactions (required for availability) slows down
the system in the beginning, this effect is tolerable and transient.
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