Demand analysis

Simon Peyton Jones, Peter Sestoft, and John Hughes

July 26, 2006

1 Introduction

Any decent optimising compiler for a lazy language like
Haskell must include a strictness analyser. The results of
this analysis allow the compiler to use call-by-value instead
of call-by-need, and that leads to big performance improve-
ments. It turns out that strictness analysis is an interesting
problem from a theoretical point of view, and the 1980’s
saw a huge rash of papers on the subject. There were fewer,
many, many fewer, papers that described real implementa-
tions.

This paper presents the fruits of a decade-long experience
with strictness analysis, in the context of the Glasgow
Haskell Compiler, an optimising compiler for Haskell. In
particular, we recently re-engineered the existing strictness
analyser that used forward abstract interpretation, replacing
it with a new one that uses backward analysis instead.

In one sense therefore, this paper contains nothing new: we
apply well-understood backward-analysis techniques. How-
ever, it turns out that the application is not at all straight-
forward, and we make the following contributions:

e Beyond strictness analysis, we show that it is essential
to perform absence analysis. The goal is to pass only
the needed parts of a value in a function call, and to
perform unboxing, passing only naked machine integers
instead of boxed values when possible.

e While we introduce these two analyses separately, we
show how to combine them into a single analysis over
a richer domain; see §B. Until now, GHC has had
to do two separate analyses. (In fact, a third analysis,
Constructed Product Result analysis, fits in beautifully
as well, so in reality the new analyser does all three
analyses at once. CPR analysis is described elsewhere
[?], and we do not discuss it further in this paper.)

e Backwards analysis eschews the accuracy that can be
achieved by higher-order abstract interpretation, but
it is a great deal faster, especially for deeply-nested
functions. How much faster? And how much accuracy
is lost? We give some indicative answers in §C.

e Although backwards analysis is not higher order, in
the sense that it does not track the effect of functional
arguments, our analysis must apply to a higher-order
language (Haskell). We give a new and elegant formula-
tion of backwards analysis for a higher-order language,

based on “call demands” in §4.1.4. This formulation
leads directly to a rather compact implementation.

Furthermore, the implementation has proved to be re-
assuringly generic; during development of the new anal-
ysis we repeatedly changed the domain and its two op-
erations (“lub” and “both”) while hardly changing the
analysis function at all.

e Implementing our new analysis in a real compiler forced
us to confront several issues that were completely hid-
den before we tried the implementation. Two particu-
lar examples are: correct analysis of the error function
(§2.2); and accurate analysis of nested function defini-
tions, which are very common in GHC (§5.3).

e We use a clever folk-lore technique to improve the speed
of convergence, and give measurements of its effective-
ness (§9).

e We describe and motivate a range of engineering design
choices. For example, we have found that it is very im-
portant to “look inside” products (§4.1.2); that nested
definitions are very common and must be handled well
(8§5.3); and that simple approximations to the full de-
mand transformer for a function work well in practice

(§5.1).

The resulting analyser is half the size of its predecessor,
is much easier to understand and modify, and runs much
faster.

The focus of the paper is strongly practical. The theory sup-
ports a wide spectrum of analyses, ranging from accurate-
but-expensive to cheap-but-coarse. The context of a real
compiler guides our choices in this multi-dimensional space.
We give a formal specification of the domains, their opera-
tions, and the analysis function itself, but we do not attempt
to prove soundness with respect to a more abstract specifi-
cation, leaving that for further work.

2 Characterising the problem

The default parameter-passing mechanism in Haskell is call-
by-need, in which an argument must be passed as a thunk,
or ‘box’, encapsulating the argument expression. At the first
use of the parameter, the thunk is evaluated and overwritten
with the result, which is then ready at all later uses.

An optimising Haskell compiler can often replace this gen-
eral calling mechanism by a specialised, more efficient one:

o Using call-by-value. When the called function will def-
initely evaluate its argument, the caller can evaluate
the argument early and pass the value itself instead of
a thunk. Program analyses that find such strictness
information have been studied intensively [?, 7, 7, ?].

o Unboxing arguments. If the called function needs only
the components of a tuple, not the tuple itself, then
the caller can pass the components instead of building
a tuple. For example:

lenFst :: ([al,b) -> Int
lenFst x = case x of { (p,q) -> length p }

Here, lenFst’s caller can not only evaluate the argu-
ment, because lenFst is strict, but also extract the
components of the pair and pass only the first one to
lenFst. A call site like (lenFst (g t)) can then be
transformed to

case (g t) of { (p,q) -> $wlenFst p }

where $wlenFst is the specialised-calling-convention
version of lenFst.

Program analyses that find such so-called bozing infor-
mation or absence information have been described in
(7, 71

The compiler’s task splits into two: (a) perform a static
demand analysis of the program, and (b) exploit the infor-
mation thus discovered. In the literature, much more atten-
tion is paid to (a) than to (b), yet one can only understand
what information we need from the demand analyis by un-
derstanding the use to which that information is put. So we
focus initially on (b), to provide the context for the design
decisions we subsequently make for the analysis itself.

2.1 The worker-wrapper split in GHC

In GHC, the results of demand analysis are exploited in two
ways:

e It drives the worker-wrapper transformation, which ex-
poses specialised calling conventions to the rest of the
compiler. In particular, the worker-wrapper transfor-
mation implements the unboxing optimisation.

e During code generation, the code generator uses call-
by-value for strict functions, instead of call-by-need.

The worker-wrapper transformation splits each function £
into a wrapper, with the ordinary calling convention, and
a worker, with a specialised calling convention. The wrap-
per serves as an impedance-matcher to the worker; it simply
calls the worker using the specialised calling convention. The
transformation can be expressed directly in GHC’s interme-
diate language. Suppose that f is defined thus:

f :: (Int,Int) -> Int
f p = <rhs>
and that we know that £ is strict in its argument (the pair,

that is), and uses its components. What worker-wrapper
split shall we make? Here is one possibility:

1A real compiler would avoid splitting very small functions, such
as f above, since they can be inlined bodily, which is better than split-
ting. For presentational purposes we use small examples regardless
of this; you can always make them bigger!

f :: (Int,Int) -> Int
f p = case p of
(a,b) -> $uf a b

$wf :: Int -> Int -> Int
$uf a b = let p = (a,b) in <rhs>

Now the wrapper, £, can be inlined at every call site, so
that the caller evaluates p, passing only the components to
the worker $wf, thereby implementing the unboxing trans-
formation.

But what if £ did not use a, or b? Then it would be silly
to pass them to the worker $wf. Hence the need for absence
analysis. Suppose, then, that we know that b is not needed.
Then we can transform to:

f :: (Int,Int) -> Int
f p = case p of (a,b) -> $uf a

$uf :: Int -> Int
$uf a = let p = (a,error "abs") in <rhs>

Since b is not needed, we can avoid passing it from the
wrapper to the worker; while in the worker, we can use
error "abs" instead of b.

There’s a more obvious problem, though: we seem to take
apart p in the wrapper, only to rebuild it in the worker. We
describe the re-construction of p in the worker as rebozing;
it is plainly a Bad Thing.

However, the idea is that since <rhs> is strict in p it must
presumably be taking it apart. So inside <rhs> we may see
“case p of ...”. Since p is explicitly bound to a pair in
$wf, we can eliminate the case in <rhs>, and that in turn
will usually mean that p is dead, and the reboxing can be
discarded. For example, suppose £ was like this:

f :: (Int,Int) -> Int
f p = (case p of (a,b) -> a) + 1

Then the worker-wrapper transformation will produce:

f :: (Int,Int) -> Int
f p = case p of (a,b) -> $uf a

$uf :: Int -> Int
$uf a = let p = (a,error "Urk")
in (case p of (a,b) -> a) + 1

Now, in the code for $wf, we can inline the definition of p
at its use in the case, simplify the case, and discard the
now-dead binding for p, giving:

$wf :: Int -> Int
$wf a = a + 1

Does the reboxing binding still disappear if p is not scruti-
nised by an explicit case? For example, what if it is instead
passed to another strict function, g? In that case g will get
a wrapper that takes the pair apart; that wrapper will get
inlined into $wf, and the case will cancel as before. Is all
reboxing eliminated in this way? No, it is not, a problem
that we discuss in §2.3.

In short, the worker-wrapper transformation allows the
knowledge gained from strictness and absence analysis to
be exposed to the rest of the compiler simply by perform-
ing a local transformation on the function definition. Then

ordinary inlining and case elimination will do the rest, trans-
formations the compiler does anyway. More details are in
(7, 71.

2.2 seq and error

Demand analysis in Haskell is made trickier by two functions
that are part of Haskell 98: error and seq. We briefly
introduce their difficulties here, by way of background.

The Haskell 98 function error :: String -> a takes a
String, prints the string, and brings execution to a halt?.
From a semantic point of view, error s should be consid-
ered identical to L, or divergence. For example, consider
this function:

f [y = error "urk"
f (x:xs8) y=y

Is it safe to use call-by-value for y? Yes, because f either
evaluates y or else calls error "urk". If we use call-by-
value, the call (f loop), where loop goes into a loop, will
diverge instead of printing “urk”, but we deem that accept-
able behaviour; the program goes wrong in either case, and
we allow the compiler to change the particular manifestation
of going-wrong-ness.

However, consider these two functions:

glxy=glyx

g2 x y = error x
The first function goes into a loop, and does not use either
of its two arguments. We could safely treat them as ab-
sent, and not pass them at all. The second function also
“diverges”; it does not use y, but it does use x. Even though
error “diverges”, you must pass its argument so that it can
be printed. More concretely, it is not acceptable to perform
a worker/wrapper split for g2 like this, because although
both produce an error, the produce different messages:

g2 x y = $ug2
$wg2 = let x = error "abs"
y = error "abs"
in error x

In short, we must be careful not to assume that x is absent
simply because it is consumed by a “divergent” computa-
tion.

A different difficulty is raised by seq :: a => b -> b,
which evaluates its first argument before returning its sec-
ond. The existence of seq, with a polymorphic type, has a
pervasive effect. For example, eta reduction is not valid in
general:

glab # (\x >gl abx)

The former is L, while the latter is not, and the two can be
distinguished by seq. SLPJ: Need to explain why this makes
things difficult. John: Does it make things difficult? Isn’t the
only implication that, for function demands, S(S) # S(L)?
It would be more of a problem if they were the same!

2In GHC, error raises an exception, a nice generalisation of the
Haskell 98 behaviour [?].

2.3 Shortcomings of the existing analyser

For some years, GHC has used an analyser based on the
classic technique of abstract interpretation [?, ?] to derive
strictness and absence information; this information in turn
drives the generation of specialised calling conventions. The
existing analyser is described in our earlier papers [?, ?].

The worker-wrapper transformation works fine, but the
preceding analysis phase, which drives the worker-wrapper
transform, is very slow for deeply nested definitions. Given:

f xy z = <rhs>

the analyser figures out whether f is strict in x, y, and z by
computing (f L T T),(f T L T),and (£ T T L), where T
is the top-most abstract value, and L is the bottom-most.
If £ is recursive, it iterates the process using the newly-
computed approximation to f. The difficulty here comes
when <rhs> contains nested recursive definitions. Then to
compute (f L T T), for example, we must compute the
abstract values of the nested definitions, given these partic-
ular bindings: x = 1,y = T, and z = T. And then do
it all again for the next set of bindings. Computing these
abstract values itself involves the same sort of iterative pro-
cess for each recursive nested definition. Result: the running
time is exponential in the nesting depth of definitions. This
problem can be fixed, but that would further complicate the
analyser. Backwards analysis is, as we shall see, much more
efficient.

Furthermore, once we looked into it, we found that we could
express the backwards analysis rather elegantly. As a di-
rect result, the new analyser is significantly shorter than
its predecessor (in source code terms). Even if it were no
more efficient, this would be a worthwhile gain. (This is, of
course, a “soft” claim: perhaps a re-engineered version of
the forwards analysis would be equally concise.)

3 Evaluation demand and usage demand

The preceding section should have convinced you that we
want two sorts of information from our demand analysis:

e FEvaluation demand, or strictness, describes the extent
to which the expression is guaranteed to be evaluated.
The compiler uses strictness information to replace call-
by-need with call-by-value.

e Usage demand, or absence, describes what parts of the
expression’s value are used. The compiler uses usage-
demand information to decide which fragments of the
argument to pass to the specialised version of the func-
tion.

Absence analysis would, for example, distinguish g1 and g2
in the preceding section.

Strictness analysis is well understood, so we tackle that first,
in §4. Doing so gives us a chance to discuss several important
design choices in a familiar framework. Then, in §7, we
describe our absence analysis; the analysis is less familiar,
but the framework is identical to that for strictness analysis.
Finally, in §B we show that the two can be combined into a
single analysis that does the whole job in one blow.

4 Strictness demands

The basic purpose of the strictness analyser is to find the
strictness that a function places on each of its arguments.
We summarise these demands in the function’s demand sig-
nature. For example:

null :: [a] -> Bool

-— Demand sig: S

null v = case v of
] -> True
(x:xs) -> False

swap :: (a,b) -> (b,a)
-- Demand sig: S(L,L)
swap p = case p of

(x,y) > (y,%)

fst :: (a,b) > a

-- Demand sig: S(S,L)

fst p = case p of
(x,y) > x

f :: Int -> Int -> Int
-- Demand sig: SL
fxy=x+1

The demand signatures — so far describing only strictness
— are given in comments. Informally, demand S (strict)
means that the function definitely evaluates the argument;
L (lazy) means that it may or may not evaluate the argu-
ment; and e.g. S(s1,s2) means that it definitely evaluates
the argument pair, and evaluates its components to a de-
gree described by s1 and ss.

In the rest of this section we establish precisely what we
mean by a demand, returning to demand signatures in Sec-
tion 5.

4.1 The strictness domain and its operations

A demand analyser answers the question “what demand
does the function place on its argument?”. A simple demand
analyser can work with a simple lattice of demands, such as
“definitely evaluated” (strict) and “possibly not evaluated”
(lazy). When the type of the argument is known, a more so-
phisticated analyser may want to represent richer demands.
For example, for pairs we may want to be able to say “strict
in the pair, strict in the first component, but lazy in the
second component”.

So a key aspect of the demand analyser is the design of
the domain of demands. In this section we describe and
motivate this design.

The syntax of demands is shown in Figure 1. It is not a free
algebra; the same Figure gives identities that we shall use
freely. The demands have the following intuitive meanings:

L is a lazy demand. If an expression e places demand L on
a variable z, we can deduce nothing about how e uses
z. L is the completely uninformative demand, the top
element of the lattice.

S is a head-strict demand. If e places demand S on = then
e evaluates = to at least head-normal form; that is, to

The set StrDmd is the set of strictness, or evalu-
ation, demands s defined thus:

s n= 1 Hyperstrict
| L Lazy
| S Strict
| S(s) Product or function is
evaluated, components s
5 == [s1,...,8.] Tuple components

Identities on demands

S(L...L) = S
S(..L..) = L

Ordering on demands

1 C s
SG7) C S() s Cs
s C L

The evaluation demand s; U s» means ‘either de-
mand s; or demand s»’. It combines demands
from two ‘alternative’ sub-expressions, exactly
one of which is demanded, such as the branches
of a case. It is the ‘least upper bound’ operator
for the C ordering.

I = s
L U s = L
S U SE) = SETUm)

The evaluation demand s1&s> means ‘both de-
mand s; and demand s»’. It combines demands
from two ‘parallel’ sub-expressions, both of which
are demanded.

1 & s = 1
L & s = s
S(E1) & S(52) = S(51&s2)

Figure 1: Evaluation demands

the outermost constructor of z. The demand S(L... L)
places a lazy demand on all the components, and so is
equivalent to S; hence the identity S = S(L...L).

S(5) is a structured demand on a product (§4.1.2) or func-
tion (§4.1.4). It is at least head-strict, and perhaps
more.

1 is a hyperstrict demand. The expression e places demand
L on z if every evaluation of e is guaranteed to diverge,
regardless of the value of x. We call this demand “hy-
perstrict” because it is safe to evaluate = to arbitrary
depth before evaluating e.

A demand that is hyperstrict on any component of a

Ts[Int#] = {L,L} Unlifted integers
Ts[(t1,t2)] = S(Ts[t1], Ts[t=]) Product types
u {L}
T[t1] = {L,S,L} Sum types
To[ti—>t2] = S(T:[t2]) Functions
u {L}

Tle] = {L,S,L} Unknown types

Figure 2: Strictness (evaluation demands) at various types

product must be hyperstrict on the product as a whole,
because it means “all evaluation paths diverge”. So
S(L,s)=8(s,L)=5S(L,1)=1L.

The domain of demands is indexed by type; that is, for each
data type, t, we define a corresponding lattice of demands,
T[t] (Figure 2). We work through that Figure line by line
in the following sub-sections.

4.1.1 Unlifted types

The base case is that of unlifted types. These are not part
of standard Haskell, but are an extremely useful GHC ex-
tension, as we shall see. All unlifted types are primitive,
built-in types. A good example is Int#, the type of 32-bit
integers. Every value of unlifted type must be evaluated
before it can be manipulated; there are no thunks of type
Int#.

The strictness lattice for unlifted types therefore contains
just two points, L and L, corresponding to guaranteed di-
vergence, and the converse, respectively.

4.1.2 Product types

We want our analysis to “look inside” products, such as
tuples. If the tuple is constructed at the call site, the worker-
wrapper transform can often eliminate the tuple allocation
altogether, as we saw in §2.1.

Figure 2 uses pairs as an example of a product type, but
GHC does not treat Haskell’s built-in tuples specially: every
non-recursive algebraic data type with exactly one construc-
tor (i.e. a product type) enjoys the same treatment. In the
Figure we use the following shorthand:

S(Tsltal, Tolt=]) = {S(s1,82) | s1 € To[ta], 52 € Ts[t=]}

A very important special case is the Int type. An Int is
represented as a one-component product, thus:

data Int = I# Int#

That is, Int is an algebraic type with just one constructor
I#, so it is a one-component product type. The constructor
has a single argument of type Int#, the type of unboxed

o)

Figure 3: Strictness for lifted integers Int

Figure 4: Strictness for (integer) pairs

machine integers. So the strictness lattice for (lifted) inte-
gers Int can be computed from Figure 2, together with the
identities of Figure 1, thus:

To[Int] S(T[Int#]) U {L}
{S(L),S(L), L}

{L,5,L}

The resulting lattice is shown in Figure 3.

Using the same construction again, we can derive the lattice
for the type (Int,Int), shown in Figure 4. In constructing
this Figure, we again make use of of the identities of Figure 1.

4.1.3 Sum types

In contrast to products, the worker-wrapper transform can-
not take advantage of information about the components
of a sum type (an algebraic data type with more than one
constructor). For example:

f :: Maybe Int -> Int
f (Just n) = n
f Nothing =0

Clearly, f is strict, and the code generator can take advan-
tage of that when compiling calls, but it is hard to do any
unboxing. To do so would mean passing either n or nothing
at all, plus a tag to say which was the case. This is indeed
possible, but it is tricky — for example, it is harder to tell
the garbage collector where the pointers are, since it may
depend on the value of the tag — and it is hard to express
in GHC’s intermediate language. For a sum type, we there-
fore use a simple three-point lattice {_L, S, L}. In the Figure,
we take the list type as an example.

Aside. Even in the absence of unboxing, though, one could
argue that the analyser could usefully compute structured
strictness information. For example, if £ above is given a
Just argument, then it is certainly strict in the argument
to the Just. So if we saw the call (f (Just (h x))) we
could compute (h x) by value, before boxing it in a Just.
A great deal of work has been done on analyses (especially
backwards analyses) that can “look inside” sum types, in-
cluding recursive data types [?]. However, our initial focus
was on the low-hanging fruit, so we decided to leave sum
types for further work. End of aside.

4.1.4 Function types and call demands

Consider the curried application (f x y), which really
means ((f x) y). If demand d is placed on this expres-
sion, what demand is placed on the sub-expression (f x)?
One possibility would be to finesse the question by regard-
ing the expression as the application of f to two arguments,
rather than treating it as a curried application, but it turns
out that the analysis works very elegantly if we take the
curried approach and answer the question directly.

Clearly, if ((f x) y) is evaluated with strict demand d, then
(f x) is evaluated with demand “evaluate (f x) to a func-
tion, call it, and place demand d on its result”. We denote
this demand on (f x) by the call demand S(d). So the de-
mand on f itself is S(S(d)). (This is rather natural, if we
think of a function as a (possibly infinite) tuple of all its
possible results). We believe that this use of call demands
is new to this work — but see Section E. We use the same
notation, S(d), for functions as for products, relying on the
type-indexing of the domain to ensure that a call demand
never “meets” a product demand.

These call-demands can show up in demand signatures. For
example, consider:

app :: Int -> (Int->Int) -> Int
app x £ = f x

We can see that app will place a call demand on £, and
evaluate the result, so app’s demand signature is LS(S).

One could imagine being cleverer: if f is strict, then app
is strict in its first argument also. Indeed, higher-order ab-
stract interpretations discover exactly such information [?].
However, despite considerable attention in the 1980’s, we
believe that it is a poor choice to seek this higher-order in-
formation.

Firstly, higher-order analyses are expensive: the analysis
is sophisticated and the function-space domains are large,

which in turn leads to slow fixpoint calculations. Second,
it is awkward to convey the inter-argument dependence
across separate compilation boundaries. Third, the worker-
wrapper split would not be aided by such information, since
the splitting is driven solely by the function’s definition, not
its call sites. Fourth, in our experience, in many cases where
it matters, the higher order function is itself small enough
to inline before the demand analyser runs, so the effort is in
vain.

All this is fortunate, because inter-argument dependence is
in any case inaccessible to a purely backwards analysis. Our
conclusion is that this apparent shortcoming of backwards
analysis is hardly a drawback in practice.

4.1.5 Polymorphic types

Haskell is a polymorphic language, so the strictness anal-
yser will not always know the type of the expression it is
analysing. For example, consider the function k:

k::a->b->a
kxy=x

Clearly, k is strict in its first argument, and lazy in its sec-
ond, so it has the evaluation-demand signature SL. Another
very important polymorphic function is seq :: a->b->b,
whose demand signature is SS; it is strict in both its pa-
rameters.

So the appropriate demand lattice for an unknown type,
represented at compile type by a type variable «, is the
same as that for sum types, namely {1,S, L}. Notice that
this lattice is a sub-lattice of every other demand lattice,
except that for unlifted types. This is as we expect — we
simply approximate more vigorously for polymorphic types.
Moreover, when we “instantiate” a polymorphic demand at
a particular type, there is no work to do, since the poly-
morphic demand is already a valid demand for the instance
type. (Fortunately, GHC does not allow polymorphic type
variables to be instantiated to an unlifted type [?], since that
would preclude compiling polymorphic functions to just one
generic piece of code).

4.2 Operations on demands

This completes our tour of Figure 2. Notice that in all cases,
L is the top element of the demand lattice; it is always a safe
approximation, and means “no information”.

The ordering among demands is given in Figure 1. As usual,
s1 £ s2 means that s; denotes at least as strong a demand
as s2. The demands relevant for a particular expression
depends on the type of that expression, as we have already
seen.

There are two key operations over demands, also given in
Figure 1:

e d; U d> combines two alternative demands for a value,
such as the demands arising from branches of an if or
case. For example:

case x of
1 >y
(p:ps) -> True

If this expression is evaluated with demand S, the first
branch places demand S on y, while the second branch
places demand L (lazy or absent); the overall expres-
sion therefore places demand SUL = L on y.

Of course, the Ll operation can be derived directly from
the ordering relation. We write it in Figure 1 here only
for completeness.

e di & d> combines two demands, both of which are
placed on the value. For example, consider the expres-
sion

f x x

where f has demand signature LS. If the expression is
evaluated with demand S, then x will be consumed by
both demand L and demand S. The aggregate demand
on x is therefore L&S = S.

For another example, consider:
fst x + snd x

The first subexpression places a strict demand S on
the first component of x, and therefore places demand
S(SL) on x. Similarly, the second subexpression places
demand S(LS) on x. The total demand on x therefore
is S(88S).

We may need to use the demand identities of Figure 1 to
perform these computations. For example:

seq x 3 + fst x

Computing demands on x will give

S & S(SL) = S(LL) & S(SL)
= S(SL)

The polymorphic demand S from the polymorpic seq meets
the demand S(SL) from the fst x. First, use the identity
S = S(LL) to expand the S demand, and then & can be
done elementwise.

Both U and & are commutative and associative, and enjoy
the following distributive property:

S1 & (Sz [S3) = (Sl & 82) [(81 & S3)

In the case of strictness analyis, the & operator is greatest
lower bound (glb), but that will not always be the case,
which is why we give it a different name.

5 Demand signatures

Demand signatures play a central role in our analysis. The
demand signature for a function summarises all the infor-
mation that the analyser computes about that function. In
particular:

e The demand signature of a function is all the analyser
knows about a function when it encounters a call site.

e The demand signature is the information that is ex-
ported across separate compilation boundaries.

e The demand signature embodies all the information
necessary to make the worker-wrapper split for a func-
tion.

o The demand signature tells the code generator when it
can use call-by-value at a call site.

So far we have only given an informal intuition for the mean-
ing of a demand signature. This section makes it precise.

5.1 Demand signatures as demand transformers

We begin with the following key idea, which explains what a
demand signature means: a demand signature for a function
is stmply a compact approrimation to the function’s demand
transformer.

Backwards analysis of a function aims to answer the fol-
lowing question: “given demand d on the function’s result,
what are the demands on the function’s argument(s)?”. The
stronger the demand on the function, the stronger the de-
mand on the arguments. For this purpose, a function may
be seen as a monotonic demand transformer: it transforms
a demand on the function’s result into demands on the func-
tion’s argument (and free variables, see §5.3). Consider this
example:

f :: [a] -> [a] -> Bool
f xs ys = null xs &% null ys

Informally, we would say that f is strict in xs and has de-
mand signature SL. But consider the expression

f (error "urk") ‘seq‘ True

Even though f is strict in its first argument, evaluating
the partial application £ a does not force evaluation of
(error "urk"). Only when f has been given both its ar-
guments does it unleash the strict demand on its first argu-
ment.

The optimal results produced by the demand transformer
for £ are shown in the following table:

Demand on

Function | First arg Second arg
S

S(8) L

S(s(8)) S L

If the function f itself is simply evaluated (presumably by
seq), then it imposes no demand on its arguments. If it is
applied to a single argument, only a lazy demand is placed
on that argument. If it is applied to both arguments, then a
strict demand is placed on the first one, and a lazy demand
on the second one.

Here is a more elaborate example:

g :: (Int,Int,Int) -> [a]l] -> (Int,Bool)
g (a,b,c) = if a==0 then error "urk"
else \y -> if b then (c, null y)
else (c, False)

Function g consumes a single argument (a pair), pattern-
matches on it, and evaluates its first component a. Then g
consumes its second argument, and tests b before returning
a pair. If that pair is itself evaluated, then c and/or ys will

be evaluated. The following table shows part of an optimal
demand transformer for g:

Demand on

Function First arg Second arg
S

S(s) S(SLL)

S(8(s8)) S(SsSL) L
S(s(s(SL))) | s(ss8) L

A sophisticated backwards analyser could capture the full
glory of these demand transformers, but our analyser instead
uses a brutal, yet effective, approximation:

e Find the syntactic arity, n, of the function; that is, how
many explicit lambdas it has at the top of its right-hand
side. For example, f above has syntactic arity 2, while
g has syntactic arity 1.

e Compute the demand placed on the arguments by the
vanilla call demand S(...S(S)...), where the call de-
mands are nested n deep.

e Record the demands thus computed as the function’s
demand signature. For example, f’s demand signature
is SL and g’s is S(SLL). Thus f’s demand signature
represents the demand transformer shown in the table
pretty well. However, g’s demand signature loses all
information about how demand on the result of the
first application propagates to demand on the b and
c components of the argument. The last two lines of
the table for g could not be derived from g’s demand
signature.

e At a call site, use the demand signature as an emascu-
lated demand transformer in the following way. If the
demand on the function at a call site is weaker than the
vanilla call demand, place demand L on all arguments.
Otherwise place the demands specified by the demand
signature on the arguments.

In effect, we represent the entire demand transformer func-
tion by a single (argument, result) pair. This approach is
sound (because it can only under-estimate demands), but it
is clearly approximate, as shown by the g example. Never-
theless, it is a fine thing to have a compact representation for
a function’s demand transformer. First, it makes fixpointing
faster, because the domain is less rich; and second, it makes
it easy to export information across module boundaries.

We believe that this approximation works extremely well in
practice. This belief is based on eye-balling the output of the
demand analyser for many programs. The only way to be
sure that the benefit of a more sophisticated representation
would be slight is to try it — and we have not done that.

5.2 Demand signatures: the full story

So far, we have informally implied that a demand signaure
is just a sequence of demands. For example, we have written
signatures such as

f :: Int -> Int -> Int
-- Demand sig: SL
fxy=x+1

It is already clear that a demand signature must also in-
clude some measure of the depth of the vanilla call demand
discussed in the previous section. So f’s demand signature
might more properly be described thus:

(2, sL)

This is not enough, however. In the following subsections
we will show that demand signatures must be elaborated in
two distinct ways. First, we must add information about
free variables (§5.3); and second, we must add information
about divergence (§5.4).

5.3 Nested definitions and thunks

Our demand analyser may encounter nested function defini-
tions, such as this one:

fbxy=let
gz=x+y+z

in

if b then y else g (x*x)
Here g is defined locally, inside f’s right hand side. Nested
function definitions like this one are common in user-written
code, and even more common once the compiler has done
some inlining and let-floating.

At first one might think that dealing with nested definitions
is easy: simply compute g’s demand signature, and then
deal with the body of the let. But the only occurrence of x
is in the right hand side of g, so we must somehow take into
account the free variables of g.

How might we compute the demand on x? One way is as
follows: treat a let as syntactic sugar for a lambda. Desug-
aring the let would give:

fbxy=(\g->if b then y else g (x*x))
(\z > x +y + 2)

The first lambda is lazy in g (since the conditional is not
sure to call g, so the analyser will analyse the argument
(\z -> x + y + z) with a lazy demand, and hence derive
a lazy demand on both x and y.

Unfortunately, this answer is over-pessimistic for y. Either b
is True, in which case y is evaluated, or b is False, in which
case g is called, and y is evaluated. So f is certainly strict in
y. Even worse, the let-as-lambda approach does not even
expose the obvious fact that g is strict in its first argument,
so the call g (x+x) can use call-by-value.

In short, treating let as if it were a lambda gives sound
results, but it must surely be better to treat let directly.
At least the direct approach can analyse the right-hand-side
of g and extend the environment with g’s demand signature
before analysing the body; that will expose the fact that
g (x*x) can use call-by-value. To capture the strictness
in y as well, we compute a richer demand signature for g,
one that embodies not only the demand it unleashes on its
argument, z, but also the demand it unleashes on its free
variables. We write this richer signature thus:

(L, [x= S,y = 5] = [S])

This says that if g is applied to one argument (the “1” in
the signature), it unleashes demand S on that argument (the

part after the “="), and also demand S on x and y (the
finite mapping “[...]”).

One possible alternative to these complications is to finesse
them by performing lambda lifting, so that all function def-
initions are at top level. Then our example would become:

g’ xyz=x+y+z
fbxy=if b then y else g’ x y (x*x)

Now it is clear that y is used in both branches of the con-
ditional, while x is used in only one. Indeed, we can see
the richer demand signatures as a simulation of the extra
parameters introduced by lambda lifting.

The trouble is that this approach does not work for thunks.
Here is another version of the same example:

fbxy=l1let
z=x+y

in

if b then y else z
Unlike g, z has no parameters, and in general we cannot
lambda-lift such definitions without losing sharing. Yet, f is
still strict in y and lazy in x. To compute this strictness, we
require the richer demand signatures for thunks, embodying
demands on free variables.

Earlier works on backwards analysis assumed lambda-lifting
for functions, but how did they deal with thunks? Answer:
using the let-as-lambda approach, thus:

fbxy= (\z ->if b then y else z) (x+y)

That is, first compute the strictness of (\z -> ...), and
then apply that to (x+y). In this case the abstraction is
lazy, so we will (safely but imprecisely) conclude that £ is
lazy in y.

We believe that our approach is quite new. By enriching
demand signatures with free-variable demands we are able

e To treat thunks uniformly. Indeed, our implementa-
tion has little notion of a “local function definition”.
Rather, it deals separately with local definitions (let
and letrec) on the one hand, and lambda abstractions
on the other.

e To obviate the need for lambda lifting. Lambda lifting
is undesirable, because it moves the nested function’s
code out of its context, sometimes losing optimisation
opportunities.

e To get more accurate results, as we have demonstrated
in the examples above. We have found this additional
accuracy to be quite significant in practice. SLPJ:
Todo: quantify in the experience/implementation sec-
tion.

In essence, we have added just a little bit of forwards analysis
to our otherwise backwards analyser, and found that this
little bit is both cheap and effective.

5.4 Divergence and the error function

As well as knowing what a function does with its argu-
ment(s) it is also essential to know something about its re-
sult. Consider the evaluation demand placed on y by this
function:

f True y =y
f False y = error "urk"

Would it be safe to use call-by-value for both arguments
to £7 Yes, because error always diverges, so evaluating y
early is safe regardless which of the branches is taken: if
y does not terminate, then f would not terminate anyway.
So, even though y is not mentioned in the right hand side
error "urk", we must consider that error "urk" places a
strict demand on y.

It would be possible to make error a special case in the
analysis, but programs often feature “dressed up” versions
of error:

myError s = error ("Fatal error: " ++ s)

Rather than treating error as a special case, we instead em-
body the ‘always-diverges’ information in the demand sig-
nature of the function, thus:

error : (1, 1 = [S])

Here, we have added a new component to the demand sig-
nature, a single demand written before the “=”, that we
call the result demand. At a call site, the result demand r
is unleashed on all the variables in scope at the call site.

A result demand can only take two values:

Unknown: L. We can assume nothing about the result.

Diverges: L. The function is guaranteed to diverge, or to
raise an error.

John: Interesting semantics: projects not only the envi-
ronment at the definition, but the environment at the call!
Given that (error x) diverges, however, one might wonder
whether it makes any difference whether error x is consid-
ered to be strict in x or lazy in x. More concretely, is there
any difference between these two demand signatures?

(L, L =[S
(1, L=[L])

No, there is not: since the result demand is L, the argument
demand is irrelevant. SLPJ: Do we need to say more about
this? Result demand 1s placed on all in-scope variables. Fwd
reference to absence. Give signature equivalences.

5.5 Summary

Motivated by the preceding sections, Figure 5 gives the syn-
tax for demand signatures: a demand signature is simply a
pair of an arity, n, and a demand type.

A demand type encodes the demands unleashed by a func-
tion on its context when it is applied to enough argu-
ments. As Figure 5 shows, a demand type has the form
6 = [s1...sn], consisting of two components:

e A demand environment 6, that gives the demand placed
by e on the variables in scope at the call site.

e A sequence of demands, [s1...S,], which give the de-
mands that e places on its arguments. The sequence is
non-empty only for function-typed expressions.

Demand signatures
sig == (n, dt)

Demand types
dt = 0=o0
o u= [s1,...5n]

Particular demand types
AbsType = ([],IDg) =[]
BotType = ([],1) =[]

Demand type equivalence
=[] = 6=1]T]

[$1y.-«y8n] U [t1,y...,tm]
= [s1Ut1,..., sk Utk
where k = min(n, m)

A result demand, r, is either L (the identity of LI), or
IDyg, (the identity of &; its value varies depending on
the analysis).

r € {J_, ID&}

Demand environments

0 == (o,r)
f(z) = o(x), z € dom(¢)
= otherwise
where (¢, r) =6
61 U 6 = <¢a ry U 7‘2)
where
<¢1a Tl) = 60
(p2,m2) = 02
¢ = [z (0:i(z) U 62(z))
|z € dom(61) Udom(62)]
01 & 6, = <¢a 7‘1&7‘2)
where
(p1,71) = 61
<¢2a T2> = 62
¢ = [z (bi(z) & 02(z))

| © € dom(6:) Udom(02)]

Figure 5: Demand signatures and demand types

The demand environment, 6, consists of a pair (¢, r), where
¢ is a finite mapping from variables to demands, and r is
a demand. The lookup operation 6(z) gives the demand
placed on a variable x by the demand environment #. This
operation is given in Figure 5: if z is in the domain of the
finite mapping ¢, then the result is simply ¢(x); otherwise
the result is r:

(z) = ¢(2),

= T

where (p,ry =126

x € dom(¢)
otherwise

In a demand environment § = (¢,), the result demand r is
the demand placed on a variable that is not in the domain

10

of 6. It can take one of two values (Figure 5):

e For terminating functions, r is IDg,, the identity of the
“&” operator.

e For diverging functions, r takes the value L, the iden-
tity of L.

The U and & operations on demand environments are also
given in Figure 5; they are defined so that

(91 [92)($) = 91 ($) U 92($)
and similarly for &.

Because functions may have functions as results, a function
may be applied to more arguments than its arity, and so
we may find that an expression whose demand type has no
argument demands is nevertheless applied to an argument.
To accommodate this we use the following equivalence:
=[] = 6=][T]

That is, “extra” arguments are given the topmost demand
T. In the strictness lattice the topmost demand is L, but in
other analyses it will differ.

Demand types are ordered in the obvious way, which we will
need when taking fixpoints. SLPJ: Is it obvious enough?

Two particular demand types are also defined in Figure 5,
namely AbsType and BotType. These are, respectively, the
demand types of a completely unknown value, and of a di-
vergent value.

For notational brevity, we sometimes omit the result demand
from 0 if it is IDg,, and the mapping ¢ if it is empty. For ex-
ample, we may write simply [x — S] instead of ([x — S], L).
If both are omitted, we may omit the “=” from a demand
type. Finally, we often allow ourselves the informality of
omitting the arity when the number of demands in the de-
mand type is equal to the arity. For example, when we say
that seq has demand signature SS, we really mean that it
has signature

(2, ([], L) = S5)

6 The strictness analysis

We are now ready to present the strictness analyser itself.
A typical call to the analyser looks like this:

dt = S[e] p s

The analysis function S[e] takes an expression e, together
with an environment p and a demand s. The call returns a
demand type dt which describes the demands that e places
on its context when evaluated with demand s. The environ-
ment p gives the demand signatures for let or letrec-bound
values that are in scope.

6.1 An example

The full definition of the analyser is given in Figure 6, but
we begin with an example to give the idea. Consider the
following call of the analyser:

S[(\x => x+y) z] p S

When the analyser sees an application, it analyses the func-
tion part of the application with a call demand, in this case
S(S):

S\x —> x+y] p S(S)

When the analyser sees a lambda, and its demand argument
is a call demand, it analyses the body of the lambda with
the subordinate demand, in this case S:

S[x+y] p S

The result of this call (skipping a few steps) is the demand
type:
Syl p S =[x 8,y 8] =]

Now the analyser can complete its handling of the lambda,
by removing the bound variable x from the free-variable set,
and adding it to the argument list, thus:

S\x => x+y] p S(5) = [y = 8] = [S]

The analyser is now back to the original application, and
now it can analyse the argument of the application (z in this
case) using the first argument demand from the function’s
demand type (S in this case). So it performs the call

SledpS=lzr 8=]

Finally, it completes the application by combining the de-
mand types from the function part and the argument part:

S[O\x => x+y) z] p S(S)=[y—=S,z—S] =]

6.2 Demand types and demand signatures

The whole analysis process is somewhat like type inference,
which is why we use the term “demand type”. It is very
important, however, to distinguish a demand type from a
demand signature.

e The environment, p, maps each in-scope let or letrec-
bound variable to its demand signature.

¢ A demand signature is a simple encoding of a demand
transformer (§5.1).

e A demand transformer transforms a demand into a de-
mand type.

e A demand type gives the demands placed by a sub-
expression on its context; that is, both on its arguments
and its free variables.

The function S[e]p is itself a demand transformer: it takes
a demand to a demand type. The demand signature for a
function f = rhs is simply a crude summary of the function
S[rhs]p, as we discussed in §5.1.

6.3 The analysis function
We are now ready to give the formal presentation of the
strictness analyser in Figure 6.

If an expression e appears with lazy demand (L), then it has
no argument demands and imposes demand L on all its free

11

variables and on any other variables, so its demand type is
AbsType.

So below we assume that the demand on the expression is
strict, that is, of the form 1 (= S(L...1)) or S(3).

The second equation deals with a variable z. The basic
idea is that we look up x’s demand signature p(z) in the
environment, and use it as a demand transformer to trans-
form the incoming demand s. We use an auxiliary func-
tion DT (p(z), s) to implement the demand transformation,
which we discuss shortly. Finally, we must remember to
record the demand s on z itself.

The third equation deals with the case of a product con-
structor, P, also by using an auxiliary function PT (P, s)
for the demand transformer of the constructor.

We have already discussed the next equation, that for func-
tion applications, in §6.1. The demand placed on e is the
first argument demand s, obtained from the demand type
of e;. If its argument demands are empty, the latter can
be expanded to the form 6 = s, : o (where ‘’ prepends an
element to a sequence) using the demand type equivalences
of Figure 5.

Notice that the returned argument demands, o1, come exclu-
sively from the function (minus the first demand, of course);
the argument demands from es are discarded. We need the
‘both’ operation to combine the environments, 6; and 6,
returned by analysing the function and its argument. This
operation on demand environments is defined in Figure 5.

Dual to application, the equation for lambda finds the de-
mand type for the body, extracts the demand on the bound
variable x from the free-variable demands 6, and uses that
to augment the returned argument demands.

case expressions that scrutinise a product constructor are
dealt with by the next equation. The interesting point is
that the demand on the case scrutinee, e is the product de-
mand S(6.(z),0.(y)), where the sub-demands are obtained
by seeing how the case alternative a consumes the compo-
nents of the product, = and y.

All other forms of case expression are dealt with in the
conventional way: just take the least upper bound of the
alternatives of the case.

The equation for letrec uses the approach sketched in §5.1.
We analyse the right hand side using a “vanilla demand”
S™(S), where n is the arity of the right hand side. Then from
the demand type returned by analysing the right hand side
we build a demand signature, (n, dt). Finally, we analyse
the body of the letrec in the extended environment p’. We
compute the arity of the right hand side crudely, by simply
counting lambdas, but the correctness of the analysis does
not depend on computing the “correct” arity (whatever that
is). A bad choice of arity will simply lead to less accurate
results, because the demand transformer encoding will be
less effective.

If the letrec is actually recursive, we must analyse the right
hand side in the extended environment too. We follow the
usual approach of computing a sequence of approximations
to the demand signature for z, starting with the most ag-
gressive one, L = (0, BotType). Since the Ul and & oper-
ators are monotonic and the lattice of demand signatures
has finite height for any well-typed program, the limit can
be computed in finitely many iterations. Notice that we

S[e] p d takes an expression e, a demand environment p and an evaluation demand s, and computes a
demand type dt for e.

S[e] : StrEnv — StrDmd — DemandType
p:StrEnv = Var — DmdSig

Slel p L = AbsType

Szl ps = let 6=0 DT (p(z), s) if z € dom(p)
AbsType otherwise

in (& [x i—)zs]) =0

S[Plps = PT(P, s), where P is a product constructor
Sleie2]l ps = let 01 = 5,:01 = S[ei] p S(s)
b =02 = S[ez] p sa
mn (91&92) = 01
S\z.e] pS(s) = let =0 = Sle]ps
sz = 6(x)
in O\{z} =s,:0
S[case e of (z,y) > a]lps = let o=>0, = S[a]ps
e =[] = Slel p S(0a(z), ba(y))
in (0.\{z,y})&b = 0a
Slcaseeof p; >a;] ps = let ;=0 = Sai] ps
b= 0. = (LI6:\fo(p)) = |]o7
e =>0. = Sle]p S
in 0.&0. = 04
S[letrecz =einb] ps = letrec n = arity(e)
=0 = Sle]p S™(9)
po= plz(n, 0\{z} = 0)]
=0 = 8] s
in 0\{z} =0

DT (sig, s) takes a demand signature sig and a demand s, and applies the demand transformer described
by sig to s, returning a demand.

DT ({n, dty, S™(s)) dt ifn<m

AbsType otherwise

PT(P, s) takes a product constructor P and a demand s, returns the constructor’s demand type given
that demand.

PT(P, S™(S(s1,-.-,5n))) ([,L) = [s1,---,82] if n=m = arity(P)

AbsType otherwise

Figure 6: The evaluation demand analysis

12

take the fixpoint in the lattice of demand types, not in the
(excessively rich) lattice of demand transformers.

Finally, we return to the demand-transformer function,
DT (sig, s), also shown in Figure 6. It takes a demand
signature and a demand, and returns a demand type. There
are two cases to consider:

Enough arguments. If the incoming demand s is of the
form S(...S(s)) = S™(s), the nesting depth, n, of the
call demands says how many arguments z is applied to.
If n is at least as big as the number of arguments en-
coded in the demand signature, then we simply unleash
the demand signature as a demand type.

Too few arguments. If there are too few arguments, we
return AbsType, which places a lazy demand on all ar-
guments and free variables.

The demand transformer for a product constructor,
PT (P, s) is similar: provided the constructor is saturated,
we can unleash the component demands of the incoming
demand, si,...,Sn, on the arguments of the constructor.
Otherwise we just return the top demand type.

This completes the description of our strictness analysis.
Compared to previous backwards strictness analyses, the
main new elements are

e simple and cheap extension to handle higher-order
functions via call demands,

e more accurate analysis of let-bindings via free-variable
demands,

e and approximation of demand transformers by demand
signatures, to make fixpointing fast and the analysis
modular.

7 Absence analysis

Our next step is to apply exactly the same analysis frame-
work to determine absence. For example, in the definition:

f x y = if x==0 then f (x-1) y
else x

it is clear that x is used; it is slightly less obvious that y is
not. Programmers seldom pass arguments that are entirely
unused, but they often pass arguments that are only partly
used. For example:

fst p = case p of { (x,y) > x }

Here, the second component of the pair is unused. These
two examples make it clear that absence analysis entails
more than simply computing free variables.

7.1 Domains

The domain we use for absence analysis, its identities, and
the type-indexed function that gives the domain for each
type, are given in Figure 7.

The two elements that are common to every domain are:

13

The set AbsDmd is the set of absence demands a de-
fined thus:

a == A Definitely unused
| U May be used
| Uf(a) Product or function is
used, components §
a == Jai,...,a,] Tuple components

Identities on absence demands

UU..U) = U

Ordering on demands
A C U

U@) C Uas) ifarCas

The U and & operators

A U a = a
U@r) U U@) = U(arUasz)
ar & as = a1 la

The absence domain for each type

T.[Int#] = {A,U} Unlifted integers
To[(t1,t2)] = U(Ta[t1], Ta[t=]) Product types
u {4}
T.[[t]] = {A U} Sum types
Talt1->t2] = U(T:[t2]) Functions
u {A}
T.[e] = {A4,U} Unknown types

Figure 7: Absence-demand domains, operators, and identies

A (absent): the value is not used at all, on any execution
path. This is the bottom element of each domain, and
we will write either A or L interchangeably.

U (used): the value is used on some execution path. This
is the top element of each domain.

The domain for unboxed types, such as Int#, has just these
two points, as do the domains for sum types and polymor-
phic types. (In the case of strictness analysis, we needed
three points for the latter domains.) The product domain
is constructed in a similar way as for strictness, and there is
an identify U(UU) = U analogous to the one for strictness
S(LL) = S. So we can calculate the domain for Int thus:

TalInt] = S(T.[Int#]) U {A}

= {U(A),U(U), A}
{U(4),U, A}

Figure 8: Absence for (integer) pairs

The demand A indicates that the integer is not used, U
that it may be, and U(A) that the boz of the integer may be
used, but the value will not be. John: Weird! Can we give
an example of a program which actually uses an integer that
way?? The domain for pairs can be calculated similarly,
and is depicted in Figure 8.

As Figure 7 shows, a significant difference between strictness
and absence analysis is that the & is identical to L. Why?
Consider the demands on x from the right hand sides of
these two functions:

flxy=
f2 xy =

X +y
if x==0 then x else y

In f1 we will use & to combine the demands on x from the
arguments to +, while in £2 we will use U to combine de-
mands from the branches of the if. For absence analysis
there is no difference in these two operators: x is not ab-
sent in either f1 or £2. Strictness analysis establishes that
something is evaluated in every execution path, so there is a
difference between combining information from parts of the
same path (&) and from different paths (Ul). Absence analy-
sis establishes that something might be used in some path: if
we find a use, then that is all that matters; it’s unimportant
whether we combine information from alternative paths or
parts of the same one.

7.2 Demand types

All the definitions concerning demand signatures and de-
mand types (Figure 5) hold unchanged. There is an inter-
esting point about return demands, though. Recall that a
return demand r is drawn from the set

r e {J_, ID&}

For absence analysis, the identity of & is L, so it follows
that r is always L (= A). So given a demand environment
6 = (p, A), any variable z not in the domain of p will be
mapped to A — which is exactly as it should be. Absence
analysis has no need to model divergence.

The function error has an interesting demand type:

error : ([], A) = [U]

14

Note the [U] part; it says that error uses its first argument
(to print out the error message).

7.3 The analysis

With these preliminaries, the analysis function of Figure 6
works almost entirely unchanged. We have to make only the
following adjustments: replace S by U, and L by A.

SLPJ: Again, rather an abrupt conclusion; what more should
we say?

8 Combining strictness and absence

In this section we take the cartesian product of the two
domains, approximate a bit, and end up with an interesting
modification of the traditional 4-point domain [?]; only now
we see where it comes from.

8.1 The demand domain

To compute the demands for the joint analysis we simply
take the cartesian product of the strictness and absence do-
mains. Figure 9 gives the syntax of joint demands sa, and for
each it gives the corresponding pair (s, a) from the product
lattice, where s is a strictness demand and a is an absence
demand.

As before, the demand domain is indexed by type. To be-
gin with, consider the simplest demand domain, that for
lists and type variables. For these types, the strictness do-
main is just {L1,S,L}, and the absence domain is {A,U}
(see Figures 2 and 7 respectively). We can make sense of
the following joint demands placed by an expression e on a
variable z:

Lazy = (L, U). x is mentioned (U), but not necessarily
evaluated (L).

Abs = (L, A). x is not mentioned at all (A), and (unsur-
prisingly) is not evaluated (L).

Str = (S, U). z is both mentioned and evaluated to at least
head-normal form.

Err =(L1, U). z is mentioned, and e diverges.

1 = (L, A). z is not mentioned, and e diverges.

In each case we have invented a new joint demand (e.g. Err)
to name the demand pair (e.g. (L, U)). What about the
missing point (S, A)? The S means “every terminating path
evaluates z”, while the A means “no path evaluates z”. So
the joint demand (S, A) means that no path terminates, and
no path evaluates z, so it is the same as (L, A). SLPJ: Idea!
Can we prove this claim in the section on projections? That
would be convincing.

Their ordering relationship is given by:

(81, dl) C (82, dg) =351 CsaAdi Cds

Figure 10 shows these ordering relationships, and already we
can see that matters are more complicated than the four-
point domain we find in the literature. In particular, the
distinction between Err and L is interesting. Consider:

Joint demands

sa = Lazy = (L, U)
| Loy(a) = (L U@)
| Str = (S, U)
| Stm) = (5(), U@)
| Abs = (L, A)
| Err = (L, U)
|1 = (L, 4)

Identities on demands

Str(...L...) =
Str(Lazy...Lazy) =
Lazy(Lazy...Lazy) =

Ordering on demands

1 C sa
sa C Lazy
Str(sar) C Str(saz)

if 3a1 C 3a»

Operations on demands

1L U sa
Abs U L
Abs U sa
Str(sa) U L
Str(sa) U Abs
Str(sa) U Err
Str(sar) U Str(sar)
Str(sar) U Lazy(sar)
Lazy(a) U L
Lazy(sa) U Abs
Lazy(sa) U Err
Lazy(sa) U Str(sar)
Lazy(sa) U Lazy(sar)
1 & L
1 & Abs
1 & sa
Abs & sa
Str(sa) & L
Str(sa) & Err
Str(sa) & Abs
Str(sar) & Str(sar)
Str(sa) & Lazy(sar)
Lazy(sa) & L
Lazy(sa) & Err
Lazy(sa) & Abs
Lazy(sa) & sa

sa
Abs

Lazy

Str(sa)
Lazy(sa)

Str

Str(sat U'saz)
Lazy(sar Usaz)
Lazy(3sa)
Lazy(sa)

Lazy

Lazy(sa1 Usaz)
Lazy(3ar U3az)

1

1

Err

sa

1

Err

Str(sa)
Str(sar&saz)
Str(sai1&saz)
Err

Err

Lazy(3a)

sa

Figure 9: Joint strictness and absence

15

TR
e &

Co
D

Figure 10: Joint-demand lattice for lists

f x y = error ("Urk" ++ x)

The demand on x is Err, and on y is L. This distinction is
truly useful: we must pass x to £, but we need not pass y.

John: Hmm. Why don’t we allow Err(sa)? It has a natural
meaning and it seems useful. What do you think, Simon?

8.2 Products and functions

Matters become more interesting when we consider struc-
tured types. Even Int is more complicated than one would
think. For Int, the demands we are interested in are:

{(s, a)|s € Ts[Int],a € T.[Int]}
={(s,a)ls € {L,S,L},a € {A,U(A),U(U)}}

Now we do some approximation.
joint demands (Figure 9):

We name the following

Lazy = (L, U)
Lazy(Abs) = (L, U(A))

Str = (S, U)
Str(Abs) = (S, U(A))

Abs = (L, A)

Err = (L1,0)

1L = (L, A4

There are two elements missing from this list. We identify
(S, A) with L as before. But what about (L, U(A))? That
demand would be created by a function like this:

f (I# x) = error "Urk"

From a strictness point of view, f is hyper-strict in its argu-
ment (because of the call to error), but in fact the payload
of the Int, namely x, is not used. We choose not to record
information at this level of precision, by not having an ele-
ment of the joint domain for (L, U(A)). Whenever we might
want it, we can approximate upwards to get Err instead.

Another very plausible approximation would be to approx-
imate (L, U(a)) to Lazy for any absence demands @. Why
do we instead choose to preserve absence information even
for a lazy demand? After all, consider:

Figure 11: Joint-demand lattice for Int

f :: (a,b) -> Maybe a
f x = Just (fst x)

This function places demand Lazy(Lazy, Abs) on x, and
so £ has no useful worker/wrapper split: we must pass x
entire to £. Thus motivated, our first implementation did
indeed approximate (L, a) to Lazy. However, consider this
function:

if fst x then
Nothing
else
Just (fst x)

f x =

If the demand from Just (fst x) is simply Lazy, then
the demand on x for the entire function will be Str =
Str(Str, Lazy). But that is bad! It is plain as a pikestaff
that the demand on x should be Str(Str, Abs); that is,
the second component of x is not used, and should not be
passed from the wrapper to the worker. If, instead, we do
less approximation, we get the demand Lazy(Str, Abs) from
Just (fst x), and Str(Str, Abs) from the if condition; and

Lazy(Str, Abs) & Str(Str, Abs) = Str(Str, Abs)

which is what we want. In short, even a lazy demand should
record which parts of the value will not be used.

Figure 11 shows the joint-demand lattice for Int. At this
point, the merit of our modular approach becomes clear.
The strictness and absence domains were relatively easy to
define, but the joint domain even for a simple type like Int
has become rather complicated. By taking the product of
strictness and absence domains we have a systematic ap-
proach to constructing the joint domain.

8.3 Operations over demands

Figure 9 give the U and & operations over demands. We
do not give cases for Str and Err because they can be ex-
panded using the identities. Again, these operations can be

16

calculated from the operations over strictness and absence
demands, using the guide:

(51, a1) U (s2, as)

(81, al)&(SQ, az)

(Sl [S2, a1 I_Ia2) E
(81&82, al&CLz) E

For example, we can compute Str(sa) & Abs thus:

Str(sa) & Abs = , U(a)) & (L, A)
&L, U(a)&A)
U

(5(s)
(S(s)
(5(5), U(@))

)

3
Str(sa)

Notice that “&” is neither least upper bound nor greatest
lower bound in the combined lattice.

8.4 Demand signatures and demand types

The same definitions for demand signatures and demand
types hold as before. We only need to identify the values of
r, the return demand. Recall from Figure 5 that a return
demand is an element of:

r € {1, IDg}
In our joint analysis, the identity of & is (IDg, IDg) =
(L, A) = Abs. So we calculate that for joint strict-

ness/absence analysis:

r € {1, Abs}

8.5 The analysis

We exploit the following equation:
Sle] p (sa1 Usaz) = (S[e] p sar) U (S]e] p saz)

SLPJ: Proof?

There are two new features.

e The very first equation becomes:

e Abstracting over Lazy(Str, Abs) gives just Lazy.

John: This section is highly incomplete!

9 Practical issues

Next, we turn our attention to some issues that turn out to
be important in practice, principally to do with fixpoints.
These issues never occurred to us before we began, but they
are crucial to good practical performance.

9.1 Returning an annotated expression

In our implementation, the demand analyser returns not
only a demand type, but also an annotated expression, in
which:

e Each let(rec) binder is annotated with its demand sig-
nature.

e Each binder (lambda, case, and let(rec)) is annotated
with the demand placed on it if the expression is eval-
uated at all.

The former information is used to drive the worker /wrapper
split that follows. Both annotations are used during pro-
gram transformation and code generation to transform call-
by-name into call-by-value.

9.2 Finding fixpoints

As we have already remarked, finding fixpoints for nested
recursive functions can be expensive. For example, consider

the following Haskell function:
f xs = [y+tl | x <- xs, y <~ h x]

GHC will turn the list comprehension (which really has two
nested loops) into something like the following:

£f[=10
f (x:xs) = letrec
g (1 = f xs
g (y:ys) = y+l : g ys
in
g (h x)

The trouble is that the analyser must find a fixpoint for the
inner function, g, on each iteration of the fixpoint finder for
the outer function, f. If functions (or list comprehensions)
are deeply nested, as can occur, this can lead to exponen-
tial behaviour, even if each fixpoint iteration converges after
only two cycles.

While this remains the worst-case behaviour, there is a sim-
ple trick that dramatically improves the behaviour of com-
mon cases. It relies on the following observation. The itera-
tions of the fixpoint process for f generates a monotonically
increasing sequence of demand signatures for £. Therefore,
each time we begin the fixpoint process for g, the environ-
ment contains values that are greater (in the demand lattice)
than the corresponding values the previous time we encoun-
tered g. It follows that the correct fixpoint for g will be
greater than the correct fixpoint found on the previous iter-
ation of f. Therefore we can begin the fizpoint process for g
not with the bottom wvalue, but rather with the result of the
previous analysis.

It is simple to implement this idea. Each iteration of the
f's fixpoint process yields a new right-hand side for f, as
well as its demand type. We simply feed that new right
hand side, whose binders are decorated with their demand
signatures, into the next iteration. Then, when beginning
the fixpoint process for g, we can start from the demand
signature computed, conveniently attached to the binding
occurrence of g.

In practice, most of the fixpoint processes of the inner func-
tion then converge in a single iteration, which prevents ex-
ponential behaviour.

This technique is fairly well-known as folk lore, but it was
not written down until Henglein’s paper [?]. (This paper
is fairly dense, and the fact that it contains this extremely
useful implementation hack may not be immediately appar-
ent.)

SLPJ: The explanation is a bit armwavey; can it be im-
proved? There should be some nunbers to back this up. John:

17

I like it! Of course, numbers would be good. Analysis times
on some benchmarks with and without the optimisation?

9.3 Splitting 6

In §5.3 we noted the importance of including information
about free variables in the demand signature computed for
a local definition. What we did not mention there is that do-
ing so greatly enriches the lattice of demand signatures, and
can therefore make convergence of fixpoints much slower. In-
deed, we found this to be a real problem in practice. Even
using the fixpoint technique described above, we still en-
countered exponential behaviour.

Some careful inspection of actual examples showed that the
trouble really concerned variables that are used lazily. Con-
sider:

f xy=1let gz =if x then (y,z) else (z,y)

in

- SRR S

The argument of §5.3 was that g should get a demand sig-
nature something like:

g: (1, {x— S,y— L],L) = L)

The mapping in the demand signature says that a call of g
places a strict demand on x and a lazy demand on y.

Something is gained by unleashing a strict demand on x at
g’s call sites; we may get better overall strictness for x (§5.3).
However, nothing is gained by unleashing a lazy demand on
y at g’s call sites. Each call site (whether saturated or not)
will unleash a lazy demand, and they will all combine to
give an overall lazy demand (unless there is some other strict
demand on y). It would be simpler and more direct, after
analysing the right hand side of g, to give g the simpler
signature:
g: (1, ([x— S|, L) = L)

and to derive a lazy demand on y from the definition of g
(rather than from its call sites).

So the idea is this. After analysing the right hand side of a
function, split the 6 it returns into the variables with lazy
demands and those with strict demands. Put only the strict
demands into the demand signature for the function; the
lazy ones can simply float outwards. More precisely, here is
the revised let (rec) rule:

S[letrec z =e in b] p s

= letrec n = arity(e)
=0 = S8[e]p Str"(Str)
(9lazy7 estr) = Spllt(e)
po= plz = (n, b = 0)]
0'=d = S]p s

in 0'&01y = o’

This refinement turns out to be devastatingly effective in
practice. Several troublesome programs that took a huge
number of fixpoint iterations before now converged in one
or two.

SLPJ: Again, is this enough? Numbers needed here too.
John: No, this is not clear. This discusses only strictness
analysis — but what happens once absence is added? Is it
Lazy demands that are factored out? Or is Abs also fac-
tored? What is the criterion in general? My guess is that

anything 3 Abs can be factored, but we should really do a
proof that doing so does not change the result. Will think
about this.

10 What does it all mean?

Backwards strictness-and-absence analysis has a nice theory
developed by Wadler and Hughes [?], which we shall adapt
to give a semantics to the demands and demand types in
this paper.

10.1 Projections and absence analysis

In this section we will consider the semantics of absence
demands, as described in Section 7, leaving strictness for
the next section.

Wadler and Hughes’ theory [?] is based on interpreting a
demand as a projection: a function from a domain to itself
that is idempotent and approximates the identity. That is,

p: D — D is a projection if p =pop and p C id.

An example of a projection is the function which maps every
value to L, and indeed, this is how we shall interpret A —
it is the projection which discards its argument entirely.

Ar=1

Now we can see that if a function f satisfies
f=foA

then it must be a constant function — since, for all x, fxr =
f L. That is, it does not use its argument, or to put it
another way, it places the demand A on its argument!

If we think of a projection as mapping a value to “the part
that is used”, replacing the unused parts by L, then it is
clear that we should interpret the demand U (use the whole
value) as the identity projection:

Ur =z
A function f may place the demand U on its argument if
f = f [e] U

All functions satisfy this condition, of course, which just says
that every function “may use” its argument. In practice the
best information is given by the least projection p such that

f="Fop
A static analyser cannot in general find the least such p, but
we are satisfied if it usually finds a “small” one.

Demands on tuples are modelled by projections that apply
other projections on the components separately. Thus (re-
calling that Haskell tuples are lifted)

U(p1,p2) (2,y) (p1 z,p2 y)
Upi,p2) L = L

18

Now it is straightforward to verify, for example, that
fst = fsto U(U, A)

that is, £st places the demand U(U, A) on its argument.

The ‘&’ operator is needed when function arguments are
used more than once, for example in the definition

fx=g (x,x)

If g places the demand U(pi,p2) on its argument, then f
places the demand p1&p-, as we have seen. If we ask what
this implies semantically, we see that if

g =go U(p1,p2)
then it must be true that
f =1fo (pi1&p2)

Restating this in terms of g, whenever g = goU(p1, p2), then
we must have
g = go U(pr&p2, p1&p2)

This condition constrains how we may define ‘&’ on projec-
tions. It will always hold, provided

U(p1,p2) E U(pi1&pa, pr&p») (1)

since then

goU(pi&p2,p1&p2) 3 goU(p1,p2)
g

J goU(pi&p2, p1&p2)

(since U(pi&p2,p1&p2) C id).
equation 1 is to take

An obvious way to fulfill

p1&p2 = p1 U ps

and indeed, as we saw above, for absence analysis ‘&’ is
the same as ‘Ll". But we will use equation 1 again when we
consider strictness analysis, and derive a better result.

So far we have assumed that the result of the function is
consumed with demand U, but we can easily generalise the
idea: if the function function f is called with a demand p on
its result, we may say it places a demand ¢ on its argument
if
pof=pofoq
For example, given the definition
swap (x,y) = (y,x)

we can check that
U(U, A) oswap = U(U, A) oswap o U(A,U)

That is, if the second component of the result is not used,
then neither is the first component of the argument — as
expected.

This is the way Wadler and Hughes modelled absence —
but does it correctly handle the awkward cases involving
error discussed in section 2.27 Yes it does, provided we use
Peyton-Jones et al’s semantics of “imprecise exceptions” [?].

This semantics is designed to allow the compiler to make
transformations that change the error that an erroneous pro-
gram encounters, without thereby identifying all errors with
1. In the semantics, erroneous programs denote a set of
possible errors, not just one, and when the program is run
the result is guaranteed only to be a member of the set.
The sets are ordered using the Smyth powerdomain order,
so that larger, less-precise sets approximate smaller, more-
precise ones. Non-termination is then identified with the set
of all possible errors — the largest, least-precise error set of
all.

Now recall

g2 (x,y) = error x

which “diverges”, but uses x. Clearly
g2 =g20oU(U, A)
(that is, y is not used), but
g2 #£g2o0U(A,A)

since when g2 is applied to (x,y) it returns a singleton set of
possible errors just containing z, while the right hand side
returns L, the set of all possible errors. Thus we cannot say
that x is not used.

10.2 Projections and strictness

The theory above models absence analysis nicely, but is not
sufficient to model strictness analysis. Intuitively, the prob-
lem is that, having used L to represent a missing value —
something which will trigger divergence if evaluated — we
cannot at the same time use it to represent divergence itself.
Wadler and Hughes’ solution was to add a new bottom el-
ement to the semantic domain, below the existing one (i.e.
lifting the domain), with the new element representing di-
vergence itself. To avoid confusion, the new bottom will be
called N\, (“lightning bolt”). It is important to realise that
we do not need to give a new semantics to Haskell, in which
lightning bolts appear. We interpret Haskell programs as
usual, but we model demands by projections on the semantic
domain with one additional element, lightning bolt, rather
than the original semantic domain. We will need to lift the
semantics of Haskell functions to the extended domain, but
given a function f this is easily done by taking £ \,=\,. At
every other point, f retains the usual semantics.

Now, in the extended domain we distinguish between a clo-
sure which will loop if evaluated (L), and non-termination
itself \,. We can therefore model evaluating a closure as a
projection:

SN = N\
S 1 =\
Sx = =z, otherwise

We map an wunevaluated looping closure (L) to true di-
vergence (), while leaving terminating values unchanged.
This is the projection that models strict demand; we can ask
whether f uses its argument strictly when called in a strict
context, just be asking whether

Sof=So0foS

19

Applying both sides to L we see

(Sof) L = (SofofS) L
= S 1) = S(£(S 1))
= SE 1) = S(E N\
= S 1) = SN\
= SE 1) =\
= f 1 = 1

so this condition does indeed imply that f is strict. Similarly
we can define strictness projections on tuples

S(pi,p2) v = N\
S(p1,p2) L = N\
S(plap2) (may) = \n if P1 Q’JZ\‘ or pa y:\‘
= (p1 w,p2 y), otherwise

and finally, we model L (no evaluation) just by the identity
function. Now we can pose questions “does f place demand
q on its argument when called with demand p” by asking
whether

pof=pofogq

as before.

How should the & operator be defined on the domain with
lightning bolt? In the last section, we concluded that it must
be defined so that

U(p1,p2) C U(p1&pa, p1&p2)

In this section we have replaced U(p1,p2) by S(p1,p2), but
we can make the same argument and conclude that & must
satisty

S(p1,p2) E S(p1&p2, pré&eps)
However, we can now take advantage of the fact that

S(p1,p2) returns \ if either p1 or p» does, by defining

No

p1xUp2 x,

if pr z =N 0rprz=
(pr&eps) @ = { otﬁerwise\‘ P >
This is the semantic definition of &: it takes advantage of
strictness in either operand, but if neither is strict behaves
as Ll. Clearly this definition satisfies the necessary condition,
and moreover we have that p1&p2 C p1 U p2 and in general
is different, so we obtain a more precise analysis.

The result of all this is a unified semantic framework for
strictness and absence analysis. SLPJ: Well, no one could
arque with something as desirable as a “unified semantic
treatment”. Ewvery schoolgirl should have one. But what
the dickens is it, and what can one do with such a wonder?
John: Promulgate Truth, Freedom, and the Functional Way,
of course! OK, I take your point.

10.3 Projections and function values

Wadler and Hughes’ article was restricted to a first-order
language. Numerous attempts were made to generalise the
approach to higher-order languages [?, 7, ?], but these all
involved departing more-or-less radically from the simple
model of demands as projections. In this paper, on the other
hand, we can model our analysis in a purely projection-based
framework. We do need to adapt the theory a little to handle
function values, though.

SLPJ: OK, this is a great statement. Sounds as if there is
a qualitiative breakthrough here, yes? John: Yes, it’s good!
I'm going to reread some of the old projection papers, though,
just to make sure the idea doesn’t appear in some corner.

Firstly, we will need projections on function values. In this
section we use the notation

(p—q) f=qofop

to denote such projections. Clearly if p and ¢ are projection
on types o and 7, then p — ¢ is a projection on functions of
type 0 — 7. The call demands S(p) used in the analysis can
be modelled by function projections ID — p: they impose a
demand on the result of a function, but not on its argument.

Wadler and Hughes’ safety condition for projection analysis,
pof=pofogq
can now be rephrased as
(ID—p)f=(¢—p)f

or as
(ID—p)f=(ID —p) ((¢g—ID) 1)

So, when this condition holds, if we see a use of f in a context
where it is evaluated by (ID — p), then we can safely apply
another projection (¢ — I D) to evaluate it a bit more.

More generally, if we know that e appears in a context p e,
then we can replace e by ¢’ e (thus discarding components
or making evaluation stricter) provided that p’ e = p’ (¢’ e).
We will take this new form to be the safety condition for the
analysis in this paper.

Safety condition: Let the result of analysing an
expression e with demand p’ be the demand ¢'.
Then we must have

pe=p (¢ e)

When e is a first order function, p’ is ID — p (i.e. S(p))
and ¢’ is ¢ — ID, then this condition reduces to Wadler and
Hughes’ original safety condition. But the new condition
also applies directly to higher-order and curried functions.

For example, suppose £ is a curried function of type o1 —
...on — 7, called in the context S™(p) (meaning p nested
inside n applications of S). A projection ¢’ produced by the
analyser will be of the form ¢q1 — ...¢g, — ID, satisfying

S"(p) £=S"() ((q1 = ...qn = ID) £)

A call in a strict context, p (f e1 ... ex), can thus be replaced
by
p(((g1 = ...qn > ID) f) er..

which is equal to

.€n)

p (£ (q1 e1)...(qn en))

That is, we can evaluate each e; in the context ¢;. We see
that the list of argument demands [q: ...¢.] in a demand
type can thus be modelled semantically by the projection
@ —...qn = ID.

SLPJ: Which in turn makes me wonder whether we shouldn’t
represent a demand type using curried arrows for the o part

20

instead of the [s1,..8n] notation? John: Yes... I like that
idea!

SLPJ: I think we want some soundness statement like: if
Slelpd=60=0¢

then
d(&E(e)p) = d(a(E(e)b(p)))

That would help to set the overall context for the work of
this section.

John: Yes! I agree completely.

10.4 The demand environment

Of course, in general the meaning of an expression — even
a function — depends on the environment. The seman-
tics of an expression is indeed a function from the environ-
ment to its value; the semantics of a function-valued ex-
pression is consequently a curried function from the envi-
ronment and arguments to its result. When we analyse a
Haskell expression of type o1 — ... = 0, — T, we are re-
ally analysing something whose semantics lies in the type
Env = 01 = ... & o, = 7. So we should expect the pro-
jection we obtain, according to the safety condition above,
to be of the form

q4 = q—...qn = ID

where g, is a projection on the environment. Of course,
we represent such projections componentwise (by giving a
projection for each name) — for example [z — q1,y — g¢2].
Thus we see that the demand environments that appear in
demand types are also modelled naturally as a part of a
projection on the semantics of expressions.

10.5 Result demands

What of result demands? To explain them semantically, we
make a slight digression.

SLPJ: I think we could give this diression when talking of
the demand environment, couldn’t we? John: Well, the first
part is just explaining that projections on environments cor-
respond to part of demand types. This applies however we
use environments. Then this next bit is about using a jolly
strange semantics in order to get better results — I thought
it well to separate them.

First of all, notice that every use of an identifier is (obvi-
ously) within the scope of its definition — and therefore,
within the scope of every other identifier which was in scope
at its definition. To put it another way, the environment at
the point a variable is used is always strictly larger than the
environment at the point the variable was bound. If a vari-
able is bound by a let or letrec binding, then the value it is
bound to is interpreted in the environment in scope at the
definition. It follows that, if there are no name clashes, we
can equally well interpret the bodies of let-bound variables
in the scope where the variable is used, instead of where it
is defined. That is, dynamic binding is equivalent to static
binding, provided there are no name clashes (and assum-
ing that A-expressions are closed in the environment where
they appear, i.e. there is no “FUNARG problem”). GHC

eliminates name clashes in an earlier phase by renaming of-
fending variables, so we are justified in assuming that they
do not occur.

SLPJ: I kind of understand, but would it not be clearer to
give a fragment of the denotational semantics thus: instead
of

E(letr = rinb)p = Ebplz — E(r)plE(x)p = p(x)
we have
E(letr = rinb)p = Ebp[z — E(r)|E(z)p = p(z)p

Theorem: this change makes no difference. John: Yes,
OK. That’ll be an improvement.

So let us consider a semantics for Haskell in which let and
letrec bindings bind names to functions from the environ-
ment where they are used to a value. As we have argued,
the semantics is equivalent to the standard one, for name-
clash-free programs. The advantage of using this semantics
is that it lets us associate demands on the free variables of
a let bound variable with the point where it is used, rather
than the point where it is defined, which as we saw in sec-
tion 5.3, can give us more accurate results. But now an
occurrence of a variable denotes a function from a possibly
larger environment to a value, so the result of analysis must
give us a projection on this larger environment, not on the
environment at the definition.

What projection, then, should we apply when z is used, to
the values of variables which were not in scope at the defini-
tion of 7 One safe possibility is to apply A to them: since
the body of x cannot depend on them, this is certain to be
safe. But if z is undefined then we can do better: since the
result of evaluating z strictly will be \, anyway, we might
as well project the extra variables to N\, directly. That is,
we can apply the least projection Az —\, to them. (This
projection represents the bottom element of our projection
domain, and so is called the 1. demand in the rest of this pa-
per). This “demand on new variables” is the result demand
of previous sections.

10.6 An operational approach

Strictness and absence analysis are just two of the analyses
which GHC performs. Many of the others, such as “box de-
mand” analysis, discover much more operational properties,
such as whether or not a particular pointer need be passed to
a function. Although Wadler and Hughes’ projection-based
theory applies beautifully to the analyses in this paper, we
cannot expect to extend it to cover operational properties
also. We are working on a trace-based framework for de-
mands to handle such properties, which we hope will appear
in a future paper.

11 Implementation

SLPJ: Measurements and results

12 Related work

SLPJ: John: you are going to write this, right?

References
A Box demand analysis

NOTE: This entire section is probably wrong in se-
rious ways. But it’s fumbling towards something
useful, I think.

We have now completed our tour of the strictness analyser.
There, the demand domains are standard (apart from call
demands), and so constituted a familiar framework in which
to develop our realisation of the analysis. We now turn our
attention to box-demand analysis, where the situation is re-
versed: the analysis is identical in form to that for strictness
analysis, but the domains are much less familiar.

The purpose of box-demand analysis is to guide the un-
boxing transformation described in §2. Let us assume, for
example, that a function takes a pair as its argument and
is strict in the pair. Should we pass both components, or
one or the other, or neither, or should we pass the pair it-
self? These are the questions that box-demand analysis will
answer.

Note that even if only the components are passed, the called
function can always reconstruct the tuple. Such rebozing is
sound (because there is no notion of tuple identity or de-
structive component update), but may be inefficient, espe-
cially in a loop.

A.1 Developing intuition

Before we can proceed further, we need to say what we mean
by the term “using the box of a value”. The idea is that if a
function “uses the box” of its argument, then the argument
should be passed in boxed form to the function. Consider
the following functions:

-— Which of these "uses the box" for x7

fl x =x -- Yes
f2 x = (x,True) -- Yes
f3 x = case x of (a,b) -> (b,a) -- No
f4 x = case x of (a,b) -> (x,a) -- Yes
f5 x =f3 x + 1 -- No
f6 x = (True, case x of (a,b) —> a) -- Yes
f7 x y = if (case x of (a,b) -> a) -- No
then
(True, case x of (a,b) -> a)
else
(False, y)

Here, £1 uses the box for x, because it returns x itself; £2
uses the box for x because it builds x into a pair. On the
other hand, £3 does not use the box for x because the only use
it makes of x is to take it apart; the worker for £3 should be
passed only the components of x, not x itself. The function
f4 takes x apart, like £3, but it also builds x into a pair (like
£2) so it does use the box. If the box is not passed to the
worker for £4, the worker will have to re-box the pair.

The next function, £5, illustrates the transitive property we
seek: If x is passed to a function that itself does not use the
box, then we want that property to propagate to the caller;
in this case, £5 does not use the box because £3 does not.

Box-demand and strictness are not altogether separable. For
example, £f5 does use the box for x, because it is lazy in
x, so x must be passed unevaluated (and hence boxed) to
the function. However, £7 illustrates a subtle point that we
missed altogether in the beginning. It is certainly strict, and
certainly does not use the box for x. But if we consider only
the then branch, we see it is precisely the same as £6’s right
hand side. So it would be wrong to say that the then branch,
being lazy in x, uses the box for x, because there may be
other reasons why the function in which the sub-expression
occurs is strict in x.

The conclusion is this: the box-demand analysis must treat
sub-erpressions and functions differently. For example, the
expression

(True, case x of (a,b) -> a)
does not use the box for x, but the function
(\x -> (True, case x of (a,b) -> a))

does use the box for its argument. We will elaborate this
point in §A.4.

A.2 Dealing with conditionals

Consider the following expression:

case as of
] -> x
(b:bs) -> case x of (a,b) -> a

f x as =

Does £ “use the box” of x or not? In one of the case
branches, the answer is ‘Yes’, while on the other the answer
is ‘No’. So what are we to say for the whole expression?
Our choice is to say that £ does not use the box of x. Here
is the example that convinced us:

last2 :: (Int,Int) -> [Int] -> (Int,Int)
last2 p [1 =p
last2 p (x:xs) = case p of (a,b) -> last2 (b,x) xs

In the base case, last2 returns the pair p. In the recursive
case, it builds a new pair before recursing. Should we pass
the boxed pair to last2 on the grounds that one branch uses
the box? By no means! On every iteration except the last,
we would simply take apart the newly constructed pair, so
we can save a great deal of allocation by instead accepting
the reboxing cost in the base case.

Unfortunately, one can also construct examples where the
reverse is true:

wug :: (Int,Int) -> [Int] -> [(Int,Int)]

wug p [] = case p of (a,b) -> [(b,a)]

wug p (x:xs) = case p of (a,b) -> if x==
then p : wug p xs
else wug p Xs

Here, in the base case we take the pair apart, while in the
recursive case we also use the box; and wug is still strict in
p- If we pass p unboxed (i.e. just pass the components) we
will incur a reboxing cost each time round the loop.

One can imagine many clever schemes, but we have adopted
one simple one: we regard an expression as using the box
only if every execution path (i.e. case branch) uses the box.
In our system, neither last2 nor wug use the box. In prac-
tice this seems to work pretty well. Accumulating-parameter

22

To[Int#] = {Ll,A BT} Unlifted integers
To[Int] = U(Ts[Int#]) Lifted integers
U {Ll,4,B}
= {J-zAaBzU(J-)aU(A)zU(B)zU(T)}
To[(t1,t2)] = U(Ts[t1], To[t2]) Product types
u {L,AB}
T[ltl]] = {Ll,A BT} Sum types
Tolt1i->t2] = S(Tu[t2]) Functions
U {Ll,A4,B}
Tole] = {L1,A,B,T} Unknown types

Figure 13: Box-demands at various types

S
N

Figure 14: Box demands for unlifted integers (Int#)

functions like last2 are common, whereas wug is highly con-
trived (hence its name).

John: These examples suggest that we should assign case
branches weights, perhaps by profiling, perhaps by analysis,
and say the bozx is used if it used in branches whose weight
sums to at least 50%. Do we have evidence that this is not
worthwhile? Perhaps we should mention the possibility, any-
way.

A.3 The box-demand domain and its operations

Based on these intuitions, we are now ready to present the
domain of box demands. The syntax of box demands is

ums=T
U(A) U(B)
A UL B
1

Figure 15: Box demands for lifted integers (Int)

The set BDemand is the set of box demands b defined below.

Box demand b == L Needed in a divergent computation

| A Absent, definitely not used
| B Box definitely used
| U(b) Box may be unused, components b
| S) Call, with result box demand b
| T No information

Box demand sequence: b := [bi,...,b,] Tuple components
| b Length-polymorphic tuple components

Figure 12: Box demands

shown in Figure 12. As in the case of strictness analysis,
the actual domain depends on the data type (Figure 13).
However, every box-demand domain contains the following
four basic elements, arranged in a diamond lattice, as shown
in Figure 14. An expression e may place the following box-
demands on a variable x:

e A (Absent): x is not mentioned anywhere in e; the
wrapper need not pass the argument to the worker at
all.

e B (Box): every execution path in e uses the box of x;
the wrapper should pass the box to the worker.

e T (Top): not all execution paths use the box for x;
if the function is strict, the wrapper should pass the
components, but not the box, to the worker.

e | (Bottom): e goes into an infinite loop, or calls the
error function.

The discussion about conditionals, in the previous sec-
tion, explains why B contains definite information (“every
path...”) whereas T is less defined (“not every path...”).

These four points suffice for unlifted types, sum types, and
unknown types (Figure 13), but we need more structure for
product and function types:

e U(b) (Unboxed): used for product types only. Not all
execution paths need the box (the product itself), and
the joint need for each component is described by b. If
the function is strict, the wrapper may pass the com-
ponents described by b instead of the box.

We identify U(T) with T, much as we identify S(1) =
1 in the strictness analyser.

e S(b) (Call): a call demand, used for function types
only. Call demands work in exactly the same way as
for strictness analysis. The value is a function, which
when applied will have box demand b imposed on its
result. Like U, we identify S(T) =T.

The ordering on box demands is shown in Figure 16, to-
gether with the ‘lub’ and ‘both’ operators. SLPJ: How can
we justify these definitions? It’s a big Figure to give without
elaboration, but it’s a bit hard to justify except by armwav-
ing. Are any of the definitions surprising, worthy of more
explanation?

23

Notice that we cannot identify U(A) with A. To see why,
consider

al, a2 :: Int -> [Bool]
al x = [x ‘seq‘ True]
a2 x = [Truel

The function al places box-demand U(A) on x, whereas a2
places demand A. It would be patently wrong to say that x
is not used at all by al.

Similar reasoning shows that we must distinguish U(_L) from
1. Consider

a3 :: Int -> Bool -> [Booll]
a3 x b = if b then
error (al x)
else
[b]

The demand on x arising from the call error (al x) is
1 & U(A) — the L comes from the fact that error diverges,
while the U(A) comes from the call of al. By Figure 16,

L &U(A) = U(L&A) = U(L)
Now if U(L) = L, the overall demand on x from a3 would
be AU 1 = A, which is plainly wrong.

We could have additionally permitted structured box de-
mands B(b), meaning that all branches need the box and
in addition the components are needed b much. But we
chose to use simple B only, on the grounds that if we pass
the box, then the runtime advantage of additionally passing
some components is dubious.

A.4 The box demand analysis function

The box demand analysis function, B[e], has almost exactly
the same form as the strictness analyser, S[e] (Figure 6),
except that we use the box-demand domain in Figure 12, and
its operators in Figure 16, instead of the strictness-demand
domain and its operators. Since it is simply a stepping stone
to the joint-demand analyser, which we present in detail
later, we will briefly summarise the differences between S[e]
and Bfe], rather than giving the full definition of the latter.

There are several important differences. Firstly, the “vanilla
demand” (used when approximating a demand transformer)
is B, not S; that is, the vanilla demand uses the box of the
returned value.

L C b
A C U(A)
B C U(B)
biCh = Ub) T U(be)
b C T
b1 Cby = Sb1) C S(be)
L u b = b
AU A = A
A U B =T
AU Sk =T
A U UB) = UAUD)
B U B = B
B u U®B) = UBUD)
B U Sb) = S(b)
U(br) U Ub2) = U(brUb2)
U u Sk =T
S(bl)] S(bg) = S(bl lez)
T U b =T
1 & L = 1
1 & A = 1
1 & B = B
1L & Sb) = S(L&b)
1L & U®B) = U(L&b)
1L & T = B
A & b b
B & B = B
B & S(b) = S(b)
B & U@®) = U(B&D)
B & T = B
Sb1) & Sb2) = S(bi&bdz)
Sb1) & U®B) = Sn)
Sy & T = S(b)
Ub) & U2) = U(bi&bs)
Ub) & T = U(T&b)

“John: These definitions are not consistent. L1 should be the
least upper bound operator for the C ordering, which demands
for example that B C S(b). Call demands have been forgotten
completely in the definition of C.

Figure 16: Ordering and operations on box demands

24

Secondly, the lookup function defined in Figure 5 returns A,
not L, for variables not in the domain of 6:

(T)r = A if z & dom(0)
f(X)r = L if z & dom(0)
O(ryx = 6(r) if x € dom()

In the same way, the first equation of the box-demand anal-
yser looks like this:

Blel pA = T=][]

(see the first equation of Figure 6). That is, if we analyse
e with an absent demand, we return a demand type that
places only an absent demand on all its free variables.

Thirdly, in §A.1 we showed that the box-demand analysis
must treat sub-expressions and functions differently. This

difference can be neatly catered for in the equation for a
called lambda:

B[\z.e] p S(s)

let r= o0 Sle] p s
Sz 6(r)z
inr= F(s:): oc6\{z}

(see the corresponding equation in Figure 6). When the
demand s, becomes a function argument, we must force it
to be boxed unless the function is strict, using the auxiliary
function F(sy):

F(A) = A
FU®B) = UF®s))
F(sz) = Sz if demand on z is strict
= B otherwise

(This definition of F(s;) informally assumes that we have
strictness information available, which we will have when we
combine the two analyses in the next Section.) Notice that
F(-) must be applied recursively to the components of a U
demand. John: What?? This seems to say that if the de-
mand on the argument is unbozed (U(s)), then the demand
type says the argument is unbozed regardless of whether the
funection is strict or not! I’'m assuming that the second equa-
tion “takes precedence” over the third, since it is more spe-
cific. This is a mizup, surely?

These are the major differences between the two analysers.
There are other minor ones — for example, the treatment
of B[\z.e] p U(b) — but rather than present them in detail,
we proceed to the joint-demand analyser.

A.5 The error function again

The box-demand analyser also shows that we really do need
to keep a free-variable map of a demand type even when the
result-type component is X, something that is not necessary
for strictness (§5.5). Consider the following box-demand
analysis:

Blerror x] p B = (X,[x— B])

The error function has box-demand signature B -> X; that
is, it uses the box of its argument, and diverges (X). It is
important to remember that x is used, via the mapping,
otherwise it will be taken as absent, which is not right (c.f.
§2.2).

B Joint demand analysis

We have now described two separate backwards analysers,
one for strictness and one for box-demand. Since their form
is identical, it is natural to ask whether we can compute
both analyses at once. The way to do so is to combine their
domains together.

One way to do so would be to take the cartesian product
of the two domains, but in practice the two components
will often have the same structure, so the product space
would have more points than necessary. Hence, we define
a single “zipped up” domain, which captures the essential
information, and describe its meaning by injecting it into
the cartesian product domain.

B.1 Zipped-up demand representation

SLPJ: I am concerned about how to motivate the choice of
elements of this domain, and its type translation. For exam-
ple, should Err be in the Int# domain; why do we eliminate
one out of the four points we’d get from taking the cartesian
product? Should Err be in the => domain?

SLPJ: There’s also a difficulty with having Seq in the «
domain, because its semantics is (S(L),U(A)), but U(A)
isn’t in the bor-deman domain for a. Maybe it should be?
But then we have five points, not four. Maybe we abbreviate

U(A) as plain U?

Figure 17 shows the syntax of joint demands. We explain
what each of these joint demands means using the function
Z[], which injects each joint demand into the product space
StrDmd x BDemand. We can give intuitions for each de-
mand, as follows:

e Bot means that the argument will be used only in non-
terminating expressions; its semantics is simply (L, L).

e Abs means that the argument will not be evaluated
nor used at all. Its semantics is (L, A): the strictness
component says that it is lazy, while the box-demand
component says that it is not used.

e Top means that we know nothing about the use of the
argument.

e Call(d) means that the argument is a function, that
the value is needed, and when the function is applied
(to one argument), the demand on its result is d. Its
semantics is simply a combination of the call demands
from the strictness and box-demand lattices.

Comment: ['ve changed if to when above — a call de-
mand Call(d) does mean that the function will be ap-
plied, doesn’t it?

e FEwval(d) means that the argument is used strictly, and
its components are demanded as described by d. Its se-
mantics are given by a combination of S on the strict-
ness side, and U on the box-demand side.

e The demand Defer(d) means that the argument may
or may not be evaluated, but that the box demand on
it is described by the box-demand component of d. We
noted in §A.1 the importance of recording box-demand
information even in lazy contexts.

25

||

Q
e
R
=

=
Y

=

aul
Il

ZI[Bot] =
Z[Abs] = (
I[Calli(d)] = (
I[Top] = |
I[Defer(d)] = (
I[[Boa:(d_)]] =
I[Eval(d)] = (

Abbreviations

Lazy
Err
Str

Seq

Box(Top)
Bozx(Bot)
Boz(Seq)

Eval(Abs)

Identities

Defer(f-o;)) = Top

Lazy
Lazy
Lazy
Call(d)
Box(d)

Box(Defer(d
Boz(Call(d
Box(Box(d

NeAAACINC
|

Figure 17: Syntax and semantics of joint demands

e The demand Boz(d) means that the box is needed in
every branch, with the strictness specified by the eval-
uation demand component of d.

Figure 17 also defines a few useful abbreviations:

e The demand Lazy means that the argument may or
may not be needed.

e The demand Seq means that the expression will be
evaluated, but its value will be ignored. This is the
demand that seq imposes on its first argument.

e The demand Err = (L, B) is the demand that (say)
error s imposes on s. It expresses the fact that the
box of s is needed, but from a strictness point of view
the demand on s is hyperstrict (.L).

T.[Int#] = {Ll,Top, Abs} Unlifted
integers
T (1,t2)] = Eval(T:t1], T=[t=1) Products
U Boz(Eval(T.[t1], T-[t=]))
U Defer(T.[t1], T:[t])
U {L,Top, Abs, Err, Lazy}
T:[ti->t2] = S(T:[t2]) Functions
U {Ll,Top, Abs}
T:[t1] = {L,Top, Abs, Sums
Err, Seq, Str, Lazy}
T:[e] = {L,Top, Abs, Unknown
Err,Seq, Str, Lazy} types

Figure 18: Type translation for zipped-up demands

e The demand Str = Boz(Eval(Abs)) = (S(L), B)
means that the argument will be evaluated, that its
value is needed, and that its components may or may
not be evaluated. This is the plain strict demand.

The lattice even for simple types, such as Int is now quite
complicated, and intution begins to become an unreliable
guide. For example, is it true that Box(Box(d)) = Box(d)?
That is why we have presented the two analyses separately:
we can now calculate the answer to such questions.

Boxz(Box(d)) = Boz({s,B))
= (s,B)
= Box(d)

where (s,b) =d

(In this calculation we are slightly sloppy about writing calls
to Z[], because they clutter up the reasoning.) Figure 17
gives some other useful identities that can be verified in the
same way.

B.2 Operation over joint demands

Figure 19 gives the “lub” and “both” operators for joint
demands. Again, we can calculate these functions, as the
following example shows:

Abs U Defer(d) (L, A) U (L,b)
(L, AU Db)

Defer(Abs U d)

We simply convert to the product space, perform the oper-
ation component-wise, and convert back (approximating if
necessary).

B.3 The demand analysis function

The main analysis function, J[e], in Figure 20, takes exactly
the same form as the strictness and box-demand analysers
already presented.

One difference is that the rather informal function F(-), in-
troduced in §A.4, can now be defined formally (Figure 21),

26

€ Demand = StrDmd x BDemand

(s,b)

<S1,b1> E (82,b2> iff 81282/\1)1262

Peter to fill in here

Figure 19: Joint demand domain and its operations

F(d) takes a demand d for the free variable z of an
expression e, and returns the demand appropriate for
the argument of the function \z->e.

John: Why doesn’t Eval have an argument in the
fourth equation here?
F(Top) Lazy
(Defer(d)) = Lazy
F(Eval(d)) = Ewval(F(d))
F(Box(Bot)) = FEwval
F(Box(d)) = Boxz(F(d))
F(Bot) = Abs
Fd) = d

Dr(dt) takes a demand type dt and returns a “de-
ferred” demand type, by discarding all the strictness
information from dt, retaining only box-demand in-
formation.

John: What does the third line mean here? It’s a bit
confusing to omit L[] everywhere.

Dr(r=06) = T=[]Ds(h)
Dy(#) = [z D(O(z)) |z € dom(h)]
D((s,b) 3 (L)
D(Bot) = Abs
D(Abs) = Abs
D(Top) = Top
(Call()) = Lazy
D(Box(d)) = Lazy _
D(Defer(d)) = Defer(d)
D(Eval(d)) = Defer(d)

Figure 21: Auxiliary functions for joint demand analysis

because the demand embodies strictness information as well
as boxity.

The main difference between the joint analysis and the sep-
arate ones is described next.

B.4 Deferred demands

Consider what happens when we analyse an expression with
a lazy demand, such as Lazy. The strictness analyser
stopped at this point, returning the top demand type (first

Jle] p d takes an expression e, a demand environment p and an evaluation demand d, and computes a

demand type dt for e.

Jle] : StrEnv — JDemand — DemandT ype

p:StrEnv =

Tlel p Abs
Jlel pd
JPlpd =
Tl pd =

Jlere] pd =

J\z.€] p Call(d) =

TD\eel pd

J[case e of (z,y) -> a] pd =

Jlcase e of p; > ai] pd =

J[letrec z =einbd] pd =

Var - DmdSig
T =[]

where d is non-strict

Dr(Je] p Str)

PT(P, d) where P is a product constructor
let r=00 = DT (p(zx), d) ifz € dom(p)
= T=[] otherwise

inr=oc&[x—d

let 11 =>do:0100 = J[ei] p S(d)
ro =020 = J[e2] pda
inr = o101 & ro = 020s

let m=00 = Jle]pd
d: = 0(r)x
inr=F(d,):ob\{z}

Dr(J[\z.€] p Call(Str))

let ro = 04b6a Jla] pd
re = []e Jlel p S(0a(ra)e,0a(ra)y)
inre = oabu\{z,y} & e =[]0

let r; = O'iei

re = 0cbe

Jlail pd
Tlelp S

mn

(Uri = aibi\ fo(p:)) & re = ocbe

letrec n = arity(e)
r=[di,...,d,]0 = Jle] p' Call™(Str)
sig = di— ... —>dp — (1,0)
pl= plr sig]
in J[b] p' d

PT(P, d) takes a product constructor C' and a demand d, returns the constructor’s demand type given

that demand.

PT (P, Call™(Eval(dy, ...

»dn)))

T = [dy,...
T= (][]

,do][] if n=m = arity(P)

otherwise

DT (sig, d) takes a demand signature sig and a demand d, and applies the demand transformer described

by sig to d, returning a demand.

DT (dy = ... > dn — (r,0), Call™(d)) =

ifn<m
otherwise

r = [dl,...,dnle
D(T = []9)

Figure 20: The joint demand analysis

27

equation in Figure 6, but that is not right for the joint de-
mand analyser, because the demand type it returns distin-
guishes variables that are absent from those that are men-
tioned. Only if the demand is Abs can we simply stop (first
equation in Figure 20). On the other hand, we cannot sim-
ply proceed by recursing over the structure of the expression;
consider
Jllength xs] p Lazy

If we use the equation for applications, we will get a strict
demand for xs, which is not right. The solution is given in
the second equation of Figure 20:

Jle]l pd = Dr(J[e] p Str) where d is non-strict

If the incoming demand d is non-strict, we analyse the ex-
pression with a strict demand, and then apply the function
Dr(dt) to the demand type thereby produced. Dr(-), pro-
nounced “defer”, is defined in Figure 21. It throws away all
the information about arguments and results, and applies
D(-) to the demand of each of the free variables mentioned
in 63,

The function D(-) is defined Figure 21, using the semantics
of joint demands, by the equation:

D((s,b)) 2 (L,b)

That is, D(-) discards the strictness information, but retains
the boxity information. John: This isn’t an equation, which
baffled me! What we mean, I take it, is that D((s,b)) is the
least d such that Z[d] 3 (L,b).

Given this defining equation, together with the semantics
of joint demands in Figure 17, the effect of D(-) on each
joint demand can simply be read off (Figure 21). The joint
demands do not fully cover the product demand space; hence
the approximation “J” in defining equation for D(-).

The importance of all this was illustrated by example £7 in

§A.1:
f7 x y = if (case x of (a,b) -> a)

then

(True, case x of (a,b) -> a)
else

(False, y)

The second sub-expression (case x of (a,b) -> a) will be
analysed with a lazy demand (because it is the argument of
a lazy pair constructor). From a strictness point of view it is
lazy in x, and from a boxity point of view it does not use x’s
box. So we analyse the sub-expression with a strict demand,
to give demand Ewval(Str, Abs) for x, and then apply D(-) to
that demand, to give Defer(Str, Abs), which is (L,U(BA)).
This is precisely the reason that Defer demands exist in the
joint-demand lattice; approximating to Lazy, say, which is
(L, B), would lose too much absence information.

Exactly the same situation arises when a lambda is analysed
with a demand that is weaker than a call demand; we analyse
with a vanilla call demand, and use Dr(:) to discard the
strictness information in its result.

3In principle we should also apply D(-) to the argument demands,
but in fact we lose no useful information by simply discarding the
argument demands altogether, becusea their boxity information is in
any case discarded by F(-). SLPJ: Do we need to say more? Less?

28

Evaluation Evaluation in the wrapper
1 Completely evaluate the argument.

S(3) Evaluate argument to whnf; evaluate
components according to s.
S(d) Evaluate the argument to whnf.
L Do not evaluate argument.
Box Argument passing

1 Pass the evaluated argument.
A Do not pass the argument.
B Pass the (possibly evaluated) argument.

U(b) If argument is evaluated then pass com-
ponents b much if available; else pass
the (possibly evaluated) argument.

S(b) Pass the (possibly evaluated) argument.

T Pass the (possibly evaluated) argument.

Figure 22: What the wrapper does

B.5 The worker-wrapper split revisited

Figure 22 describes how the joint demands specified in Fig-
ure 17 drive the worker-wrapper split.

Note that since Str abbreviates (S(L), B), an argument with
demand Str will be evaluated and its value (but no compo-
nents) will be passed to the worker.

Comment: Demonstrate the worker-wrapper split on a few
examples.

John: Why pass the evaluated argument when the bozx de-
mand is L2 Wouldn’t is be just as valid not to pass the
argument? (Monotonicity is worrying me).

John: What does passing components “if available” mean?
Surely if the argument is evaluated, then the components are
available?

B.6 Summary

C Experience with the implementation

Comment: Increased or decreased precision, compiled pro-
gram efficiency, compiler speed, ...

D What remains to be done

This is all very pragmatic and I would really like help with
putting in place some formal underpinnings. In particular:

e I think it’s fine to have a somewhat ad hoc lattice of
demands, choosing points that are of pragmatic signif-
icance, and otherwise approximating like crazy. But
there should be an underlying much more detailed lat-
tice, based on some principles. For example, it seems
that ‘evaluate or not’, ‘use the box or not’, and ‘use the
components or not’ are independent properties. (See
the dicussion about deferred demands in §B.4.)

The consumer-properties currently shown in Figure 1
are a start in that direction.

e Along the same lines, I'd like to have a formal way to
say how & is defined. At the moment I'm just sticking
my finger in the air.

E Related work

TODO: Hughes 1988 and references therein. Check in par-
ticular whether any of Wray 1985 and 1986, Dybjer 1987,
Hall 1987, Hughes 1985, Hughes 1987, Karlsson 1987 and
Wadler 1987b discuss the handling of tuples. Burn’s evalua-
tion transformers? It is unlikely that any of these were used
to drive a worker-wrapper split. Faxén 1996

Strictness analysis: Mycroft 1981, ...

About whether call-demands are new: John: Sort of. I
wrote a paper on higher-order backwards analysis 14 years
ago (!), in which demands on functions were of the form
(abstract argument, demand on result). It’s not ezactly the
same, but it’s close: the only difference is that I combined
a forwards abstract interpretation to collect demand trans-
formers, hence the abstract argument. Your call demands
are a simplification of the same idea. The simplification is
a good one, of course, but we should probably at least refer
to my old paper.

F Conclusion

Comment: Some words about the trickiness of designing
an analysis that collects several kinds of information at the
same time, whose results are used to guide a transforma-
tion with somewhat subtle effects, and which should obtain
as much useful, approzimate, information as fast as possible.

29

