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Abstract— The quality of sensing in practical sensor net-
work deployments suffers due to the presence of obstacles
in the sensing medium. If such unknown obstacles are
present, and the sensor data indicates that no targets of
interest are detected, then there is no easy way for the
application to distinguish between the cases that there
really is no target or that the targets are located in
occluded regions. The obstacles may not be known before
deployment and may change over time. Hence, it is of
interest to develop methods which enable a sensor network
to determine the presence and extent of sensing occlusions.
We present one such method based on the use of a range
sensor to map the obstacles in the medium. A network
architecture to support efficient medium mapping facilities
is presented, along with several design choices in the
acquisition and update of the medium map data. We
also present algorithms to rapidly acquire this data and
share it among multiple nodes. All algorithms presented
are implemented on prototype hardware consisting of an
actuated laser and an embedded processing platform.

I. I NTRODUCTION

Since their conception, sensor networks [1] are finding
applications in a variety of problem domains spanning
security, automation, scientific exploration, education,
and entertainment. One key network performance metric
that affects all these applications is the uncertainty in
the data collected by the underlying transducers. The
factors that lead to this uncertainty may be divided into
two classes:

• Intrinsic Factors. The signal acquired by the trans-
ducer is only a noisy version of what exists in the
environment and below a certain signal to noise
ratio, the uncertainty induced due to noise may
render the signal useless. Next, this acquired signal
may degrade further within the system. First, an
information loss typically occurs during quanti-
zation in the analog-to-digital converter. Second,
depending on network conditions, part of the data
may be lost due to communication channel errors or

network congestion. Third, in certain applications,
such as those using image sensors, the collected data
may have to undergo lossy compression in order
to meet the bandwidth constraints, resulting in a
further degradation.

• Extrinsic Factors. The signal of interest gener-
ated in the environment must travel through some
medium to reach the sensor transducer. The medium
may attenuate it and the extent of attenuation toler-
ated depends on the transducer noise. Also, obsta-
cles in the medium may block the signal entirely.
These obstacles create occluded regions which are
not sensed by any of the sensors in the network.
While the resource cost and performance trade-
offs for the intrinsic factors may largely be under
the control of the system designer, the deployment
environment and presence of obstacles is usually
not.

In this paper we address the extrinsic factors. Our goal
is to provide methods for sensor networks to actively
measure the sensing medium and determine the presence
of obstacles. Acquiring such a medium model has many
benefits.

First, the model may be used to determine the oc-
clusions to sensing and provide an estimate of sensing
uncertainty. One such method to model the sensing
capacity of a sensor network given the occlusions was
provided in [2].

Second, the network may attempt to overcome the
occlusions. For instance, if some of the nodes are mobile,
they may be moved in order to minimize occlusions.
Even with static nodes, in certain applications it may be
possible to use the medium model to determine choke
points which a target must cross if it has to enter the
occluded regions. Data from such choke points may
be used to estimate presence of targets in occluded
regions. Further, energy resources being spent on sensing
at nodes whose transducers are occluded may be saved,



and devoted to communications, aggregation or other
network activity.

Third, the information on occlusions for each sensor
may help guide the aggregation process when data from
multiple sensors is combined. For instance, a simple
strategy may be to ignore data from nodes which indicate
a detection in regions known to be occluded from their
view.

Additionally, the medium maps may also act as
secondary data inputs for higher layer applications to
help determine context. For instance, the presence of
several tree-trunk shaped obstacles may indicate to the
application that the sensor network is operating in an
outdoor region while the presence of wall and ceiling like
obstacles may help it infer that the network is operating
indoors. Such context information can be used in several
ways.

Sensing performance has traditionally been character-
ized in terms of a sensing range and transducer noise.
We believe that explicit medium information will help
sensor networks provide better performance guarantees
than those based on circular disk models alone.

Environment mapping is commonly studied in robotics
for robot navigation and path control. The use of context
information has been explored in various other domains
such as pervasive computing and location aware services.
However, the nature of context information and mapping
constraints differ in the case of sensor networks. We will
note the commonalities and differences in subsequent
sections.

A. Paper Organization

The next section presents our proposed system archi-
tecture, designed to integrate medium mapping resources
into the sensor network. It also lays out the key design
issues which arise in this design, some of which are
addressed in subsequent sections. In particular, section
III discusses strategies to reduce the time for mapping by
exploiting the structure of the environment and section
IV considers issues in efficient representation, exchange
and update of medium maps in a distributed manner.
Section V summarizes related work and section VI
concludes.

II. SYSTEM ARCHITECTURE

A. Enabling Self-Awareness

We propose a sensor network architecture in which
supplementary sensors are added for medium mapping.

These sensors may not be required for the sensor net-
work application directly, and we refer to them asself-
awareness sensors. The other sensors are referred to as
application sensors. Figure 1 depicts a block diagram
of the proposed architecture. Much of this architecture
design is motivated by the system concerns that arose in
the development of our prototype system, and thus, the
design is tightly coupled to practical considerations of
its use cases.

awareness
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Fig. 1. System architecture, consisting of self-awareness and
application sensors.

The figure reveals one of our key system design
choices: that the self-awareness sensors need not be
present at the same nodes as the application sensors.
There are several reasons for this choice. Firstly, the
self-awareness sensors may be required to be deployed
at a vastly different density than the application sensors.
In our system for instance, the application sensor has a
range of 7.3m1, while the self-awareness sensor has a
range of more than 100m. For a given set of obstacle
locations in the medium, the numbers of the two types
of sensors required may well be different and thus,
adding a self-awareness sensor at every node might be an
unnecessary overhead. Secondly, the medium dynamics
may be much slower than the dynamics of the phe-
nomenon sensed by the application sensors. In this case,
a few mobile self-awareness sensors could acquire and
update the medium map [3] while many more application
sensors actively track the rapid dynamics of phenomenon
of interest.

1Our application sensor is a camera and this range is calculated in
an occlusion-free environment based on a minimum required spatial
resolution of 1cm per pixel.



It may be noted that supplementary sensors have been
used in other ways to reduce sensing uncertainty – such
as the use of magnetic sensors to help augment the
vehicle tracking performance of a video sensor network.
However, the use of self-awareness sensors is not quite
the same thing as the use of multiple sensing modalities.
In multi-modal sensing, the data fusion process is highly
application dependent. If the primary sensor data, the
images in the above example, are used for another
application which is not interested in magnetically active
objects, that supplementary sensor is not of relevance. In
our approach, the application processing is independent
of the self-awareness sensors; the medium information
is used to estimate or improve the quality of application
sensor data, and any application which uses the sensor
data benefits from this.

There are several design issues in the acquisition and
sharing of self-awareness data. Before discussing these
in detail, we describe the prototype system that we
developed for providing a concrete context to explore
this problem space.

B. System Hardware

The self-awareness sensor node in our prototype test-
bed consists of:

1) a laser range sensor, Leica Disto Pro [4],
2) a pan-tilt platform, Directed Perception PTU-D46-

17N, [5], to move the direction of the laser beam,
and

3) an embedded processing platform, Intel Xscale
based Stargate [6].

The laser ranger is interfaced to the Stargate using a
serial port, over which the control commands are sent
to acquire range readings from it. The pan-tilt platform
is also interfaced using a serial port, for sending it
commands to change its orientation. Since the Stargate
has only one directly accessible serial port, we added a
PCMCIA to serial port card to the Stargate for creating
another serial port. The prototype is shown in Fig. 2.

The application sensors used are network cameras
with pan, tilt and zoom capabilities. Thus, these cameras
may reconfigure their orientation using the medium
information provided by self-awareness nodes. The re-
configuration process itself is an interesting research
problem, but is not addressed in this paper.

The remaining components in the test-bed are passive
objects of various shapes and sizes which limit the
sensing range of the application sensors. These are the
obstacles in the medium to be mapped by the self-
awareness sensors. Since we have only fabricated one

Fig. 2. Prototype self-awareness node.

self-awareness node as yet, we emulate multiple self-
awareness nodes by placing the single node at multiple
locations.

C. System Design Issues

Conceptually, the medium mapping process can be
viewed as this: the self-awareness sensors collect data
about the medium characteristics and then provide this
data to the application sensors. Now, there arise several
issues in the process of collecting and distributing such
self-awareness data with minimum resource overhead.

First, the range data must be collected as fast as possi-
ble, in order to enable faster updates and to minimize the
node active time. The naı̈ve method would be to take a
range measurement at a sufficiently fine granularity and
determine which space elements in view are blocked.
However, the environment has certain structure to it
and it is intuitive to expect that if such structure can
be exploited, we can reduce the number of readings to
be collected, thereby speeding up the data acquisition
process. Implementing this procedure on a practical laser
ranger and pan-tilt platform reveals the various issues in
doing this. Our aim is to determine useful strategies to
minimize data acquisition time, which are expected to
work in a wide variety of environments in view of the
system limitations.

Second, the medium map has a significant data size.
This motivates a study of efficient methods for shar-
ing this data among the application and self-awareness
nodes. The storage and communication strategies may
attempt to minimize the data size, but the compression
techniques should not lead to extensive processing over-
heads for retrieval and update. The storage strategies for
a data set typically depend upon the nature of queries that
must be answered using the stored data. Our objective
is to determine the relevant strategies to store and share
medium map data in a manner that enables answering



queries about the medium occlusions for the application
sensors.

These issues are addressed in the next two sections.
There are further design steps required to complete the
self-awareness process. The medium information may
have to appropriately converted to a form that enables the
application sensor to determine which portions of its field
of view are occluded. For instance, in our test-bed the
spatial coordinates of an obstacle may have to be mapped
to the corresponding pixel coordinate in the image taken
by a camera. For the case of cameras, this process is
known as external calibration and existing methods [7]
can be used for this step. Also, self-awareness data from
multiple nodes has to be combined to develop a coherent
medium map. In our test-bed we assume that each node
is localized, in a common coordinate system. Such an
assumption is valid for sensor networks since most nodes
are static and localization is a basic service required
for many other sensor network applications. Given the
location information, the medium data from different
locations can be combined using the appropriate spatial
transformations and we do not dwell on it further.

D. Technology Choice

We have selected a laser range sensor to measure
the medium characteristics. There are other means to
achieve the same functionality. One alternative is to
use stereo-vision to derive depth maps. This approach
has limitations of accuracy compared to a laser sensor
and may miss small obstacles in the environment. Also,
stereo-vision algorithms require detecting key features
in the environment which can then be identified in the
multiple images collected by the cameras in the stereo-
system. It may not work in all environments where such
key features are hard to detect. Further, the stereo-vision
generated depth map is relative and a known dimensional
measure is required in the environment to scale the
depth measurements correctly. These issues motivated us
to use a range sensor. Among range sensors, there are
various options, such as ultrasound ranging and infra-red
ranging. Both these alternatives give lower accuracy than
the laser, and the distance range of the infra-red sensors
is usually lower than that of laser based ones. However,
both these are usually available at a lower cost, and may
be of interest in scenarios where the low accuracy is not
a deterrent. The map acquisition algorithms discussed in
later sections are in fact applicable to these types of range
sensors as well. The data sharing methods developed in
our prototype are applicable to all the above alternatives.

Mapping based on range sensors has also been con-
sidered in mobile robot navigation. While our problem
is similar, the solution is different and the resultant
design issues are distinct. For a robot, medium mapping
is a primary task necessary for navigation. Even if the
environment map was available a-priori, the range sensor
on a robot is actively used to avoid obstacles in the
path. In the case of a sensor network, the demands
from the self-awareness sensor are less stringent. First,
the self-awareness data is not being used for active
navigation of a mobile robot. Each node need not have
a self-awareness sensor. The static nature of most sensor
nodes also enables carrying out the mapping process
at a much slower pace than required for a robot. A
direct consequence of this is in the technology choice
– the laser range sensor used in our work is signifi-
cantly cheaper than those typically used on robots and
has a slower response time for taking range readings.
The pan-tilt actuation used in our prototype is much
slower than required for real time navigation, and can
be achieved with lower energy expenditure. Second, the
assumption on the availability of localization also causes
our work to differ significantly from robotic mapping.
In the case of a team of multiple robots exploring an
unknown environment, the processes of localization and
mapping are dependent [8] on each other. Combining the
maps generated at multiple robots is not straightforward
and different techniques such as maximum sub-graph
isomorphism have been explored for that purpose. On
the other hand, for sensor networks, if localization is
available as is needed for many sensor network applica-
tions, combining the self-awareness data from multiple
nodes is simpler. Thus, the medium mapping problem in
sensor networks is more tractable than the corresponding
robotics problem, and we expect to be able to solve it
with a lower resource overhead.

III. A DAPTIVE MEDIUM MAPPING

There are three basic types of maps [9]:
1) Grid based: These maps divide the space into

discrete elements which are mapped as empty or
occupied [10], [11].

2) Feature based: These maps are a collection of
landmark features in the environment [12], [13].

3) Topology based: These maps represent distinctive
places in the environment as nodes in a graph and
the interconnections or paths between them as the
edges [14], [15].

For the purpose of determining sensing occlusions, the
most relevant maps are the grid based ones. These



provide a detailed model of the sensing medium, based
on which the application sensors may estimate their
sensing performance.

The process to generate a grid based medium map
proceeds as follows. Range measurements are taken by
orienting the laser at varying pan and tilt from a fixed
location to form a depth map for the space around the
self-awareness node. Such depth maps from multiple
self-awareness nodes may then be combined to develop
a medium map for the region of deployment. Figure
3-(a) shows a small section of a possible deployment
environment with obstacles of various shapes. Figure
3-(b) shows one horizontal plane in the depth map
generated by scanning the laser placed at one corner of
the region, and Figure 3-(c) shows a similar scan from
a node placed near another corner. The white regions in
the scans represent clear field of view while the dark
regions represent occluded areas. Note that the second
node does not scan the entire quadrant scanned by the
first one. Both nodes scan 90 degrees. Combining the
two scans for this small section, in the plane represented,
yields the medium map shown in Figure 3-(d). The
occluded regions could either be obstacles or spaces
between obstacles which are empty but not accessible
from the laser locations.

Suppose the medium map is stored as a three dimen-
sional matrix where each entry represents a voxel (a
small volume element) in space. Each entry in the ma-
trix denotes whether the corresponding voxel is empty,
occupied or unknown. Such a matrix is referred to as
an occupancy grid (OG). The data collection task is to
take range readings at different pan and tilt angles and
determine which voxels are empty or occupied. Vox-
els not accessible from a self-awareness sensor node’s
position remain unknown in the OG generated at that
node, and have the same effect as occupied voxels in
the calculation of clear field of view. Entries in the OG
are filled using the range readings taken by the laser
range sensor at different pan and tilt angles. At each
orientation, the voxels along the free line of sight of the
laser are designated as empty.

Let us now consider the practical considerations which
affect the time taken for collecting the laser range
data. Our experience with the laser device used in
our prototype indicates that it must be stationary when
acquiring a range reading, for accuracy of measurement.
If the laser beam is continuously moved, the device still
returns range measurements. However, the time taken to
acquire a range reading increases by an unpredictable
amount, which makes it is impossible to determine the

(a) Sample Deployment Environment

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

(b) Depth map A

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

(c) Depth map B

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

(d) Medium map

Fig. 3. Map generation process.

orientation, and hence the relevant voxels in the OG,
which corresponds to the returned range reading. Thus,
the laser is moved in small steps along the pan and
tilt axis and the readings are acquired when the device
is stationary. With this, the time taken, T, to acquire
a reading at a particular pan and tilt position can be
modeled as consisting of three components:

T = tmove + taxdx + tread (1)

where tmove represents the time taken by the pan-tilt
platform to move to the next position at a constant
speed using the pan and tilt motors,taxdx represents the
additional time taken due to acceleration and decelera-
tion phases in executing the motion step since constant



speed cannot maintained throughout the motion, and
tread represents the time taken for the laser range sensor
to acquire a reading.

The parameterstmove and taxdx depend on the capa-
bilities of the pan-tilt platform, andtread depends on the
laser unit, and the reflectivity and the angle of incidence
of the surface at which the laser beam is pointed. For a
constant pan and tilt range scanned by the laser at a given
granularity, suppose the total angular distance moved is
d and the number of readings taken isN . The total time
taken to execute the scan becomes:

Tscan = d ∗ tmove + N{taxdx + tread} (2)

The time taken thus varies withN . If we reduceN ,
and thus increase the angular step size at which the
laser stops to take a reading,Tscan can be reduced. Our
objective is to generate the OG in a manner that exploits
the structure in the environment in order to reduce the
number of readings taken by the laser.

A. Reducing the Scan Time

For many signals, a frequency spectrum analysis
yields that the signal needs to be sampled only at a
course granularity. Considering the range scan in space
as the signal to be sampled (such as shown in Fig 3-
(b,c)), indicates that the Nyquist sampling interval is
quite small due to the presence of sharp discontinuities in
the environmental features, and the value ofN derived
in this manner is very high. Thus, we need to exploit
other forms of structure in this signal. We propose two
heuristics to exploit such structure. These are described
in terms of the pan motion of the laser2 and the goal is
to minimize the number of readings for a constant pan
scan range.

1) Adaptive Filter Based Algorithm:The first method
is based on the use of an adaptive filter to learn the
medium structure from the readings acquired and when
the laser readings match those predicted based on the
adaptive filter, the scan step size may be increased to
reduce the number of points measured. We refer to this
method as adaptive filter based (AFB) algorithm and
use least-mean-square (LMS) adaptation as our adaptive
filter. LMS is a gradient descent based heuristic for the
filter adaptation. Suppose the filter at time stepi is rep-
resented by a lengthn column vectorh(i), the previous
n values of the scan are represented by a column vector
x(i), and e(i) is the error in the prediction, calculated
using:

e(i) = h
T(i)x(i) − x(i + 1) (3)

2Similar methods apply to tilt motion.

where x(i + 1) is the measurement at time step(i +
1). Then the gradient search equation to minimize the
square-error becomes:

h(i + 1) = h(i) − µ ▽ (|e(i)|2) (4)

where the gradient▽(·) is taken with respect to filter
coefficientsh, and µ is a constant step size for the
gradient descent. Simplifying the above expression leads
to a computationally efficient filter update equation:

h(i + 1) = h(i) − µe(i)x(i) (5)

We deviate slightly from the conventional LMS filter
in that the step size at which readings are taken varies as
we adapt the angular step size using the AFB algorithm.
Whenever the prediction errore(i) is below a threshold,
we increase the angular step size for the laser pan
motion, as described in the next subsection. The step
size cannot be increased beyond a certain limit which
depends on the size of the smallest feature of interest to
be mapped. The problem of adaptive filter design is not
addressed as part of this work; several adaptive filters are
available, and may be explored depending on the specific
needs of the system [16].

2) Adaptive Linear Prediction Algorithm:The second
method is more domain specific and exploits the nature
of the signal being sampled. Since adaptive filters are
not specially designed for depth maps, they require
significant learning data. However, observe that when
sampling at a fine granularity, many of the surfaces in
the medium, especially for indoor built environments,
can be approximated as consisting of small planes, or
in one plane of pan motion, a curve consisting of small
line segments. When scanning this curve, the number
of samples taken need only be sufficient to reproduce
the line segments. Thus, when range data indicates that
the laser is taking measurements along a line, we may
increase the angular step size of the pan motion.

This prediction method proceeds as follows: Deter-
mine the coordinates of the points on the sampled curve
corresponding to the previous two range readings. Use
these to determine the equation of the line joining them.
Now predict the coordinates of the next point along this
line, which the laser will hit when moved by its current
angular step size. At the next laser pan step, calculate
the error between the predicted point and the measured
point. If the error is below a threshold, increase the
angular step size. The exact algorithm to control the
step size appears in the next subsection. We will refer
to this method as the adaptive linear prediction (ALP)
algorithm.



Some further improvements can be applied to both the
AFB and ALP algorithms as described below.

First, when the laser range extends beyond the area of
interest, such as when the laser is near an edge of the
deployment area, we need not scan the exact structure
of the medium and may increase the angular step size
to the maximum limit dictated by the minimum obstacle
size to be detected. The step size would be reduced as
soon as a feature of interest is detected within the region
of interest.

Second, for a given angular step size, the scan reso-
lution in space varies with distance from the laser. This
can be seen in Fig. 4: the spatial resolution∆α is higher
than ∆β for the same angular step∆θ. Thus,∆θ may
be increased when scanning obstacle A, as the OG is
stored at a constant resolution in space.

∆θ ∆β

∆θ
B

∆α
A

Fig. 4. Varying spatial resolution with obstacle distance.

Third, when the step size has been increased using an
adaptive method and a high error is encountered, it is
likely that a large change in the scanned depth occurred
in the region between the current and the previous
readings. Thus, if we back-track, i.e., move the laser
back to the previous position and then scan the region
of large change using a small step size, the quality of
reproduction can be improved significantly with a small
increase in the number of readings taken.

B. Algorithm Implementation and Evaluation

The precise ALP and AFB algorithms derived from the
above discussion are stated together in Fig. 5. The key
difference among the two algorithms is in the prediction
step. The values of parameters used are summarized
in Table I. The parameter∆θ0 represents the mini-
mum angular step size required to achieve a desired
spatial resolution, for the maximum laser range in the
environment. The step sizeµ was chosen to be 0.03.
Larger step sizes were tried, and while they yield faster
convergence and somewhat lower error, they lead to
divergence of the LMS filter in some cases. The filter
length was kept atn = 3. A larger filter length can
learn more complex shapes but needs a longer adaptation

1) Initialization: Set ∆θ = ∆θ0. Take firstM
range measurements by panning the laser in
steps of∆θ. Setk = 0, i = 0.
If method is AFB, initialize adaptive filterh
to zeros.M = length(h).
If method is ALP,M = 2.

2) Prediction: Predict the next point, based on
previous M readings (using AFB or ALP
methods described in previous subsection).

3) Measurement:Pan laser by∆θ and take next
reading.

4) Update: Calculate errore(i) between the pre-
dicted point and measured point.
IF e(i) < ethresh:

a) Setk = k + 1.
b) Set∆θ = ∆θ0 + kδ

c) IF ∆θ > ∆θmax, Set∆θ = ∆θmax

d) For AFB, updateh using equation (5).

ELSE
a) Setk = 0.
b) Set∆θ = ∆θ0.
c) Back-track: Move laser to previous pan

position.

5) If scan not completed, seti = i + 1, and go
to step 2.

Fig. 5. Adaptive step size control algorithm for medium mapping.

time and the signal characteristics may change over such
time as the laser moves from one obstacle to another
with different a shape. Optimizing the LMS filter for
various environment categories is part of future work.
We now evaluate these algorithms by comparing them

Parameter Value
ethresh 1 cm

µ 0.03
length(h) 3

δ 0.05◦

∆θmax ∆θ0 + 1◦

TABLE I

ALGORITH PARAMETER VALUES.

to a constant step size approach, both using simulations,
which allows testing over several obstacle placements,
and using experiments on our prototype hardware.

1) Simulations: To test the proposed methods, we
generate several random obstacle placements in a square
region, place the laser ranger in one corner of the



square and simulate the range readings that would be
collected when the laser is panned with the step size
computed as per the adaptive methods. As a base case,
the readings are also generated if the laser were to
be panned with a periodic step size kept at∆θ0. The
obstacles generated are rectangles and circles, placed
randomly and overlapping with each other leading to
arbitrary shaped obstacles, such as shown in Fig. 6(a).
Ten such random obstacle topologies were generated. A
simulated laser scan using adaptive step sizes is shown in
Fig. 6(b), where the varying step size between successive
pan positions is apparent, and the back-tracking near
obstacle edges may be seen as well. The angular step
size increases as the filter learns a curve and falls back
again when the curve changes significantly.

Error performance of a scan is calculated as follows.
From the application perspective, the OG generated from
the range scan data is of interest. A high resolution peri-
odic scan is first carried out and the OG generated from
it is used as the ground truth. Then, for each simulated
scan, the corresponding OG is generated and the error is
measured in terms of the number of voxels which differ
with respect to the ground truth OG. A two dimensional
OG is used for the simulations, considering only the
pan motion of the laser. The exact same techniques can
be applied in the tilt direction as well to generate the
three dimensional OG. The number of differing pixels is
normalized by the number of total pixels in the OG, and
the error is plotted as a percentage.

For each topology, multiple scans are carried out with
∆θ0 varying from0.09◦ to 0.9◦. Increasing∆θ0 implies
reducing the resolution of the scan and thus increasing
the error. For each scan, we count the number of readings
taken when a periodic scan is used and when the adaptive
algorithms are used. To compare the savings in time
when using the adaptive methods, we plot the number
of readings taken for the same error using the periodic
and adaptive schemes.

The simulation data needs to be averaged over the
random topologies. Since each topology may lead to
different error values with varying∆θ0, the number of
readings,N , required cannot be directly averaged. We
divide the error axis into small intervals and consider
the average of number of readings taken for error across
multiple topologies divided into these intervals. These
averaged plots are shown in Fig. 6(c). The error-bars
show the standard deviation across multiple topologies.

The figure shows that at low error the adaptive scans
require much fewer readings than the periodic scan.
Among AFB and ALP, ALP performs better since it
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Fig. 6. Comparing the number of readings taken with varying error
performance for the three scanning strategies.

is designed specifically for the nature of the sampled
signal. As the angle step is increased for the periodic
scan, the error increases and the number of readings re-
duces. However, the advantage due to adaptive methods
dwindles as the step size for the periodic scan has also
increased. The portions of the scan where the adaptive
methods can use an increased step size now form a
smaller fraction of the total scan.

2) Experiment:We now experimentally compare the
performance of these algorithms using our prototype
self-awareness node. Apart from validating the imple-
mentation of our proposed methods on an embedded
platform, the experiments include additional effects not
modeled in the simulations. First is the presence of
sensing errors in the laser readings and pan motion.
Secondly, while in the simulation, only the number of
readings could be plotted, in the experiment we can
measure the total savings in time. These includes the
time for motion and the time for taking a laser reading.
The time for taking a laser reading varies with the color
of the surface scanned and even for the same number of



readings, the difference in the positions of those readings
on some dark colored spots in the environment may
cause an increase in time consumed; such effects were
not modeled in the simulation.

The environment used in our experiment was a2m

square space with some objects placed as obstacles. The
results are shown in Fig. 7. The better adaptive method,
ALP, was only used.
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Fig. 7. Comparing the adaptive and periodic scan strategies using
the prototype self-awareness node.

These results are similar to those seen in simulations.
The evaluation clearly shows that significant savings in
time can be achieved using the adaptive methods.

Apart from the savings in time, another side effect of
the adaptive methods is a saving in storage and commu-
nication overhead as discussed in the next section.

IV. SHARING THE SELF-AWARENESSDATA

After each laser sensor has collected the range scan,
using either a periodic scan or the adaptive methods,
the data at each self-awareness node must be used to
determine the medium occlusions at each application
node. There are several design choices in doing this,
differing in how the data is stored and how the depth
maps from multiple laser sensors are combined.

Data-sharing schemes depend on the nature of queries
that need to be answered based on the stored data. In
our system, the application sensors are only interested
in determining the occluded regions from their point
of view. The individual occupancy grid (OG) generated
by a laser scan (such as seen in Fig. 3(b)) may be
stored at each laser node. To generate the medium map
all laser nodes with overlapping fields of view must
transmit their OG’s to a common location where the
medium map is then computed. The individual OG’s

are first translated along the spatial axes in a global
reference frame, depending on the laser coordinates and
then an ‘OR’ of their overlapping voxels is computed.
The OR operation assumes that the occluded voxels
(obstacle surfaces or unknown) are stored as zeros and
the clear regions as ones. This generates a combined OG,
referred to as the medium map (as was seen in Fig. 3(d)).
Relevant portions of such a medium map once generated
can be distributed to each application sensor.

A. Computing the Field of View at Application Sensors

We can improve the above process if we observe
that the medium map need not be calculated centrally
for the application sensors to be able to calculate their
occlusions. Each self-awareness node need not compute
its OG, but may just store the raw coordinates of the
points scanned by the laser ranger. Let us refer to
these points as range coordinates. The range coordinates
which were used to compute the OG’s seen in Figures
3(b) and 3(c) are shown in Figures 8(a) and 8(b). We
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Fig. 8. Range coordinates used to compute occupancy grids (OG’s)

present a distributed method using which the raw range
coordinates at the individual laser nodes are directly used
by the application sensors to determine their occlusions.

Suppose the nominal range of the laser is known to be
Rl, and that of the application sensor isRs; the actual
ranges may be much shorter due to presence of obstacles.
An application sensor now access those laser nodes
which are within Rl distance, and queries the range
coordinates stored by the laser, as well as the coordinates
of the laser itself. The application sensors now computes
its own OG’s, to represent which voxels in their field
of view are unoccupied, as follows: connect the laser
node coordinates to each of the range coordinates, and
all voxels through which the connecting lines pass are
deemed to be unoccupied. The application sensor only
generates the OG for a circular area of radiusRs around
it and not the entireRl.



As an illustration, consider the3m× 3m area seen in
Fig. 3 and the corresponding range coordinates in Fig.
8. Laser A was placed at(x, y) = (0, 0) and laser B was
placed at(2.22, 2.15). Suppose an application sensor,
say, a camera with full 360◦ pan range, is placed at
(0.5, 1), and hasRs = 1. It first accesses the range
coordinates from laser A and computes its local OG
by checking which pixels are unoccupied, as shown
in Fig. 9(a). The OG is computed at a resolution of
1cm, which means that each grid point in the OG is
separated by1cm. Next, it accesses the range coordinates
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Fig. 9. Example: Generating a combined OG directly at the
application sensor.

from laser B. Again, it connects the range coordinates
with the laser coordinates and computes the unoccupied
pixels, thus discovering further pixels in its OG which
are unoccupied. This OG is seen in Fig. 9(b).

B. Evaluation

In our proposed approach, no global medium map is
generated. This approach has several advantages com-
pared to the laser nodes first generating their OG’s,
exchanging them, generating the medium map and then
distributing it to the application sensors.

Memory Requirements: The application sensors cal-
culate the OG only within their sensing range,Rs. The
size of the OG is proportional to the cube ofRs (or
the square ofRs when only the horizontal plane is
considered). IfRs < Rl, which is the case in our
system, this means that each application sensor has to
compute a much smaller OG than at a laser node. This is
significant, since embedded nodes have limited memory,
and increasing the memory size in increases their power
consumption and cost.

Communication and Storage Overhead:The com-
munication overhead in our approach is only the data-
size of the range coordinates. This is significantly lower
than the OG at a laser, and the combined OG’s (medium

maps) generated using the data from multiple lasers.
For instance, at a resolution of1cm, the size of the
OG matrix in two dimensions is104 binary values per
square meter, while the range coordinates only store a
few points corresponding to obstacles in the same area.
The number of points stored can further be reduced using
the adaptive methods discussed in the previous sections.

It may be noted that the OG need not be commu-
nicated in its raw form but could be compressed using
a data compression or image compression method. Our
approach of storing range coordinates can be viewed
as a domain specific compression scheme which is
expected to perform better than the general compression
techniques. Fig. 10 shows the storage space required
for our proposed approach with Periodic, AFB, and
ALP methods, as well as that required for storing the
OG when using a data compression technique: TIF-
packbits compression, which is a lossless compression
method exploiting the repetition of bits, and an image
compression technique: JPEG, which uses a transform to
derive an efficient data representation. The sizes are for
the same data sets as generated in the previous section.
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Fig. 10. Comparison of data size for multiple storage strategies,
with varying scan error.

Our storage approach clearly has lower data size. Also,
the general compression methods operating on the OG as
a whole are unable to achieve any significant reduction
in size as the tolerable reproduction error is increased
by reducing the number of range coordinates. Reduced
data size saves communication energy, bandwidth, and
the energy required to write to flash memory.

A trade-off in this approach is that for an application
sensor, the time to compute the OG from the range
coordinates is larger than the time to decompress a



medium map image if sufficient memory is available to
hold the entire medium map. However, the computation
of the OG from range coordinates is carried out over only
the application sensor’s range, a much smaller region
than the medium map generated by the laser nodes.
Thus, computation time is not significant, and when
memory is limited, it may in fact be lower than the
image decompression time. Further, computation costs
are typically lower in sensor nodes than the costs of
flash memory writes and communications, and hence this
approach is still preferred.

Resolution Flexibility: The application sensor is free
to compute its field of view at a much lower resolution
than the data generated at the laser. Without application
information, the laser node may have to compute the
medium map at the highest resolution possible with the
collected data, and generate a much larger OG matrix
than required.

Reduced Remote State Dependence:The proposed
method is completely distributed, and dependence on
the state of remote nodes is minimal. Firstly, no data
exchange is required among the self-awareness nodes.
SinceRl may be large, such communication may have
required data to be sent over large distances. Reducing
this overhead saves significant bandwidth. Secondly, the
application sensors are not required to know the state
of progress of the self-awareness nodes coordination
and determine if the combined medium map has been
generated. They may access each self-awareness node’s
data asynchronously. Such reduced state dependence not
only simplifies design in distributed systems but also
helps improve system robustness because in case of a
node’s failure, its effect on other nodes is reduced. The
modular and decoupled operation yields a significant
advantage when the sensor network is executing multiple
applications and services.

Efficient Updates: The medium may change over
time and our data sharing method allows for efficient
updates. First, transmitting only the range coordinates to
the application sensors reduces the size of data commu-
nicated. This approach has at least as much advantage
in communication overhead as seen in Figure 10 with
respect to the size of the update data to be exchanged.
Second, the asynchronous data access mode, rather than
having to wait for the self-awareness nodes to generate
a coherent map, allows for update information to be
incrementally incorporated with minimal delay as and
when the medium changes.

The updates may be exchanged using either a push or a
pull approach. In the push approach, the laser nodes send

an update to the application sensor whenever a change
is detected and in the pull approach, the application
sensor queries the laser nodes for updates. Depending
upon the nature of the deployment, one of these methods
would be preferred. For instance, if the medium changes
infrequently, then the self-awareness nodes may push the
updates. This saves the overhead of the application nodes
periodically polling for updates when not many updates
are expected. However, if medium changes are frequent,
the push approach will lead to a high overhead. In this
case, the application sensors should query for updates
at the frequency they require. The pull approach is also
useful for power management as it allows application
sensors to enter low power modes without worrying
about medium changes when they are not even sens-
ing. In our system we have selected the pull approach
to keep the update process at each application sensor
decoupled from the self-awareness node’s operation. The
laser periodically collects data and publishes it at a
known location. In our prototype, we use the common
HTTP protocol for data exchange. The range coordinate
data is stored in a web accessible folder on the self-
awareness node. The application sensors access this data
as required.

There are other enhancements possible to the update
process if the overhead of maintaining remote nodes’
state is acceptable. For instance, each self-awareness
node may maintain the locations of the application sen-
sors which access it. Then, it could compute which por-
tions of its range coordinate data affect each application
sensor. In case of updates to the range coordinates data,
the laser would compute which application sensors are
affected and publish a flag indicating such change. Now,
when an application sensor accesses a self-awareness
node, it first looks at the update flag corresponding to
itself. If the flag indicates that the data has changed, it
downloads the new data, else the unnecessary commu-
nication cost of the redundant update is eliminated.

V. RELATED WORK

While the use of medium characterization methods
specifically for sensor networks is little explored, several
related aspects of the problem have been researched.
The most closely related problem is that of mapping
in robotics, such as discussed in [11], [10], [8] among
many other works. Our problem differs as we do not need
to support simultaneous mapping and localization. Also,
since localization may be decoupled from mapping in
sensor networks, the problems of combining the medium
maps from different sensor nodes differs significantly



from robotics. Further, the sensor nodes are only in-
terested in computing the occluded regions, rather than
generating a global map for navigation. This allows us to
use lower resource overheads and use simpler methods
than required for robots.

Learning world models for enhancing computation
performance has also been considered for context aware-
ness and location aware computing [17], [18]. These
are orthogonal to the medium characterization problem
for sensor networks since the nature of queries about
the world are very different. Those world models are
designed to help the system determine where the user
is, what activity the user is engaged in and the state of
the objects in the user’s environment. In sensor networks
on the other hand, the query of interest is the location of
occlusions for the sensor. The use of medium mapping
was also considered in [3]. However, adaptive methods
to optimize the scanning process were not considered.
Also, their system involved only one mobile mapping
node and distributed mapping and data sharing methods
were not relevant.

Another related body of work is the design of adaptive
filters for predicting a signal from its previous values
[16]. We use these methods in our specific context
of adapting the sampling step size. We also propose
a different prediction method specific to the problem
domain using linear extrapolation. The use of varying
sampling step size was also considered in [19] to reduce
the number of samples taken but their techniques were
not designed for mapping obstacles.

VI. CONCLUSIONS

We have considered the problem of determining sens-
ing occlusions for allowing sensor networks to estimate
the uncertainty in their coverage and when possible
take recuperative measures. Measuring these extrinsic
factors is a significant addition to developing noise
models and other intrinsic system uncertainties, in order
to control the sensing performance of sensor networks.
We proposed distributed medium mapping methods and
improved data collection and sharing procedures de-
signed specifically for the nature of constraints in sensor
networks. These methods were evaluated both in sim-
ulations and in experiments conducted on a prototype
self-awareness node that we have built.

While this work forms an important first step toward
realizing the autonomous operation of sensor networks
with performance control, several new issues were re-
vealed during our development process, which are yet
to be explored in greater depth. One of these is the

intelligent separation of mobile events from obstacles,
so that depth maps are not generated based on transient
occlusions such as due to human motion within the
network. Further, the application specific trade-offs in
the push vs pull methods for updates may be studied in
more detail.
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