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Abstract 
Unit tests are popular, but it is an art to write them in a way that specifies a program’s behavior 
well and it is laborious to write enough of them to have confidence in the correctness of an 
implementation. Symbolic execution is an approach that can help. We describe techniques for 
unit testing based on symbolic execution. These techniques can be used to increase code 
coverage by finding relevant variations of existing unit tests, and they can be used to generate 
unit tests from an implementation automatically when no prior unit tests exist. The adoption of 
symbolic analysis techniques in commercial testing tools has already begun. 



 3

Introduction 
 
Unit tests are becoming popular. A recent survey at Microsoft indicated that 79% of developers 
use unit tests [1]. Unit tests are written to document customer requirements, to reflect design 
decisions, to protect against changes but also, as part of the testing process, to achieve certain 
code coverage which in turns leads to a high confidence in the correctness of the program.  
 
The growing adoption of unit testing is due to the popularity of methods like XP [2] (“extreme 
programming”) and test execution frameworks like JUnit [3]. XP promotes Test-Driven 
Development (TDD) [4], where unit tests are written to guide the implementation of features. 
But these unit tests usually cover only very specific cases, and XP doesn’t say when enough tests 
have been written. Test execution frameworks automate only test execution; they also do not 
automate the task of creating a comprehensive set of unit tests. Writing all unit tests by hand can 
be a laborious undertaking. In many projects in Microsoft there are more lines of code for the 
unit tests than for the implementation being tested. Are there ways to automate the generation of 
good unit tests?  
 
We think the answer is yes, and this is the topic of the article. We describe parameterized unit 
testing with symbolic execution. Although first envisioned in 1976 [5], symbolic execution has 
only recently become feasible in practice. This advance is due to improvements in hardware and 
the development of better algorithms for automatic reasoning. 
 
The techniques we describe can be used in several ways. We use symbolic execution to find 
inputs for parameterized unit tests that achieve high code coverage; we turn existing unit tests 
into parameterized unit tests; and we generate entirely new parameterized unit tests that describe 
the behavior of an existing implementation. 
 
Parameterized unit tests describe behavior more concisely than traditional unit tests; in fact, 
parameterized unit tests can serve as specifications.  
 
Both traditional testing and TDD benefit from these techniques because test inputs – including 
the behavior of entire classes – can often be generated automatically from compact 
parameterized unit tests. 
 
In the rest of this article, we will introduce the concepts and illustrate the techniques with some 
examples. We assume that we test deterministic, single-threaded applications. 
 
Symbolic execution has been implemented in many frameworks, e.g. as an extension to Java 
PathFinder [6] for Java, and XRT [7] for .NET.  
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What are unit tests? 
A unit test is a self-contained program that checks an aspect of the implementation under test. 
Here is an example of a unit test that checks the interplay among .NET’s ArrayList  operations. 
The example is written in C#, omitting the class context.  We omit visibility modifiers like 
public for brevity. 
 
  void AddTest() { 
    ArrayList a = new ArrayList(1); 
    object o = new object(); 
    a.Add(o); 
    Assert.IsTrue(a[0] == o); 
  } 

 
First, the test creates an ArrayList with capacity 1. An array list is a container whose size may 
change dynamically. Internally, it uses a fixed-length array as backing storage.  The array list’s 
capacity is the allocated length of its current backing storage. Next, the test creates an object and 
adds it to the array list. Finally, the test checks that the array list at position 0 contains the newly 
inserted object. 

Parameterized unit tests 
Traditional unit tests do not take inputs. A natural extension would be to allow parameters. For 
example, the above test could be parameterized over the initial capacity of the array list: 
 
  void ParameterizedAddTest(int capacity) { 
    ArrayList a = new ArrayList(capacity); 
    object o = new object(); 
    a.Add(o); 
    Assert.IsTrue(a[0] == o); 
  } 

 
This test is more general than the original test. Parameterized unit tests like this one can be called 
with various input values, perhaps drawn from an attached database. 
 
Unit testing frameworks that support parameterized unit tests sometimes refer to them as data-
driven tests (e.g. in [8]).  

Parameterized unit tests separate concerns 
Parameterized unit tests are a natural way to separate two concerns.  On the one hand, they can 
be read as specifications. On the other hand, their instantiations give certain coverage of the code 
of the implementation.  
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Here is another parameterized version of the array list example that describes the normal 
behavior of the Add method with respect to two observers, the property Count and the indexing 
operator []. 
 
  void AddSpec(ArrayList a, object o) { 
    if (a != null) { 
      int len = a.Count; 
      a.Add(o); 
      Assert.IsTrue(a[len] == o); 
    } 
  } 

 
Let’s look at the tested code. Figure 1 shows the implementation of .NET’s ArrayList class. 
 
  class ArrayList … { 
    object[] _items; 
    int _size, _version; 
 
    ArrayList(int capacity) { 
      if (capacity < 0) throw new ArgumentOutOfRangeException(…); 
      _items = new object[capacity]; 
    } 
    int Add(object value) { 
      if (_size == _items.Length) EnsureCapacity(_size + 1); 
      _items[_size] = value; 
      _version++; 
      return _size++; 
    } 
    void EnsureCapacity(int min) { 
      if (_items.Length < min) { 
        int newCapacity = _items.Length == 0 ? 16 : _items.Length * 2; 
        if (newCapacity < min) newCapacity = min; 
        … 
        object[] newItems = new object[newCapacity]; 
        Array.Copy(_items, 0, newItems, 0, _size); 
        _items = newItems; 
        … 
      } 
    } 
    object this[int index] { 
      get { 
        if (index < 0 || index >= _size) throw new ArgumentOutOfRangeException(…); 
        return _items[index]; 
      } 
      … 
    } 
    … 
  } 

Figure 1: Relevant excerpt of .NET’s ArrayList implementation 
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The implementation of the Add operation has two code paths, one for the case where the capacity 
is sufficient to accommodate the new value and one for the case were additional storage must be 
allocated in EnsureCapacity.  
 
If we call the AddSpec method shown above with inputs 
 

AddSpec(new ArrayList(0), new object()); 
AddSpec(new ArrayList(1), new object()); 

 
we execute exactly those two code paths. Assuming that the contract for EnsureCapacity is 
obeyed, i.e.,  EnsureCapacity guarantees that the _items array is resized so its length is greater 
or equal _size + 1  (and not considering possible integer overflows or memory allocation 
exceptions), the assertion embedded in AddSpec holds for all array lists and all objects. Note that 
we don’t need any other input to test Add, since any other input will execute exactly the same 
paths as the two inputs mentioned above.  
  

Automatically generating unit tests 
Techniques for automating test case generation are a research topic with practical relevance. In 
this article we present techniques that we implemented in the prototype tools UnitMeister [9] and 
AxiomMeister [10]. The tools can 
  

• Generate unit tests. Given an implementation it is possible to generate parameterized unit 
tests that describe its behavior. Such tests can be used when refactoring code and they 
help in program understanding. 

• Generalize existing unit tests. If we already have unit tests, we can generalize them to 
parameterized unit tests.  

• Instantiate parameterized unit tests. If we have parameterized unit tests, there are often 
ways to automatically deduce sensible inputs that guarantee maximal coverage with a 
minimal number of test cases.  

 
Figure 2 gives an overview of how these topics are related.   
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Figure 2: Connections between traditional and parameterized unit tests. 

 

Symbolic execution 
Symbolic execution is a way to analyze the behavior of a program for all possible inputs. Instead 
of supplying the normal inputs to a program (e.g. concrete numeric values) one supplies symbols 
that represent arbitrary values. Symbolic execution proceeds like normal execution except that 
the values computed may be expressions over the input symbols.  
 
Symbolic execution builds a path condition over the input symbols. A path condition is a 
mathematical formula that encodes data constraints that result from executing a given code path. 
For example, recall the Add method of the .NET ArrayList class given above. When symbolic 
execution reaches the if-statement, it will explore two execution paths. The if-condition is 
conjoined to the path condition for the then-path and the negated condition to the path condition 
of the else-path. Figure 3 shows the path conditions of the ParameterizedAddTest method we 
saw earlier. 
 
Finding concrete input values that satisfy each path condition provides full path coverage with 
the minimum number of test inputs. If the number of paths is finite and the test passes for test 
inputs for each path, we have in fact proven the implementation for the parameterized unit test: It 
cannot fail for any inputs. 
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Symbolic execution systematically unfolds loops and recursion. The resulting number or length 
of paths might be too large to analyze (or even infinite). In general the existence of unbounded 
numbers of execution paths due to loops and recursion is a limitation of symbolic execution. 
However, approximation techniques can be applied. For example, it is possible to analyze loops 
and recursion up to a fixed number of iterations.  
 
 

 
 

Figure 3. UnitMeister’s visualization of possible execution paths for for ParameterizedAddTest. 
In the tree, the condition (0 != capacity) is the condition of the above if-condition in terms of 
the test’s symbolic input capacity. The ovals show the conditional branch points encountered on 
each execution path. The outgoing edges represent possible evaluations of the conditions. The 
rectangles represent path terminations with exemplary concrete assignments. 
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Deciding feasibility 
A path is infeasible if no concrete inputs exist that would cause this path to be taken. In such 
cases the path condition is self-contradicting. Such infeasible paths can be pruned away during 
symbolic execution. 
 
Constraint solving and automatic theorem proving techniques can often decide whether a path 
condition is feasible. For example, efficient decision procedures for linear arithmetic problems 
exist. If the implemented decision procedures cannot decide the feasibility of a path condition , 
we can either prune the path, which leads to an under-approximation of the possible behaviors of 
the program (not all possible behaviors will be found) or we can include it in the exploration, 
which leads to an over-approximation (execution paths are considered which cannot arise in 
reality). 

Reusing parameterized unit tests in symbolic execution 
Decision procedures often simplify expressions according to certain rules in order to better 
reason about them. For example, a + 0 simplies to a.  
 
Parameterized unit tests can be interpreted as rules, too! We can rewrite our unit test 
mathematically as a universally quantified conditional expression. A universally quantified 
expression says that for all x some Boolean condition p(x) holds. For example, the AddSpec says 
that for every ArrayList a and object o, we have  
 

(a == null or let len be a.Count in (a.Add(o) followed by a[len] == o)).  
 
Once the validity of a parameterized unit test has been established we can add it as a rule. As a 
consequence, symbolic execution does not have to execute the code of the Add method and the 
index operator anymore, but it can treat the array list operations like integer operations when 
building up and reasoning about constraints. When software is designed as a layered system, this 
technique can help make symbolic execution scale. 

Instantiation of parameterized unit tests 
The goal of instantiating parameterized unit tests is to obtain concrete test cases with high 
coverage of the tested implementation. How many instantiations should we consider? And which 
values should be chosen to instantiate a parameterized unit test?  
 
Symbolic execution can help in answering those questions: it yields a set of paths characterized 
by their path conditions. We need only consider a set of paths that gives us the coverage we 
want. If we want path coverage we have to execute all feasible paths of the implementation. If 
we want to have a weaker coverage like branch coverage we limit symbolic execution so that it 
only tries to cover branches. In any case, for each chosen path we need only one instantiation 
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fulfilling the path condition, since we know that all instantiations follow exactly the same code 
path.  
 
We use constraint solving techniques to find instantiations of path conditions. Constraint solvers 
often operate over finite domains, like integer ranges. This means that in the case of 
parameterized unit tests the user must provide a set of values to choose from. As an alternative to 
exact solutions, random values can be chosen as an approximation.  For example, Cute [11] uses 
random inputs when constraint solving fails. 
 
Constraint solvers are not well suited to create objects and bring them into a desired state, so we 
have developed a technique to deal with objects, too.  

Symbolic mock objects  
In testing, mock objects are often used to imitate the behavior of actual software components. A 
mock object has a lightweight implementation that realizes only a fraction of the full 
functionality of the software component it impersonates. But what should be the behavior of a 
mock object and how many behaviors do we have to consider? Can we generate mock objects 
automatically? 
 
Symbolic mock objects provide an answer. For a well defined interface a symbolic mock type can 
be synthesized to represent an arbitrary implementation of the interface. The behavior of a 
symbolic mock object is not fixed in advance. In a manner similar to introducing symbols for the 
parameters of a unit test, we introduce a new symbol to represent the result of each call to a 
method of a mock object; we can compute concrete mock objects by solving the path conditions 
involving this symbol.  

Unconstrained mock objects 
Unconstrained mock objects often allow the symbolically executed code to behave in an 
unexpected way. They obey the type system, but they may not respect other, often implicit, 
behavioral assumptions.   
 
Consider the following example:  
 
  interface INumberProvider { 
    int GetNumber(); 
  } 
 
  int Compute(INumberProvider x) { 
    return Math.Abs(10 / (x.GetNumber() + x.GetNumber())); 
  } 
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Let’s suppose that Compute should return a non-negative result. We can express this constraint as 
a parameterized unit test: 
 
  void ComputeSpec(INumberProvider x) { 
    int result = Compute(x); 
    Assert.IsTrue(result >= 0); 
  } 

 
We can symbolically execute ComputeSpec with a symbolic mock object for the parameter x. To 
represent the result of each method call on a symbolic mock object, symbolic execution 
introduces a new symbol. Since ComputeSpec calls Compute, which calls GetNumber twice on x, 
symbolic execution creates two symbols. Again ignoring integer overflows, the parameterized 
unit test gives rise to two execution paths: for the normal execution the sum of the results of the 
two GetNumber calls must be greater or equal 0; for the exceptional execution the result of the 
two calls must be 0, which triggers a division by zero exception error.  
 
Here are the generated implementations of the mock objects: one for the normal execution, one 
for the exceptional execution. The internal _GetNumber_counter distinguishes the different calls 
to GetNumber from each other.   
 
  class MockClass0 : INumberProvider { 
    static int _GetNumber_counter; 
    int IComponent.GetNumber() { 
      switch (_GetNumber_counter++) { 
        case 0: return 713; 
        case 1: return -9; 
        default: throw new InvalidOperationException(); 
      } 
    } 
  } 

 
  class MockClass1 : INumberProvider { 
    static int _GetNumber_counter; 
    int IComponent.GetNumber() { 
      switch (_GetNumber_counter++) { 
        case 0: return 0; 
        case 1: return 0; 
        default: throw new InvalidOperationException(); 
      } 
    } 
  } 

 
Note that MockClass1 will cause the unit test to fail. But in unit testing, mock objects are often 
introduced to substitute only “friendly” components. We can adapt symbolic execution 
correspondingly: when during symbolic execution a failure can be traced back to a return value 
of a supposedly friendly mock object, such a failure is simply pruned. For example, the 
MockClass1 wouldn’t be generated if we only want to have friendly mock objects. 
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Constrained mock objects 
It is often desirable to restrict the degrees of freedom available to a mock object. For example, a 
hash table only functions as expected if the keys follow certain rules regarding the properties and 
interplay of the GetHashCode and Equals methods. We can write this requirement as a 
parameterized unit test:  
 
  void GetHashCodeEqualsSpec(object x, object y) { 
    if (x != null && x.Equals(y)) 
      Assert.IsTrue(x.GetHashCode() == y.GetHashCode()); 
  } 

 
As before, this parameterized unit test can be interpreted as a mathematical formula and added to 
the rules of a theorem prover. The theorem prover can assist in making sure that mock objects 
obey the rules. We call such restricted mock objects constrained.  

Generalization of existing unit tests 
Many unit tests exist already. Generalization is a way to automatically turn these into 
parameterized unit tests which are more expressive and achieve higher code coverage. The idea 
behind generalization is to refactor the unit test by promoting the concrete values that appear in 
the body of the test to parameters. As discussed above, symbolic execution finds possible 
execution paths through the generalized test.  
 
Different execution paths might be possible. Some may lead to failures. We distinguish two 
kinds of failures: 
 

• Failures which can be corrected by adjusting the test text. For example, when an 
assertion fails, it can simply be removed, and when an unexpected application exception 
is thrown, a try-catch block can be introduced. This is a simple form of specification 
inference. 

• Failures which indicate a programming error like a division-by-zero error. These errors 
result from violations of implicit preconditions of the implementation. We treat such 
cases like successful execution paths, for which we do not adjust the test text. Executing 
these paths’ instantiations will exhibit the errors. 

 
Let us look at the AddTest method given above. We promote the values 1 and 0 to test parameters 
x and y respectively. Using symbolic execution, our tool finds all cases which completely cover 
the feasible execution paths of the tested implementation that do not result in an exception and 
pass the assertion. As we already know, there are two cases depending on the choice of the initial 
capacity. The tool chooses solutions for x and y. 
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Instantiations for GeneralizedAddTest0 X y 
Case 1 (enough capacity from beginning) 1 0 
Case 2 (insufficient initial capacity) 0 0 
 
  void GeneralizedAddTest0(int x, int y) { 
    ArrayList a = new ArrayList(x); 
    object o = new object(); 
    a.Add(o); 
    Assert.IsTrue(a[y] == o); 
  } 

 
Three cases cover all failures. In each failure case, the ArrayList implementation throws an 
ArgumentOutOfRangeException, either in the constructor or in the indexing operator []. Our tool 
changes the test text by adding a try-catch block.  
 
Instantiations for GeneralizedAddTest1 x y 
Case 1 (capacity must be non-negative) -1 0 
Case 2 (index below lower bound) 1  -1 
Case 3 (index above upper bound) 1 1 
 
  void GeneralizedAddTest1(int x, int y) { 
    try { 
      ArrayList a = new ArrayList(x); 
      object o = new object(); 
      a.Add(o); 
      Assert.IsTrue(a[y] == o); 
    } catch (ArgumentOutOfRangeException) { } 
  } 
 
Generalization is not limited to integer values. Newly created objects, e.g. new object(), can be 
promoted to parameters, too. They will then be instantiated with mock objects. 

Automatic generation of parameterized unit tests 
Generalization, as described in the previous section, is limited: It does not change the structure of 
the unit test, since it only substitutes values in an otherwise fixed program text. Writing tests that 
exercise the relationships between methods remains an art.  
 
Again, we can use symbolic execution to find relationships between methods. The core idea is to 
explore possible execution paths not only with symbols for parameters but also starting from a 
symbolic state.  
 
In a symbolic state each field is initialized with a special symbol that is constrained only by the 
field’s type and known data invariants. We can use symbolic analysis to determine possible 
execution paths of each modifier method (i.e., each method that updates program state as 
opposed to just reading it) of a given program. Each execution path terminates in a state where 
the fields’ final values are represented by expressions over the input symbols.  
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Thus, for each path, we get a description of how the final values are derived from the input 
symbols.  This description can be seen as path-specific mappings of inputs to outputs (where the 
initial symbols of the fields are the inputs and the final expressions are the outputs). 
 
The following table describes such mappings as they result from symbolic execution of the 
ArrayList‘s Add method (we omit rare cases such as potential out-of-memory exceptions to 
simplify the presentation). We use the expression e’ to denote the value of the expression e at the 
end of the Add method, the symbol o to represent the method’s parameter, and _capacity as a 
shorthand notation for _items.Length. 
 
 

Mappings of inputs to outputs for Add method execution paths 
Path Path Condition (applies when) Input/Output Mapping 
(common to all paths) this   != null && 

_items != null && 
0 <= _size < _capacity’ 

_size’         == _size+1 && 
_version’      == _version+1 && 
_items[_size]’ == o 

sufficient capacity _size < _capacity _capacity’     == _capacity && 
_items’        == _items 

no capacity _size     == 0 && 
_capacity == 0  

_capacity’     == 16 && 
_items’        == new object[16] 

For every positive integer 
i, insufficient capacity of 
i elements  

_size     ==  i && 
_capacity ==  i  

_capacity’     == _capacity*2 &&  
_items’        == new object[i] && 
_items[0]’    == _items[0] && 
... && 
_items[i-1]’    == _items[i-1] 

 
The path condition and input/output mapping reflect internal implementation details. In this 
exaple, the number of paths is unbounded. We have one path for every positive integer; these 
paths arise from unfolding a loop in Array.Copy. We need summaries of the path conditions and 
input/output mappings that abstract away implementation details.  
 
Observer methods (i.e., methods of the program that read program state but do not update it) 
provide the summaries we need. Observers group initial and final states into equivalence classes 
that behave in the same way as far as the observers are concerned. In other words, they group 
exactly all those execution paths together which differ only in unobservable implementation 
details. 
 
Which and how many observers will make good summaries? We can answer that question if you 
accept the following statement: the implementation should be observably deterministic; that is, if 
we can observe a difference in summarized final states, a difference should have existed in the 
summarized initial states.  
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Our tool checks this property for every pair of paths. If it is violated the user is notified; this 
usually indicates that the design is either incomplete (observers cannot detect differences in 
initial states) or too verbose (observers allow detection of implementation details in final states).  
 
Consider the Add method of the ArrayList class. If we only consider the property Count that 
returns the value of the _size field as the observer, we can note that all execution paths 
increment _size by one. Since all paths of Add are indistinguishable under the Count property, our 
tool summarizes them with a single parameterized unit test:  
 
  void AddCountSpec(ArrayList a, object o) { 
    if (a != null) { 
      int oldCount = a.Count; 
      a.Add(o); 
      Assert.IsTrue(a.Count == oldCount + 1); 
    } 
  } 

 
In addition to observations directly provided by observer methods, new observations arise from 
combinations of observers. When we consider Count, Capacity (which returns _items.Length) 
and the relation > (“greater-than”) as observers, our tool finds that all paths can be divided into 
two groups and summarizes them follows: 
 
  void AddCountCapacitySpec1(ArrayList a, object o) { 
      if (a!=null &&  
          a.Count == a.Capacity) { 
          int oldCount = a.Count; 
          int oldCapacity = a.Capacity; 
          a.Add(o); 
          Assert.IsTrue(a.Count == oldCount + 1 && 
                        a.Capacity > oldCapacity); 
      } 
  } 
 
  void AddCountCapacitySpec2(ArrayList a, object o) { 
      if (a!=null &&  
          a.Count != a.Capacity) { 
          int oldCount = a.Count; 
          int oldCapacity = a.Capacity; 
          a.Add(o); 
          Assert.IsTrue(a.Count == oldCount + 1 && 
                        a.Capacity == oldCapacity); 
      } 
  } 

 
Generated parameterized unit tests reflect the behavior of the implementation. Whether they 
exhibit the intended behavior must be checked by the user. Even so, such inferred summaries 
have many uses: they help in program understanding and code reviews; they can serve as 
regression tests; and they can be used as specifications in program verification systems like 
Spec# [12]. 
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Experimental Results 
 
UnitMeister [9] implements the instantiation technique and has recently been extended to mock 
object generation and unit test generalization. AxiomMeister [10] generates parameterized unit 
tests. 
 
We evaluated UnitMeister on a small set of common benchmarks. We wrote parameterized unit 
tests for some collection types of the .NET 1.1 base class library and other collection types from 
an early version of the Spec# programming system. The tests are straightforward encodings of 
the available documentation. UnitMeister symbolically explored the tests until full coverage of 
the reachable branches of the tested methods was achieved. The following table shows how 
many methods were tested, how long it took UnitMeister to explore a certain number of paths, 
and how many bugs it found. We considered any discrepancy between observed and documented 
behavior to be a bug. 
 
Class Methods Tested Unit Tests Paths Explored Bugs found Time/s 
ArrayList 10 12 34 1 4 
Enumerator 4 10 67 1 10 
Hashtable 9 11 30 0 30 
LinkedList 3 3 64 1 4 
RedBlackTree 3 3 457 0 427 
 
The following table shows the results of applying AxiomMeister to some collection types of the 
.NET base class library. For every class, the table shows the sum of the considered modifier and 
observer methods and the time of symbolically exploring a number of paths and reducing them 
to a number of parameterized unit tests. Most of the generated tests resemble the specifications 
we would write by hand. 
 
Class Methods Considered Paths Explored Unit Tests Generated  Time/s 
Stack 6 7 6 2 
ArrayList 13 142 26 29 
Hashtable 9 835 14 276 
 
For both UnitMeister and AxiomMeister the results show that the techniques presented here can 
be successfully applied on nontrivial implementations like a hash table. The automatic analysis 
of hand-written parameterized unit tests exposed several bugs.  
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Conclusion 
Symbolic analysis techniques have been applied successfully on large, real-world programs. For 
example, PREfix [13] is applied on the Microsoft Windows code base.  Related techniques have 
been recently adopted by companies like Parasoft [14] and Agitar [15], which produce 
commercial tools for unit testing.  
 
We are currently applying the presented techniques on products being developed at Microsoft. 
We assume that reusing parameterized unit tests and especially symbolic mock objects will play 
a central role for the scalability of parameterized unit testing. Our first experiences confirm this 
[9], but further experiments are necessary. 
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