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1 Introdu
tion

Any de
ent optimising 
ompiler for a lazy language like

Haskell must in
lude a stri
tness analyser. The results of

this analysis allow the 
ompiler to use 
all-by-value instead

of 
all-by-need, and that leads to big performan
e improve-

ments. It turns out that stri
tness analysis is an interesting

problem from a theoreti
al point of view, and the 1980's

saw a huge rash of papers on the subje
t. There were fewer,

many, many fewer, papers that des
ribed real implementa-

tions.

This paper presents the fruits of a de
ade-long experien
e

with stri
tness analysis, in the 
ontext of the Glasgow

Haskell Compiler, an optimising 
ompiler for Haskell. In

parti
ular, we re
ently re-engineered the existing stri
tness

analyser that used forward abstra
t interpretation, repla
ing

it with a new one that uses ba
kward analysis instead.

In one sense therefore, this paper 
ontains nothing new: we

apply well-understood ba
kward-analysis te
hniques. How-

ever, it turns out that the appli
ation is not at all straight-

forward, and we make the following 
ontributions:

� Beyond stri
tness analysis, we show that it is essential

to perform absen
e analysis. The goal is to pass only

the needed parts of a value in a fun
tion 
all, and to

perform unboxing, passing only naked ma
hine integers

instead of boxed values when possible.

� While we introdu
e these two analyses separately, we

show how to 
ombine them into a single analysis over

a ri
her domain; see xB. Until now, GHC has had

to do two separate analyses. (In fa
t, a third analysis,

Constru
ted Produ
t Result analysis, �ts in beautifully

as well, so in reality the new analyser does all three

analyses at on
e. CPR analysis is des
ribed elsewhere

[?℄, and we do not dis
uss it further in this paper.)

� Ba
kwards analysis es
hews the a

ura
y that 
an be

a
hieved by higher-order abstra
t interpretation, but

it is a great deal faster, espe
ially for deeply-nested

fun
tions. How mu
h faster? And how mu
h a

ura
y

is lost? We give some indi
ative answers in xC.

� Although ba
kwards analysis is not higher order, in

the sense that it does not tra
k the e�e
t of fun
tional

arguments, our analysis must apply to a higher-order

language (Haskell). We give a new and elegant formula-

tion of ba
kwards analysis for a higher-order language,

based on \
all demands" in x4.1.4. This formulation

leads dire
tly to a rather 
ompa
t implementation.

Furthermore, the implementation has proved to be re-

assuringly generi
; during development of the new anal-

ysis we repeatedly 
hanged the domain and its two op-

erations (\lub" and \both") while hardly 
hanging the

analysis fun
tion at all.

� Implementing our new analysis in a real 
ompiler for
ed

us to 
onfront several issues that were 
ompletely hid-

den before we tried the implementation. Two parti
u-

lar examples are: 
orre
t analysis of the error fun
tion

(x2.2); and a

urate analysis of nested fun
tion de�ni-

tions, whi
h are very 
ommon in GHC (x5.3).

� We use a 
lever folk-lore te
hnique to improve the speed

of 
onvergen
e, and give measurements of its e�e
tive-

ness (x9).

� We des
ribe and motivate a range of engineering design


hoi
es. For example, we have found that it is very im-

portant to \look inside" produ
ts (x4.1.2); that nested

de�nitions are very 
ommon and must be handled well

(x5.3); and that simple approximations to the full de-

mand transformer for a fun
tion work well in pra
ti
e

(x5.1).

The resulting analyser is half the size of its prede
essor,

is mu
h easier to understand and modify, and runs mu
h

faster.

The fo
us of the paper is strongly pra
ti
al. The theory sup-

ports a wide spe
trum of analyses, ranging from a

urate-

but-expensive to 
heap-but-
oarse. The 
ontext of a real


ompiler guides our 
hoi
es in this multi-dimensional spa
e.

We give a formal spe
i�
ation of the domains, their opera-

tions, and the analysis fun
tion itself, but we do not attempt

to prove soundness with respe
t to a more abstra
t spe
i�-


ation, leaving that for further work.

2 Chara
terising the problem

The default parameter-passing me
hanism in Haskell is 
all-

by-need, in whi
h an argument must be passed as a thunk,

or `box', en
apsulating the argument expression. At the �rst

use of the parameter, the thunk is evaluated and overwritten

with the result, whi
h is then ready at all later uses.

An optimising Haskell 
ompiler 
an often repla
e this gen-

eral 
alling me
hanism by a spe
ialised, more eÆ
ient one:



� Using 
all-by-value. When the 
alled fun
tion will def-

initely evaluate its argument, the 
aller 
an evaluate

the argument early and pass the value itself instead of

a thunk. Program analyses that �nd su
h stri
tness

information have been studied intensively [?, ?, ?, ?℄.

� Unboxing arguments. If the 
alled fun
tion needs only

the 
omponents of a tuple, not the tuple itself, then

the 
aller 
an pass the 
omponents instead of building

a tuple. For example:

lenFst :: ([a℄,b) -> Int

lenFst x = 
ase x of { (p,q) -> length p }

Here, lenFst's 
aller 
an not only evaluate the argu-

ment, be
ause lenFst is stri
t, but also extra
t the


omponents of the pair and pass only the �rst one to

lenFst. A 
all site like (lenFst (g t)) 
an then be

transformed to


ase (g t) of { (p,q) -> $wlenFst p }

where $wlenFst is the spe
ialised-
alling-
onvention

version of lenFst.

Program analyses that �nd su
h so-
alled boxing infor-

mation or absen
e information have been des
ribed in

[?, ?℄.

The 
ompiler's task splits into two: (a) perform a stati


demand analysis of the program, and (b) exploit the infor-

mation thus dis
overed. In the literature, mu
h more atten-

tion is paid to (a) than to (b), yet one 
an only understand

what information we need from the demand analyis by un-

derstanding the use to whi
h that information is put. So we

fo
us initially on (b), to provide the 
ontext for the design

de
isions we subsequently make for the analysis itself.

2.1 The worker-wrapper split in GHC

In GHC, the results of demand analysis are exploited in two

ways:

� It drives the worker-wrapper transformation, whi
h ex-

poses spe
ialised 
alling 
onventions to the rest of the


ompiler. In parti
ular, the worker-wrapper transfor-

mation implements the unboxing optimisation.

� During 
ode generation, the 
ode generator uses 
all-

by-value for stri
t fun
tions, instead of 
all-by-need.

The worker-wrapper transformation splits ea
h fun
tion f

into a wrapper, with the ordinary 
alling 
onvention, and

a worker, with a spe
ialised 
alling 
onvention. The wrap-

per serves as an impedan
e-mat
her to the worker; it simply


alls the worker using the spe
ialised 
alling 
onvention. The

transformation 
an be expressed dire
tly in GHC's interme-

diate language. Suppose that f is de�ned thus:

f :: (Int,Int) -> Int

f p = <rhs>

and that we know that f is stri
t in its argument (the pair,

that is), and uses its 
omponents. What worker-wrapper

split shall we make? Here is one possibility:

1

1

A real 
ompiler would avoid splitting very small fun
tions, su
h

as f above, sin
e they 
an be inlined bodily, whi
h is better than split-

ting. For presentational purposes we use small examples regardless

of this; you 
an always make them bigger!

f :: (Int,Int) -> Int

f p = 
ase p of

(a,b) -> $wf a b

$wf :: Int -> Int -> Int

$wf a b = let p = (a,b) in <rhs>

Now the wrapper, f, 
an be inlined at every 
all site, so

that the 
aller evaluates p, passing only the 
omponents to

the worker $wf, thereby implementing the unboxing trans-

formation.

But what if f did not use a, or b? Then it would be silly

to pass them to the worker $wf. Hen
e the need for absen
e

analysis. Suppose, then, that we know that b is not needed.

Then we 
an transform to:

f :: (Int,Int) -> Int

f p = 
ase p of (a,b) -> $wf a

$wf :: Int -> Int

$wf a = let p = (a,error "abs") in <rhs>

Sin
e b is not needed, we 
an avoid passing it from the

wrapper to the worker; while in the worker, we 
an use

error "abs" instead of b.

There's a more obvious problem, though: we seem to take

apart p in the wrapper, only to rebuild it in the worker. We

des
ribe the re-
onstru
tion of p in the worker as reboxing ;

it is plainly a Bad Thing.

However, the idea is that sin
e <rhs> is stri
t in p it must

presumably be taking it apart. So inside <rhs> we may see

\
ase p of ...". Sin
e p is expli
itly bound to a pair in

$wf, we 
an eliminate the 
ase in <rhs>, and that in turn

will usually mean that p is dead, and the reboxing 
an be

dis
arded. For example, suppose f was like this:

f :: (Int,Int) -> Int

f p = (
ase p of (a,b) -> a) + 1

Then the worker-wrapper transformation will produ
e:

f :: (Int,Int) -> Int

f p = 
ase p of (a,b) -> $wf a

$wf :: Int -> Int

$wf a = let p = (a,error "Urk")

in (
ase p of (a,b) -> a) + 1

Now, in the 
ode for $wf, we 
an inline the de�nition of p

at its use in the 
ase, simplify the 
ase, and dis
ard the

now-dead binding for p, giving:

$wf :: Int -> Int

$wf a = a + 1

Does the reboxing binding still disappear if p is not s
ruti-

nised by an expli
it 
ase? For example, what if it is instead

passed to another stri
t fun
tion, g? In that 
ase g will get

a wrapper that takes the pair apart; that wrapper will get

inlined into $wf, and the 
ase will 
an
el as before. Is all

reboxing eliminated in this way? No, it is not, a problem

that we dis
uss in x2.3.

In short, the worker-wrapper transformation allows the

knowledge gained from stri
tness and absen
e analysis to

be exposed to the rest of the 
ompiler simply by perform-

ing a lo
al transformation on the fun
tion de�nition. Then

2



ordinary inlining and 
ase elimination will do the rest, trans-

formations the 
ompiler does anyway. More details are in

[?, ?℄.

2.2 seq and error

Demand analysis in Haskell is made tri
kier by two fun
tions

that are part of Haskell 98: error and seq. We brie
y

introdu
e their diÆ
ulties here, by way of ba
kground.

The Haskell 98 fun
tion error :: String -> a takes a

String, prints the string, and brings exe
ution to a halt

2

.

From a semanti
 point of view, error s should be 
onsid-

ered identi
al to ?, or divergen
e. For example, 
onsider

this fun
tion:

f [℄ y = error "urk"

f (x:xs) y = y

Is it safe to use 
all-by-value for y? Yes, be
ause f either

evaluates y or else 
alls error "urk". If we use 
all-by-

value, the 
all (f loop), where loop goes into a loop, will

diverge instead of printing \urk", but we deem that a

ept-

able behaviour; the program goes wrong in either 
ase, and

we allow the 
ompiler to 
hange the parti
ular manifestation

of going-wrong-ness.

However, 
onsider these two fun
tions:

g1 x y = g1 y x

g2 x y = error x

The �rst fun
tion goes into a loop, and does not use either

of its two arguments. We 
ould safely treat them as ab-

sent, and not pass them at all. The se
ond fun
tion also

\diverges"; it does not use y, but it does use x. Even though

error \diverges", you must pass its argument so that it 
an

be printed. More 
on
retely, it is not a

eptable to perform

a worker/wrapper split for g2 like this, be
ause although

both produ
e an error, the produ
e di�erent messages:

g2 x y = $wg2

$wg2 = let x = error "abs"

y = error "abs"

in error x

In short, we must be 
areful not to assume that x is absent

simply be
ause it is 
onsumed by a \divergent" 
omputa-

tion.

A di�erent diÆ
ulty is raised by seq :: a -> b -> b,

whi
h evaluates its �rst argument before returning its se
-

ond. The existen
e of seq, with a polymorphi
 type, has a

pervasive e�e
t. For example, eta redu
tion is not valid in

general:

g1 a b 6= (nx -> g1 a b x)

The former is ?, while the latter is not, and the two 
an be

distinguished by seq. SLPJ: Need to explain why this makes

things diÆ
ult. John: Does it make things diÆ
ult? Isn't the

only impli
ation that, for fun
tion demands, S(S) 6= S(L)?

It would be more of a problem if they were the same!

2

In GHC, error raises an ex
eption, a ni
e generalisation of the

Haskell 98 behaviour [?℄.

2.3 Short
omings of the existing analyser

For some years, GHC has used an analyser based on the


lassi
 te
hnique of abstra
t interpretation [?, ?℄ to derive

stri
tness and absen
e information; this information in turn

drives the generation of spe
ialised 
alling 
onventions. The

existing analyser is des
ribed in our earlier papers [?, ?℄.

The worker-wrapper transformation works �ne, but the

pre
eding analysis phase, whi
h drives the worker-wrapper

transform, is very slow for deeply nested de�nitions. Given:

f x y z = <rhs>

the analyser �gures out whether f is stri
t in x, y, and z by


omputing (f ? > >), (f > ? >), and (f > > ?), where >

is the top-most abstra
t value, and ? is the bottom-most.

If f is re
ursive, it iterates the pro
ess using the newly-


omputed approximation to f. The diÆ
ulty here 
omes

when <rhs> 
ontains nested re
ursive de�nitions. Then to


ompute (f ? > >), for example, we must 
ompute the

abstra
t values of the nested de�nitions, given these parti
-

ular bindings: x = ?, y = >, and z = >. And then do

it all again for the next set of bindings. Computing these

abstra
t values itself involves the same sort of iterative pro-


ess for ea
h re
ursive nested de�nition. Result: the running

time is exponential in the nesting depth of de�nitions. This

problem 
an be �xed, but that would further 
ompli
ate the

analyser. Ba
kwards analysis is, as we shall see, mu
h more

eÆ
ient.

Furthermore, on
e we looked into it, we found that we 
ould

express the ba
kwards analysis rather elegantly. As a di-

re
t result, the new analyser is signi�
antly shorter than

its prede
essor (in sour
e 
ode terms). Even if it were no

more eÆ
ient, this would be a worthwhile gain. (This is, of


ourse, a \soft" 
laim: perhaps a re-engineered version of

the forwards analysis would be equally 
on
ise.)

3 Evaluation demand and usage demand

The pre
eding se
tion should have 
onvin
ed you that we

want two sorts of information from our demand analysis:

� Evaluation demand, or stri
tness, des
ribes the extent

to whi
h the expression is guaranteed to be evaluated.

The 
ompiler uses stri
tness information to repla
e 
all-

by-need with 
all-by-value.

� Usage demand, or absen
e, des
ribes what parts of the

expression's value are used. The 
ompiler uses usage-

demand information to de
ide whi
h fragments of the

argument to pass to the spe
ialised version of the fun
-

tion.

Absen
e analysis would, for example, distinguish g1 and g2

in the pre
eding se
tion.

Stri
tness analysis is well understood, so we ta
kle that �rst,

in x4. Doing so gives us a 
han
e to dis
uss several important

design 
hoi
es in a familiar framework. Then, in x7, we

des
ribe our absen
e analysis; the analysis is less familiar,

but the framework is identi
al to that for stri
tness analysis.

Finally, in xB we show that the two 
an be 
ombined into a

single analysis that does the whole job in one blow.
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4 Stri
tness demands

The basi
 purpose of the stri
tness analyser is to �nd the

stri
tness that a fun
tion pla
es on ea
h of its arguments.

We summarise these demands in the fun
tion's demand sig-

nature. For example:

null :: [a℄ -> Bool

-- Demand sig: S

null v = 
ase v of

[℄ -> True

(x:xs) -> False

swap :: (a,b) -> (b,a)

-- Demand sig: S(L,L)

swap p = 
ase p of

(x,y) -> (y,x)

fst :: (a,b) -> a

-- Demand sig: S(S,L)

fst p = 
ase p of

(x,y) -> x

f :: Int -> Int -> Int

-- Demand sig: SL

f x y = x+1

The demand signatures | so far des
ribing only stri
tness

| are given in 
omments. Informally, demand S (stri
t)

means that the fun
tion de�nitely evaluates the argument;

L (lazy) means that it may or may not evaluate the argu-

ment; and e.g. S(s

1

; s

2

) means that it de�nitely evaluates

the argument pair, and evaluates its 
omponents to a de-

gree des
ribed by s

1

and s

2

.

In the rest of this se
tion we establish pre
isely what we

mean by a demand, returning to demand signatures in Se
-

tion 5.

4.1 The stri
tness domain and its operations

A demand analyser answers the question \what demand

does the fun
tion pla
e on its argument?". A simple demand

analyser 
an work with a simple latti
e of demands, su
h as

\de�nitely evaluated" (stri
t) and \possibly not evaluated"

(lazy). When the type of the argument is known, a more so-

phisti
ated analyser may want to represent ri
her demands.

For example, for pairs we may want to be able to say \stri
t

in the pair, stri
t in the �rst 
omponent, but lazy in the

se
ond 
omponent".

So a key aspe
t of the demand analyser is the design of

the domain of demands. In this se
tion we des
ribe and

motivate this design.

The syntax of demands is shown in Figure 1. It is not a free

algebra; the same Figure gives identities that we shall use

freely. The demands have the following intuitive meanings:

L is a lazy demand. If an expression e pla
es demand L on

a variable x, we 
an dedu
e nothing about how e uses

x. L is the 
ompletely uninformative demand, the top

element of the latti
e.

S is a head-stri
t demand. If e pla
es demand S on x then

e evaluates x to at least head-normal form; that is, to

The set StrDmd is the set of stri
tness, or evalu-

ation, demands s de�ned thus:

s ::= ? Hyperstri
t

j L Lazy

j S Stri
t

j S(s) Produ
t or fun
tion is

evaluated, 
omponents s

s ::= [s

1

; : : : ; s

n

℄ Tuple 
omponents

Identities on demands

S(L : : : L) = S

S(: : :? : : :) = ?

Ordering on demands

? v s

S(s

1

) v S(s

2

) if s

1

v s

2

s v L

The evaluation demand s

1

t s

2

means `either de-

mand s

1

or demand s

2

'. It 
ombines demands

from two `alternative' sub-expressions, exa
tly

one of whi
h is demanded, su
h as the bran
hes

of a 
ase. It is the `least upper bound' operator

for the v ordering.

? t s = s

L t s = L

S(s

1

) t S(s

2

) = S(s

1

t s

2

)

The evaluation demand s

1

&s

2

means `both de-

mand s

1

and demand s

2

'. It 
ombines demands

from two `parallel' sub-expressions, both of whi
h

are demanded.

? & s = ?

L & s = s

S(s

1

) & S(s

2

) = S(s

1

&s

2

)

Figure 1: Evaluation demands

the outermost 
onstru
tor of x. The demand S(L : : : L)

pla
es a lazy demand on all the 
omponents, and so is

equivalent to S; hen
e the identity S = S(L : : : L).

S(s) is a stru
tured demand on a produ
t (x4.1.2) or fun
-

tion (x4.1.4). It is at least head-stri
t, and perhaps

more.

? is a hyperstri
t demand. The expression e pla
es demand

? on x if every evaluation of e is guaranteed to diverge,

regardless of the value of x. We 
all this demand \hy-

perstri
t" be
ause it is safe to evaluate x to arbitrary

depth before evaluating e.

A demand that is hyperstri
t on any 
omponent of a

4



T

s

[[Int#℄℄ = f?; Lg Unlifted integers

T

s

[[(t

1

,t

2

)℄℄ = S(T

s

[[t

1

℄℄; T

s

[[t

2

℄℄) Produ
t types

[ fLg

T

s

[[[t℄℄℄ = f?; S; Lg Sum types

T

s

[[t

1

->t

2

℄℄ = S(T

s

[[t

2

℄℄) Fun
tions

[ fLg

T

s

[[�℄℄ = f?; S; Lg Unknown types

Figure 2: Stri
tness (evaluation demands) at various types

produ
t must be hyperstri
t on the produ
t as a whole,

be
ause it means \all evaluation paths diverge". So

S(?; s) = S(s;?) = S(?;?) = ?.

The domain of demands is indexed by type; that is, for ea
h

data type, t, we de�ne a 
orresponding latti
e of demands,

T

s

[[t℄℄ (Figure 2). We work through that Figure line by line

in the following sub-se
tions.

4.1.1 Unlifted types

The base 
ase is that of unlifted types. These are not part

of standard Haskell, but are an extremely useful GHC ex-

tension, as we shall see. All unlifted types are primitive,

built-in types. A good example is Int#, the type of 32-bit

integers. Every value of unlifted type must be evaluated

before it 
an be manipulated; there are no thunks of type

Int#.

The stri
tness latti
e for unlifted types therefore 
ontains

just two points, ? and L, 
orresponding to guaranteed di-

vergen
e, and the 
onverse, respe
tively.

4.1.2 Produ
t types

We want our analysis to \look inside" produ
ts, su
h as

tuples. If the tuple is 
onstru
ted at the 
all site, the worker-

wrapper transform 
an often eliminate the tuple allo
ation

altogether, as we saw in x2.1.

Figure 2 uses pairs as an example of a produ
t type, but

GHC does not treat Haskell's built-in tuples spe
ially: every

non-re
ursive algebrai
 data type with exa
tly one 
onstru
-

tor (i.e. a produ
t type) enjoys the same treatment. In the

Figure we use the following shorthand:

S(T

s

[[t

1

℄℄; T

s

[[t

2

℄℄) = fS(s

1

; s

2

) j s

1

2 T

s

[[t

1

℄℄; s

2

2 T

s

[[t

2

℄℄g

A very important spe
ial 
ase is the Int type. An Int is

represented as a one-
omponent produ
t, thus:

data Int = I# Int#

That is, Int is an algebrai
 type with just one 
onstru
tor

I#, so it is a one-
omponent produ
t type. The 
onstru
tor

has a single argument of type Int#, the type of unboxed

L

S

⊥

Figure 3: Stri
tness for lifted integers Int

L

S = S(LL)

S(SS)

S(SL) S(LS)

⊥

Figure 4: Stri
tness for (integer) pairs

ma
hine integers. So the stri
tness latti
e for (lifted) inte-

gers Int 
an be 
omputed from Figure 2, together with the

identities of Figure 1, thus:

T

s

[[Int℄℄ = S(T

s

[[Int#℄℄) [ fLg

= fS(?); S(L); Lg

= f?; S; Lg

The resulting latti
e is shown in Figure 3.

Using the same 
onstru
tion again, we 
an derive the latti
e

for the type (Int,Int), shown in Figure 4. In 
onstru
ting

this Figure, we again make use of of the identities of Figure 1.

4.1.3 Sum types

In 
ontrast to produ
ts, the worker-wrapper transform 
an-

not take advantage of information about the 
omponents

of a sum type (an algebrai
 data type with more than one


onstru
tor). For example:
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f :: Maybe Int -> Int

f (Just n) = n

f Nothing = 0

Clearly, f is stri
t, and the 
ode generator 
an take advan-

tage of that when 
ompiling 
alls, but it is hard to do any

unboxing. To do so would mean passing either n or nothing

at all, plus a tag to say whi
h was the 
ase. This is indeed

possible, but it is tri
ky | for example, it is harder to tell

the garbage 
olle
tor where the pointers are, sin
e it may

depend on the value of the tag | and it is hard to express

in GHC's intermediate language. For a sum type, we there-

fore use a simple three-point latti
e f?; S; Lg. In the Figure,

we take the list type as an example.

Aside. Even in the absen
e of unboxing, though, one 
ould

argue that the analyser 
ould usefully 
ompute stru
tured

stri
tness information. For example, if f above is given a

Just argument, then it is 
ertainly stri
t in the argument

to the Just. So if we saw the 
all (f (Just (h x))) we


ould 
ompute (h x) by value, before boxing it in a Just.

A great deal of work has been done on analyses (espe
ially

ba
kwards analyses) that 
an \look inside" sum types, in-


luding re
ursive data types [?℄. However, our initial fo
us

was on the low-hanging fruit, so we de
ided to leave sum

types for further work. End of aside.

4.1.4 Fun
tion types and 
all demands

Consider the 
urried appli
ation (f x y), whi
h really

means ((f x) y). If demand d is pla
ed on this expres-

sion, what demand is pla
ed on the sub-expression (f x)?

One possibility would be to �nesse the question by regard-

ing the expression as the appli
ation of f to two arguments,

rather than treating it as a 
urried appli
ation, but it turns

out that the analysis works very elegantly if we take the


urried approa
h and answer the question dire
tly.

Clearly, if ((f x) y) is evaluated with stri
t demand d, then

(f x) is evaluated with demand \evaluate (f x) to a fun
-

tion, 
all it, and pla
e demand d on its result". We denote

this demand on (f x) by the 
all demand S(d). So the de-

mand on f itself is S(S(d)). (This is rather natural, if we

think of a fun
tion as a (possibly in�nite) tuple of all its

possible results). We believe that this use of 
all demands

is new to this work { but see Se
tion E. We use the same

notation, S(d), for fun
tions as for produ
ts, relying on the

type-indexing of the domain to ensure that a 
all demand

never \meets" a produ
t demand.

These 
all-demands 
an show up in demand signatures. For

example, 
onsider:

app :: Int -> (Int->Int) -> Int

app x f = f x

We 
an see that app will pla
e a 
all demand on f, and

evaluate the result, so app's demand signature is LS(S).

One 
ould imagine being 
leverer: if f is stri
t, then app

is stri
t in its �rst argument also. Indeed, higher-order ab-

stra
t interpretations dis
over exa
tly su
h information [?℄.

However, despite 
onsiderable attention in the 1980's, we

believe that it is a poor 
hoi
e to seek this higher-order in-

formation.

Firstly, higher-order analyses are expensive: the analysis

is sophisti
ated and the fun
tion-spa
e domains are large,

whi
h in turn leads to slow �xpoint 
al
ulations. Se
ond,

it is awkward to 
onvey the inter-argument dependen
e

a
ross separate 
ompilation boundaries. Third, the worker-

wrapper split would not be aided by su
h information, sin
e

the splitting is driven solely by the fun
tion's de�nition, not

its 
all sites. Fourth, in our experien
e, in many 
ases where

it matters, the higher order fun
tion is itself small enough

to inline before the demand analyser runs, so the e�ort is in

vain.

All this is fortunate, be
ause inter-argument dependen
e is

in any 
ase ina

essible to a purely ba
kwards analysis. Our


on
lusion is that this apparent short
oming of ba
kwards

analysis is hardly a drawba
k in pra
ti
e.

4.1.5 Polymorphi
 types

Haskell is a polymorphi
 language, so the stri
tness anal-

yser will not always know the type of the expression it is

analysing. For example, 
onsider the fun
tion k:

k :: a -> b -> a

k x y = x

Clearly, k is stri
t in its �rst argument, and lazy in its se
-

ond, so it has the evaluation-demand signature SL. Another

very important polymorphi
 fun
tion is seq :: a->b->b,

whose demand signature is SS; it is stri
t in both its pa-

rameters.

So the appropriate demand latti
e for an unknown type,

represented at 
ompile type by a type variable �, is the

same as that for sum types, namely f?; S; Lg. Noti
e that

this latti
e is a sub-latti
e of every other demand latti
e,

ex
ept that for unlifted types. This is as we expe
t { we

simply approximate more vigorously for polymorphi
 types.

Moreover, when we \instantiate" a polymorphi
 demand at

a parti
ular type, there is no work to do, sin
e the poly-

morphi
 demand is already a valid demand for the instan
e

type. (Fortunately, GHC does not allow polymorphi
 type

variables to be instantiated to an unlifted type [?℄, sin
e that

would pre
lude 
ompiling polymorphi
 fun
tions to just one

generi
 pie
e of 
ode).

4.2 Operations on demands

This 
ompletes our tour of Figure 2. Noti
e that in all 
ases,

L is the top element of the demand latti
e; it is always a safe

approximation, and means \no information".

The ordering among demands is given in Figure 1. As usual,

s

1

v s

2

means that s

1

denotes at least as strong a demand

as s

2

. The demands relevant for a parti
ular expression

depends on the type of that expression, as we have already

seen.

There are two key operations over demands, also given in

Figure 1:

� d

1

t d

2


ombines two alternative demands for a value,

su
h as the demands arising from bran
hes of an if or


ase. For example:


ase x of

[℄ -> y

(p:ps) -> True
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If this expression is evaluated with demand S, the �rst

bran
h pla
es demand S on y, while the se
ond bran
h

pla
es demand L (lazy or absent); the overall expres-

sion therefore pla
es demand S t L = L on y.

Of 
ourse, the t operation 
an be derived dire
tly from

the ordering relation. We write it in Figure 1 here only

for 
ompleteness.

� d

1

&d

2


ombines two demands, both of whi
h are

pla
ed on the value. For example, 
onsider the expres-

sion

f x x

where f has demand signature LS. If the expression is

evaluated with demand S, then x will be 
onsumed by

both demand L and demand S. The aggregate demand

on x is therefore L&S = S.

For another example, 
onsider:

fst x + snd x

The �rst subexpression pla
es a stri
t demand S on

the �rst 
omponent of x, and therefore pla
es demand

S(SL) on x. Similarly, the se
ond subexpression pla
es

demand S(LS) on x. The total demand on x therefore

is S(SS).

We may need to use the demand identities of Figure 1 to

perform these 
omputations. For example:

seq x 3 + fst x

Computing demands on x will give

S & S(SL) = S(LL) & S(SL)

= S(SL)

The polymorphi
 demand S from the polymorpi
 seq meets

the demand S(SL) from the fst x. First, use the identity

S = S(LL) to expand the S demand, and then & 
an be

done elementwise.

Both t and & are 
ommutative and asso
iative, and enjoy

the following distributive property:

s

1

& (s

2

t s

3

) = (s

1

& s

2

) t (s

1

& s

3

)

In the 
ase of stri
tness analyis, the & operator is greatest

lower bound (glb), but that will not always be the 
ase,

whi
h is why we give it a di�erent name.

5 Demand signatures

Demand signatures play a 
entral role in our analysis. The

demand signature for a fun
tion summarises all the infor-

mation that the analyser 
omputes about that fun
tion. In

parti
ular:

� The demand signature of a fun
tion is all the analyser

knows about a fun
tion when it en
ounters a 
all site.

� The demand signature is the information that is ex-

ported a
ross separate 
ompilation boundaries.

� The demand signature embodies all the information

ne
essary to make the worker-wrapper split for a fun
-

tion.

� The demand signature tells the 
ode generator when it


an use 
all-by-value at a 
all site.

So far we have only given an informal intuition for the mean-

ing of a demand signature. This se
tion makes it pre
ise.

5.1 Demand signatures as demand transformers

We begin with the following key idea, whi
h explains what a

demand signature means: a demand signature for a fun
tion

is simply a 
ompa
t approximation to the fun
tion's demand

transformer.

Ba
kwards analysis of a fun
tion aims to answer the fol-

lowing question: \given demand d on the fun
tion's result,

what are the demands on the fun
tion's argument(s)?". The

stronger the demand on the fun
tion, the stronger the de-

mand on the arguments. For this purpose, a fun
tion may

be seen as a monotoni
 demand transformer : it transforms

a demand on the fun
tion's result into demands on the fun
-

tion's argument (and free variables, see x5.3). Consider this

example:

f :: [a℄ -> [a℄ -> Bool

f xs ys = null xs && null ys

Informally, we would say that f is stri
t in xs and has de-

mand signature SL. But 
onsider the expression

f (error "urk") `seq` True

Even though f is stri
t in its �rst argument, evaluating

the partial appli
ation f a does not for
e evaluation of

(error "urk"). Only when f has been given both its ar-

guments does it unleash the stri
t demand on its �rst argu-

ment.

The optimal results produ
ed by the demand transformer

for f are shown in the following table:

Demand on

Fun
tion First arg Se
ond arg

S

S(S) L

S(S(S)) S L

If the fun
tion f itself is simply evaluated (presumably by

seq), then it imposes no demand on its arguments. If it is

applied to a single argument, only a lazy demand is pla
ed

on that argument. If it is applied to both arguments, then a

stri
t demand is pla
ed on the �rst one, and a lazy demand

on the se
ond one.

Here is a more elaborate example:

g :: (Int,Int,Int) -> [a℄ -> (Int,Bool)

g (a,b,
) = if a==0 then error "urk"

else \y -> if b then (
, null y)

else (
, False)

Fun
tion g 
onsumes a single argument (a pair), pattern-

mat
hes on it, and evaluates its �rst 
omponent a. Then g


onsumes its se
ond argument, and tests b before returning

a pair. If that pair is itself evaluated, then 
 and/or ys will
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be evaluated. The following table shows part of an optimal

demand transformer for g:

Demand on

Fun
tion First arg Se
ond arg

S

S(S) S(SLL)

S(S(S)) S(SSL) L

S(S(S(SL))) S(SSS) L

A sophisti
ated ba
kwards analyser 
ould 
apture the full

glory of these demand transformers, but our analyser instead

uses a brutal, yet e�e
tive, approximation:

� Find the synta
ti
 arity, n, of the fun
tion; that is, how

many expli
it lambdas it has at the top of its right-hand

side. For example, f above has synta
ti
 arity 2, while

g has synta
ti
 arity 1.

� Compute the demand pla
ed on the arguments by the

vanilla 
all demand S(: : : S(S) : : :), where the 
all de-

mands are nested n deep.

� Re
ord the demands thus 
omputed as the fun
tion's

demand signature. For example, f's demand signature

is SL and g's is S(SLL). Thus f's demand signature

represents the demand transformer shown in the table

pretty well. However, g's demand signature loses all

information about how demand on the result of the

�rst appli
ation propagates to demand on the b and


 
omponents of the argument. The last two lines of

the table for g 
ould not be derived from g's demand

signature.

� At a 
all site, use the demand signature as an emas
u-

lated demand transformer in the following way. If the

demand on the fun
tion at a 
all site is weaker than the

vanilla 
all demand, pla
e demand L on all arguments.

Otherwise pla
e the demands spe
i�ed by the demand

signature on the arguments.

In e�e
t, we represent the entire demand transformer fun
-

tion by a single (argument, result) pair. This approa
h is

sound (be
ause it 
an only under-estimate demands), but it

is 
learly approximate, as shown by the g example. Never-

theless, it is a �ne thing to have a 
ompa
t representation for

a fun
tion's demand transformer. First, it makes �xpointing

faster, be
ause the domain is less ri
h; and se
ond, it makes

it easy to export information a
ross module boundaries.

We believe that this approximation works extremely well in

pra
ti
e. This belief is based on eye-balling the output of the

demand analyser for many programs. The only way to be

sure that the bene�t of a more sophisti
ated representation

would be slight is to try it | and we have not done that.

5.2 Demand signatures: the full story

So far, we have informally implied that a demand signaure

is just a sequen
e of demands. For example, we have written

signatures su
h as

f :: Int -> Int -> Int

-- Demand sig: SL

f x y = x+1

It is already 
lear that a demand signature must also in-


lude some measure of the depth of the vanilla 
all demand

dis
ussed in the previous se
tion. So f's demand signature

might more properly be des
ribed thus:

h2; SLi

This is not enough, however. In the following subse
tions

we will show that demand signatures must be elaborated in

two distin
t ways. First, we must add information about

free variables (x5.3); and se
ond, we must add information

about divergen
e (x5.4).

5.3 Nested de�nitions and thunks

Our demand analyser may en
ounter nested fun
tion de�ni-

tions, su
h as this one:

f b x y = let

g z = x + y + z

in

if b then y else g (x*x)

Here g is de�ned lo
ally, inside f's right hand side. Nested

fun
tion de�nitions like this one are 
ommon in user-written


ode, and even more 
ommon on
e the 
ompiler has done

some inlining and let-
oating.

At �rst one might think that dealing with nested de�nitions

is easy: simply 
ompute g's demand signature, and then

deal with the body of the let. But the only o

urren
e of x

is in the right hand side of g, so we must somehow take into

a

ount the free variables of g.

How might we 
ompute the demand on x? One way is as

follows: treat a let as synta
ti
 sugar for a lambda. Desug-

aring the let would give:

f b x y = (\g -> if b then y else g (x*x))

(\z -> x + y + z)

The �rst lambda is lazy in g (sin
e the 
onditional is not

sure to 
all g, so the analyser will analyse the argument

(\z -> x + y + z) with a lazy demand, and hen
e derive

a lazy demand on both x and y.

Unfortunately, this answer is over-pessimisti
 for y. Either b

is True, in whi
h 
ase y is evaluated, or b is False, in whi
h


ase g is 
alled, and y is evaluated. So f is 
ertainly stri
t in

y. Even worse, the let-as-lambda approa
h does not even

expose the obvious fa
t that g is stri
t in its �rst argument,

so the 
all g (x+x) 
an use 
all-by-value.

In short, treating let as if it were a lambda gives sound

results, but it must surely be better to treat let dire
tly.

At least the dire
t approa
h 
an analyse the right-hand-side

of g and extend the environment with g's demand signature

before analysing the body; that will expose the fa
t that

g (x*x) 
an use 
all-by-value. To 
apture the stri
tness

in y as well, we 
ompute a ri
her demand signature for g,

one that embodies not only the demand it unleashes on its

argument, z, but also the demand it unleashes on its free

variables. We write this ri
her signature thus:

h1; [x 7! S; y 7! S℄) [S℄i

This says that if g is applied to one argument (the \1" in

the signature), it unleashes demand S on that argument (the
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part after the \)"), and also demand S on x and y (the

�nite mapping \[. . . ℄").

One possible alternative to these 
ompli
ations is to �nesse

them by performing lambda lifting, so that all fun
tion def-

initions are at top level. Then our example would be
ome:

g' x y z = x + y + z

f b x y = if b then y else g' x y (x*x)

Now it is 
lear that y is used in both bran
hes of the 
on-

ditional, while x is used in only one. Indeed, we 
an see

the ri
her demand signatures as a simulation of the extra

parameters introdu
ed by lambda lifting.

The trouble is that this approa
h does not work for thunks.

Here is another version of the same example:

f b x y = let

z = x + y

in

if b then y else z

Unlike g, z has no parameters, and in general we 
annot

lambda-lift su
h de�nitions without losing sharing. Yet, f is

still stri
t in y and lazy in x. To 
ompute this stri
tness, we

require the ri
her demand signatures for thunks, embodying

demands on free variables.

Earlier works on ba
kwards analysis assumed lambda-lifting

for fun
tions, but how did they deal with thunks? Answer:

using the let-as-lambda approa
h, thus:

f b x y = (\z -> if b then y else z) (x+y)

That is, �rst 
ompute the stri
tness of (\z -> ...), and

then apply that to (x+y). In this 
ase the abstra
tion is

lazy, so we will (safely but impre
isely) 
on
lude that f is

lazy in y.

We believe that our approa
h is quite new. By enri
hing

demand signatures with free-variable demands we are able

� To treat thunks uniformly. Indeed, our implementa-

tion has little notion of a \lo
al fun
tion de�nition".

Rather, it deals separately with lo
al de�nitions (let

and letre
) on the one hand, and lambda abstra
tions

on the other.

� To obviate the need for lambda lifting. Lambda lifting

is undesirable, be
ause it moves the nested fun
tion's


ode out of its 
ontext, sometimes losing optimisation

opportunities.

� To get more a

urate results, as we have demonstrated

in the examples above. We have found this additional

a

ura
y to be quite signi�
ant in pra
ti
e. SLPJ:

Todo: quantify in the experien
e/implementation se
-

tion.

In essen
e, we have added just a little bit of forwards analysis

to our otherwise ba
kwards analyser, and found that this

little bit is both 
heap and e�e
tive.

5.4 Divergen
e and the error fun
tion

As well as knowing what a fun
tion does with its argu-

ment(s) it is also essential to know something about its re-

sult. Consider the evaluation demand pla
ed on y by this

fun
tion:

f True y = y

f False y = error "urk"

Would it be safe to use 
all-by-value for both arguments

to f? Yes, be
ause error always diverges, so evaluating y

early is safe regardless whi
h of the bran
hes is taken: if

y does not terminate, then f would not terminate anyway.

So, even though y is not mentioned in the right hand side

error "urk", we must 
onsider that error "urk" pla
es a

stri
t demand on y.

It would be possible to make error a spe
ial 
ase in the

analysis, but programs often feature \dressed up" versions

of error:

myError s = error ("Fatal error: " ++ s)

Rather than treating error as a spe
ial 
ase, we instead em-

body the `always-diverges' information in the demand sig-

nature of the fun
tion, thus:

error : h1; ?) [S℄i

Here, we have added a new 
omponent to the demand sig-

nature, a single demand written before the \)", that we


all the result demand. At a 
all site, the result demand r

is unleashed on all the variables in s
ope at the 
all site.

A result demand 
an only take two values:

Unknown: L. We 
an assume nothing about the result.

Diverges: ?. The fun
tion is guaranteed to diverge, or to

raise an error.

John: Interesting semanti
s: proje
ts not only the envi-

ronment at the de�nition, but the environment at the 
all!

Given that (error x) diverges, however, one might wonder

whether it makes any di�eren
e whether error x is 
onsid-

ered to be stri
t in x or lazy in x. More 
on
retely, is there

any di�eren
e between these two demand signatures?

h1; ?) [S℄i

h1; ?) [L℄i

No, there is not: sin
e the result demand is ?, the argument

demand is irrelevant. SLPJ: Do we need to say more about

this? Result demand is pla
ed on all in-s
ope variables. Fwd

referen
e to absen
e. Give signature equivalen
es.

5.5 Summary

Motivated by the pre
eding se
tions, Figure 5 gives the syn-

tax for demand signatures: a demand signature is simply a

pair of an arity, n, and a demand type.

A demand type en
odes the demands unleashed by a fun
-

tion on its 
ontext when it is applied to enough argu-

ments. As Figure 5 shows, a demand type has the form

� ) [s

1

: : : s

n

℄, 
onsisting of two 
omponents:

� A demand environment �, that gives the demand pla
ed

by e on the variables in s
ope at the 
all site.

� A sequen
e of demands, [s

1

: : : s

n

℄, whi
h give the de-

mands that e pla
es on its arguments. The sequen
e is

non-empty only for fun
tion-typed expressions.
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Demand signatures

sig ::= hn; dti

Demand types

dt ::= � ) �

� ::= [s

1

; : : : s

n

℄

Parti
ular demand types

AbsType = h[ ℄; ID

&

i ) [ ℄

BotType = h[ ℄;?i ) [ ℄

Demand type equivalen
e

� ) [ ℄ � � ) [>℄

[s

1

; : : : ; s

n

℄ t [t

1

; : : : ; t

m

℄

= [s

1

t t

1

; : : : ; s

k

t t

k

℄

where k = min(n;m)

A result demand, r, is either ? (the identity of t), or

ID

&

(the identity of &; its value varies depending on

the analysis).

r 2 f?; ID

&

g

Demand environments

� ::= h�; ri

�(x) = �(x); x 2 dom(�)

= r; otherwise

where h�; ri = �

�

1

t �

2

= h�; r

1

t r

2

i

where

h�

1

; r

1

i = �

1

h�

2

; r

2

i = �

2

� = [x 7! (�

1

(x) t �

2

(x))

jx 2 dom(�

1

) [ dom(�

2

) ℄

�

1

& �

2

= h�; r

1

&r

2

i

where

h�

1

; r

1

i = �

1

h�

2

; r

2

i = �

2

� = [ x 7! (�

1

(x) & �

2

(x))

j x 2 dom(�

1

) [ dom(�

2

) ℄

Figure 5: Demand signatures and demand types

The demand environment, �, 
onsists of a pair h�; ri, where

� is a �nite mapping from variables to demands, and r is

a demand. The lookup operation �(x) gives the demand

pla
ed on a variable x by the demand environment �. This

operation is given in Figure 5: if x is in the domain of the

�nite mapping �, then the result is simply �(x); otherwise

the result is r:

�(x) = �(x); x 2 dom(�)

= r; otherwise

where h�; ri = �

In a demand environment � = h�; ri, the result demand r is

the demand pla
ed on a variable that is not in the domain

of �. It 
an take one of two values (Figure 5):

� For terminating fun
tions, r is ID

&

, the identity of the

\&" operator.

� For diverging fun
tions, r takes the value ?, the iden-

tity of t.

The t and & operations on demand environments are also

given in Figure 5; they are de�ned so that

(�

1

t �

2

)(x) = �

1

(x) t �

2

(x)

and similarly for &.

Be
ause fun
tions may have fun
tions as results, a fun
tion

may be applied to more arguments than its arity, and so

we may �nd that an expression whose demand type has no

argument demands is nevertheless applied to an argument.

To a

ommodate this we use the following equivalen
e:

� ) [ ℄ � � ) [>℄

That is, \extra" arguments are given the topmost demand

>. In the stri
tness latti
e the topmost demand is L, but in

other analyses it will di�er.

Demand types are ordered in the obvious way, whi
h we will

need when taking �xpoints. SLPJ: Is it obvious enough?

Two parti
ular demand types are also de�ned in Figure 5,

namely AbsType and BotType. These are, respe
tively, the

demand types of a 
ompletely unknown value, and of a di-

vergent value.

For notational brevity, we sometimes omit the result demand

from � if it is ID

&

, and the mapping � if it is empty. For ex-

ample, we may write simply [x 7! S℄ instead of h[x 7! S℄; Li.

If both are omitted, we may omit the \)" from a demand

type. Finally, we often allow ourselves the informality of

omitting the arity when the number of demands in the de-

mand type is equal to the arity. For example, when we say

that seq has demand signature SS, we really mean that it

has signature

h2; h[ ℄; Li ) SSi

6 The stri
tness analysis

We are now ready to present the stri
tness analyser itself.

A typi
al 
all to the analyser looks like this:

dt = S[[e℄℄ � s

The analysis fun
tion S[[e℄℄ takes an expression e, together

with an environment � and a demand s. The 
all returns a

demand type dt whi
h des
ribes the demands that e pla
es

on its 
ontext when evaluated with demand s. The environ-

ment � gives the demand signatures for let or letre
-bound

values that are in s
ope.

6.1 An example

The full de�nition of the analyser is given in Figure 6, but

we begin with an example to give the idea. Consider the

following 
all of the analyser:

S[[(\x -> x+y) z℄℄ � S

10



When the analyser sees an appli
ation, it analyses the fun
-

tion part of the appli
ation with a 
all demand, in this 
ase

S(S):

S[[\x -> x+y℄℄ � S(S)

When the analyser sees a lambda, and its demand argument

is a 
all demand, it analyses the body of the lambda with

the subordinate demand, in this 
ase S:

S[[x+y℄℄ � S

The result of this 
all (skipping a few steps) is the demand

type:

S[[x+y℄℄ � S = [x 7! S; y 7! S℄) [ ℄

Now the analyser 
an 
omplete its handling of the lambda,

by removing the bound variable x from the free-variable set,

and adding it to the argument list, thus:

S[[\x -> x+y℄℄ � S(S) = [y 7! S℄) [S℄

The analyser is now ba
k to the original appli
ation, and

now it 
an analyse the argument of the appli
ation (z in this


ase) using the �rst argument demand from the fun
tion's

demand type (S in this 
ase). So it performs the 
all

S[[z℄℄ � S = [z 7! S℄) [ ℄

Finally, it 
ompletes the appli
ation by 
ombining the de-

mand types from the fun
tion part and the argument part:

S[[(\x -> x+y) z℄℄ � S(S) = [y 7! S; z 7! S℄) [℄

6.2 Demand types and demand signatures

The whole analysis pro
ess is somewhat like type inferen
e,

whi
h is why we use the term \demand type". It is very

important, however, to distinguish a demand type from a

demand signature.

� The environment, �, maps ea
h in-s
ope let or letre
-

bound variable to its demand signature.

� A demand signature is a simple en
oding of a demand

transformer (x5.1).

� A demand transformer transforms a demand into a de-

mand type.

� A demand type gives the demands pla
ed by a sub-

expression on its 
ontext; that is, both on its arguments

and its free variables.

The fun
tion S[[e℄℄� is itself a demand transformer: it takes

a demand to a demand type. The demand signature for a

fun
tion f = rhs is simply a 
rude summary of the fun
tion

S[[rhs℄℄�, as we dis
ussed in x5.1.

6.3 The analysis fun
tion

We are now ready to give the formal presentation of the

stri
tness analyser in Figure 6.

If an expression e appears with lazy demand (L), then it has

no argument demands and imposes demand L on all its free

variables and on any other variables, so its demand type is

AbsType.

So below we assume that the demand on the expression is

stri
t, that is, of the form ? (= S(? : : :?)) or S(s).

The se
ond equation deals with a variable x. The basi


idea is that we look up x's demand signature �(x) in the

environment, and use it as a demand transformer to trans-

form the in
oming demand s. We use an auxiliary fun
-

tion DT (�(x); s) to implement the demand transformation,

whi
h we dis
uss shortly. Finally, we must remember to

re
ord the demand s on x itself.

The third equation deals with the 
ase of a produ
t 
on-

stru
tor, P , also by using an auxiliary fun
tion PT (P; s)

for the demand transformer of the 
onstru
tor.

We have already dis
ussed the next equation, that for fun
-

tion appli
ations, in x6.1. The demand pla
ed on e

2

is the

�rst argument demand s

a

obtained from the demand type

of e

1

. If its argument demands are empty, the latter 
an

be expanded to the form � ) s

a

: � (where `:' prepends an

element to a sequen
e) using the demand type equivalen
es

of Figure 5.

Noti
e that the returned argument demands, �

1

, 
ome ex
lu-

sively from the fun
tion (minus the �rst demand, of 
ourse);

the argument demands from e

2

are dis
arded. We need the

`both' operation to 
ombine the environments, �

1

and �

2

,

returned by analysing the fun
tion and its argument. This

operation on demand environments is de�ned in Figure 5.

Dual to appli
ation, the equation for lambda �nds the de-

mand type for the body, extra
ts the demand on the bound

variable x from the free-variable demands �, and uses that

to augment the returned argument demands.


ase expressions that s
rutinise a produ
t 
onstru
tor are

dealt with by the next equation. The interesting point is

that the demand on the 
ase s
rutinee, e is the produ
t de-

mand S(�

a

(x); �

a

(y)), where the sub-demands are obtained

by seeing how the 
ase alternative a 
onsumes the 
ompo-

nents of the produ
t, x and y.

All other forms of 
ase expression are dealt with in the


onventional way: just take the least upper bound of the

alternatives of the 
ase.

The equation for letre
 uses the approa
h sket
hed in x5.1.

We analyse the right hand side using a \vanilla demand"

S

n

(S), where n is the arity of the right hand side. Then from

the demand type returned by analysing the right hand side

we build a demand signature, hn; dti. Finally, we analyse

the body of the letre
 in the extended environment �

0

. We


ompute the arity of the right hand side 
rudely, by simply


ounting lambdas, but the 
orre
tness of the analysis does

not depend on 
omputing the \
orre
t" arity (whatever that

is). A bad 
hoi
e of arity will simply lead to less a

urate

results, be
ause the demand transformer en
oding will be

less e�e
tive.

If the letre
 is a
tually re
ursive, we must analyse the right

hand side in the extended environment too. We follow the

usual approa
h of 
omputing a sequen
e of approximations

to the demand signature for x, starting with the most ag-

gressive one, ? = h0; BotTypei. Sin
e the t and & oper-

ators are monotoni
 and the latti
e of demand signatures

has �nite height for any well-typed program, the limit 
an

be 
omputed in �nitely many iterations. Noti
e that we

11



S[[e℄℄ � d takes an expression e, a demand environment � and an evaluation demand s, and 
omputes a

demand type dt for e.

S[[e℄℄ : StrEnv ! StrDmd! DemandType

� : StrEnv = V ar ! DmdSig

S[[e℄℄ � L = AbsType

S[[x℄℄ � s = let � ) � = DT (�(x); s) if x 2 dom(�)

= AbsType otherwise

in (�& [x 7! s℄)) �

S[[P ℄℄ � s = PT (P; s); where P is a produ
t 
onstru
tor

S[[e

1

e

2

℄℄ � s = let �

1

) s

a

: �

1

= S[[e

1

℄℄ � S(s)

�

2

) �

2

= S[[e

2

℄℄ � s

a

in (�

1

&�

2

)) �

1

S[[nx:e℄℄ � S(s) = let � ) � = S[[e℄℄ � s

s

x

= �(x)

in �nfxg ) s

x

: �

S[[
ase e of (x; y) -> a℄℄ � s = let �

a

) �

a

= S[[a℄℄ � s

�

e

) [ ℄ = S[[e℄℄ � S(�

a

(x); �

a

(y))

in (�

a

nfx; yg)&�

e

) �

a

S[[
ase e of p

i

-> a

i

℄℄ � s = let �

i

) �

i

= S[[a

i

℄℄ � s

�

a

) �

a

= (

F

�

i

nfv(p

i

)))

F

�

i

�

e

) �

e

= S[[e℄℄ � S

in �

a

&�

e

) �

a

S[[letre
 x = e in b℄℄ � s = letre
 n = arity(e)

� ) � = S[[e℄℄ �

0

S

n

(S)

�

0

= �[x 7! hn; �nfxg ) �i℄

�

0

) �

0

= S[[b℄℄ �

0

s

in �

0

nfxg ) �

0

DT (sig; s) takes a demand signature sig and a demand s, and applies the demand transformer des
ribed

by sig to s, returning a demand.

DT (hn; dti; S

m

(s)) = dt if n � m

= AbsType otherwise

PT (P; s) takes a produ
t 
onstru
tor P and a demand s, returns the 
onstru
tor's demand type given

that demand.

PT (P; S

m

(S(s

1

; : : : ; s

n

))) = h[ ℄; Li ) [s

1

; : : : ; s

n

℄ if n = m = arity(P )

= AbsType otherwise

Figure 6: The evaluation demand analysis
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take the �xpoint in the latti
e of demand types, not in the

(ex
essively ri
h) latti
e of demand transformers.

Finally, we return to the demand-transformer fun
tion,

DT (sig; s), also shown in Figure 6. It takes a demand

signature and a demand, and returns a demand type. There

are two 
ases to 
onsider:

Enough arguments. If the in
oming demand s is of the

form S(: : : S(s)) = S

n

(s), the nesting depth, n, of the


all demands says how many arguments x is applied to.

If n is at least as big as the number of arguments en-


oded in the demand signature, then we simply unleash

the demand signature as a demand type.

Too few arguments. If there are too few arguments, we

return AbsType, whi
h pla
es a lazy demand on all ar-

guments and free variables.

The demand transformer for a produ
t 
onstru
tor,

PT (P; s) is similar: provided the 
onstru
tor is saturated,

we 
an unleash the 
omponent demands of the in
oming

demand, s

1

; : : : ; s

n

, on the arguments of the 
onstru
tor.

Otherwise we just return the top demand type.

This 
ompletes the des
ription of our stri
tness analysis.

Compared to previous ba
kwards stri
tness analyses, the

main new elements are

� simple and 
heap extension to handle higher-order

fun
tions via 
all demands,

� more a

urate analysis of let-bindings via free-variable

demands,

� and approximation of demand transformers by demand

signatures, to make �xpointing fast and the analysis

modular.

7 Absen
e analysis

Our next step is to apply exa
tly the same analysis frame-

work to determine absen
e. For example, in the de�nition:

f x y = if x==0 then f (x-1) y

else x

it is 
lear that x is used; it is slightly less obvious that y is

not. Programmers seldom pass arguments that are entirely

unused, but they often pass arguments that are only partly

used. For example:

fst p = 
ase p of { (x,y) -> x }

Here, the se
ond 
omponent of the pair is unused. These

two examples make it 
lear that absen
e analysis entails

more than simply 
omputing free variables.

7.1 Domains

The domain we use for absen
e analysis, its identities, and

the type-indexed fun
tion that gives the domain for ea
h

type, are given in Figure 7.

The two elements that are 
ommon to every domain are:

The set AbsDmd is the set of absen
e demands a de-

�ned thus:

a ::= A De�nitely unused

j U May be used

j U(a) Produ
t or fun
tion is

used, 
omponents s

a ::= [a

1

; : : : ; a

n

℄ Tuple 
omponents

Identities on absen
e demands

U(U : : : U) = U

Ordering on demands

A v U

U(a

1

) v U(a

2

) if a

1

v a

2

The t and & operators

A t a = a

U(a

1

) t U(a

2

) = U(a

1

t a

2

)

a

1

& a

2

= a

1

t a

2

The absen
e domain for ea
h type

T

a

[[Int#℄℄ = fA; Ug Unlifted integers

T

a

[[(t

1

,t

2

)℄℄ = U(T

a

[[t

1

℄℄; T

a

[[t

2

℄℄) Produ
t types

[ fAg

T

a

[[[t℄℄℄ = fA; Ug Sum types

T

a

[[t

1

->t

2

℄℄ = U(T

s

[[t

2

℄℄) Fun
tions

[ fAg

T

a

[[�℄℄ = fA; Ug Unknown types

Figure 7: Absen
e-demand domains, operators, and identies

A (absent): the value is not used at all, on any exe
ution

path. This is the bottom element of ea
h domain, and

we will write either A or ? inter
hangeably.

U (used): the value is used on some exe
ution path. This

is the top element of ea
h domain.

The domain for unboxed types, su
h as Int#, has just these

two points, as do the domains for sum types and polymor-

phi
 types. (In the 
ase of stri
tness analysis, we needed

three points for the latter domains.) The produ
t domain

is 
onstru
ted in a similar way as for stri
tness, and there is

an identify U(UU) = U analogous to the one for stri
tness

S(LL) = S. So we 
an 
al
ulate the domain for Int thus:

T

a

[[Int℄℄ = S(T

a

[[Int#℄℄) [ fAg

= fU(A); U(U); Ag

= fU(A); U;Ag
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U = U(UU)

U(AA)

U(AU) U(UA)

A = ⊥

Figure 8: Absen
e for (integer) pairs

The demand A indi
ates that the integer is not used, U

that it may be, and U(A) that the box of the integer may be

used, but the value will not be. John: Weird! Can we give

an example of a program whi
h a
tually uses an integer that

way?? The domain for pairs 
an be 
al
ulated similarly,

and is depi
ted in Figure 8.

As Figure 7 shows, a signi�
ant di�eren
e between stri
tness

and absen
e analysis is that the & is identi
al to t. Why?

Consider the demands on x from the right hand sides of

these two fun
tions:

f1 x y = x + y

f2 x y = if x==0 then x else y

In f1 we will use & to 
ombine the demands on x from the

arguments to +, while in f2 we will use t to 
ombine de-

mands from the bran
hes of the if. For absen
e analysis

there is no di�eren
e in these two operators: x is not ab-

sent in either f1 or f2. Stri
tness analysis establishes that

something is evaluated in every exe
ution path, so there is a

di�eren
e between 
ombining information from parts of the

same path (&) and from di�erent paths (t). Absen
e analy-

sis establishes that something might be used in some path: if

we �nd a use, then that is all that matters; it's unimportant

whether we 
ombine information from alternative paths or

parts of the same one.

7.2 Demand types

All the de�nitions 
on
erning demand signatures and de-

mand types (Figure 5) hold un
hanged. There is an inter-

esting point about return demands, though. Re
all that a

return demand r is drawn from the set

r 2 f?; ID

&

g

For absen
e analysis, the identity of & is ?, so it follows

that r is always ? (= A). So given a demand environment

� = h�;Ai, any variable x not in the domain of � will be

mapped to A { whi
h is exa
tly as it should be. Absen
e

analysis has no need to model divergen
e.

The fun
tion error has an interesting demand type:

error : h[ ℄; Ai ) [U ℄

Note the [U ℄ part; it says that error uses its �rst argument

(to print out the error message).

7.3 The analysis

With these preliminaries, the analysis fun
tion of Figure 6

works almost entirely un
hanged. We have to make only the

following adjustments: repla
e S by U , and L by A.

SLPJ: Again, rather an abrupt 
on
lusion; what more should

we say?

8 Combining stri
tness and absen
e

In this se
tion we take the 
artesian produ
t of the two

domains, approximate a bit, and end up with an interesting

modi�
ation of the traditional 4-point domain [?℄; only now

we see where it 
omes from.

8.1 The demand domain

To 
ompute the demands for the joint analysis we simply

take the 
artesian produ
t of the stri
tness and absen
e do-

mains. Figure 9 gives the syntax of joint demands sa, and for

ea
h it gives the 
orresponding pair hs; ai from the produ
t

latti
e, where s is a stri
tness demand and a is an absen
e

demand.

As before, the demand domain is indexed by type. To be-

gin with, 
onsider the simplest demand domain, that for

lists and type variables. For these types, the stri
tness do-

main is just f?; S; Lg, and the absen
e domain is fA;Ug

(see Figures 2 and 7 respe
tively). We 
an make sense of

the following joint demands pla
ed by an expression e on a

variable x:

Lazy = hL; Ui. x is mentioned (U), but not ne
essarily

evaluated (L).

Abs = hL; Ai. x is not mentioned at all (A), and (unsur-

prisingly) is not evaluated (L).

Str = hS; Ui. x is both mentioned and evaluated to at least

head-normal form.

Err = h?; Ui. x is mentioned, and e diverges.

? = h?; Ai. x is not mentioned, and e diverges.

In ea
h 
ase we have invented a new joint demand (e.g. Err)

to name the demand pair (e.g. h?; Ui). What about the

missing point hS; Ai? The S means \every terminating path

evaluates x", while the A means \no path evaluates x". So

the joint demand hS; Aimeans that no path terminates, and

no path evaluates x, so it is the same as h?; Ai. SLPJ: Idea!

Can we prove this 
laim in the se
tion on proje
tions? That

would be 
onvin
ing.

Their ordering relationship is given by:

hs

1

; d

1

i v hs

2

; d

2

i � s

1

v s

2

^ d

1

v d

2

Figure 10 shows these ordering relationships, and already we


an see that matters are more 
ompli
ated than the four-

point domain we �nd in the literature. In parti
ular, the

distin
tion between Err and ? is interesting. Consider:

14



Joint demands

sa ::= Lazy = hL; Ui

j Lazy(sa) = hL; U(a)i

j Str = hS; Ui

j Str(sa) = hS(s); U(a)i

j Abs = hL; Ai

j Err = h?; Ui

j ? = h?; Ai

Identities on demands

Str(: : :? : : :) = Err

Str(Lazy : : : Lazy) = Str

Lazy(Lazy : : : Lazy) = Lazy

Ordering on demands

? v sa

sa v Lazy

Str(sa

1

) v Str(sa

2

) if sa

1

v sa

2

Operations on demands

? t sa = sa

Abs t ? = Abs

Abs t sa = Lazy

Str(sa) t ? = Str(sa)

Str(sa) t Abs = Lazy(sa)

Str(sa) t Err = Str

Str(sa

1

) t Str(sa

1

) = Str(sa

1

t sa

2

)

Str(sa

1

) t Lazy(sa

1

) = Lazy(sa

1

t sa

2

)

Lazy(sa) t ? = Lazy(sa)

Lazy(sa) t Abs = Lazy(sa)

Lazy(sa) t Err = Lazy

Lazy(sa) t Str(sa

1

) = Lazy(sa

1

t sa

2

)

Lazy(sa) t Lazy(sa

1

) = Lazy(sa

1

t sa

2

)

? & ? = ?

? & Abs = ?

? & sa = Err

Abs & sa = sa

Str(sa) & ? = ?

Str(sa) & Err = Err

Str(sa) & Abs = Str(sa)

Str(sa

1

) & Str(sa

1

) = Str(sa

1

&sa

2

)

Str(sa) & Lazy(sa

1

) = Str(sa

1

&sa

2

)

Lazy(sa) & ? = Err

Lazy(sa) & Err = Err

Lazy(sa) & Abs = Lazy(sa)

Lazy(sa) & sa = sa

Figure 9: Joint stri
tness and absen
e

L

Err

Abs

Str

⊥

Figure 10: Joint-demand latti
e for lists

f x y = error ("Urk" ++ x)

The demand on x is Err, and on y is ?. This distin
tion is

truly useful: we must pass x to f, but we need not pass y.

John: Hmm. Why don't we allow Err(sa)? It has a natural

meaning and it seems useful. What do you think, Simon?

8.2 Produ
ts and fun
tions

Matters be
ome more interesting when we 
onsider stru
-

tured types. Even Int is more 
ompli
ated than one would

think. For Int, the demands we are interested in are:

fhs; aijs 2 T

s

[[Int℄℄; a 2 T

a

[[Int℄℄g

= fhs; aijs 2 f?; S; Lg; a 2 fA;U(A); U(U)gg

Now we do some approximation. We name the following

joint demands (Figure 9):

Lazy = hL; Ui

Lazy(Abs) = hL; U(A)i

Str = hS; Ui

Str(Abs) = hS; U(A)i

Abs = hL; Ai

Err = h?; Ui

? = h?; Ai

There are two elements missing from this list. We identify

hS; Ai with ? as before. But what about h?; U(A)i? That

demand would be 
reated by a fun
tion like this:

f (I# x) = error "Urk"

From a stri
tness point of view, f is hyper-stri
t in its argu-

ment (be
ause of the 
all to error), but in fa
t the payload

of the Int, namely x, is not used. We 
hoose not to re
ord

information at this level of pre
ision, by not having an ele-

ment of the joint domain for h?; U(A)i. Whenever we might

want it, we 
an approximate upwards to get Err instead.

Another very plausible approximation would be to approx-

imate hL; U(a)i to Lazy for any absen
e demands a. Why

do we instead 
hoose to preserve absen
e information even

for a lazy demand? After all, 
onsider:
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L

Str(Abs)

Abs

Lazy(Abs)

⊥

Str(Lazy)

Err

Figure 11: Joint-demand latti
e for Int

f :: (a,b) -> Maybe a

f x = Just (fst x)

This fun
tion pla
es demand Lazy(Lazy;Abs) on x, and

so f has no useful worker/wrapper split: we must pass x

entire to f. Thus motivated, our �rst implementation did

indeed approximate hL; ai to Lazy. However, 
onsider this

fun
tion:

f x = if fst x then

Nothing

else

Just (fst x)

If the demand from Just (fst x) is simply Lazy, then

the demand on x for the entire fun
tion will be Str =

Str(Str;Lazy). But that is bad! It is plain as a pikesta�

that the demand on x should be Str(Str;Abs); that is,

the se
ond 
omponent of x is not used, and should not be

passed from the wrapper to the worker. If, instead, we do

less approximation, we get the demand Lazy(Str;Abs) from

Just (fst x), and Str(Str;Abs) from the if 
ondition; and

Lazy(Str;Abs) & Str(Str;Abs) = Str(Str;Abs)

whi
h is what we want. In short, even a lazy demand should

re
ord whi
h parts of the value will not be used.

Figure 11 shows the joint-demand latti
e for Int. At this

point, the merit of our modular approa
h be
omes 
lear.

The stri
tness and absen
e domains were relatively easy to

de�ne, but the joint domain even for a simple type like Int

has be
ome rather 
ompli
ated. By taking the produ
t of

stri
tness and absen
e domains we have a systemati
 ap-

proa
h to 
onstru
ting the joint domain.

8.3 Operations over demands

Figure 9 give the t and & operations over demands. We

do not give 
ases for Str and Err be
ause they 
an be ex-

panded using the identities. Again, these operations 
an be


al
ulated from the operations over stri
tness and absen
e

demands, using the guide:

hs

1

t s

2

; a

1

t a

2

i v hs

1

; a

1

i t hs

2

; a

2

i

hs

1

&s

2

; a

1

&a

2

i v hs

1

; a

1

i&hs

2

; a

2

i

For example, we 
an 
ompute Str(sa) & Abs thus:

Str(sa) & Abs = hS(s); U(a)i & hL; Ai

= hS(s)&L; U(a)&Ai

= hS(s); U(a)i

= Str(sa)

Noti
e that \&" is neither least upper bound nor greatest

lower bound in the 
ombined latti
e.

8.4 Demand signatures and demand types

The same de�nitions for demand signatures and demand

types hold as before. We only need to identify the values of

r, the return demand. Re
all from Figure 5 that a return

demand is an element of:

r 2 f?; ID

&

g

In our joint analysis, the identity of & is hID

&

; ID

&

i =

hL; Ai = Abs. So we 
al
ulate that for joint stri
t-

ness/absen
e analysis:

r 2 f?; Absg

8.5 The analysis

We exploit the following equation:

S[[e℄℄ � (sa

1

t sa

2

) = (S[[e℄℄ � sa

1

) t (S[[e℄℄ � sa

2

)

SLPJ: Proof?

There are two new features.

� The very �rst equation be
omes:

� Abstra
ting over Lazy(Str;Abs) gives just Lazy.

John: This se
tion is highly in
omplete!

9 Pra
ti
al issues

Next, we turn our attention to some issues that turn out to

be important in pra
ti
e, prin
ipally to do with �xpoints.

These issues never o

urred to us before we began, but they

are 
ru
ial to good pra
ti
al performan
e.

9.1 Returning an annotated expression

In our implementation, the demand analyser returns not

only a demand type, but also an annotated expression, in

whi
h:

� Ea
h let(re
) binder is annotated with its demand sig-

nature.
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� Ea
h binder (lambda, 
ase, and let(re
)) is annotated

with the demand pla
ed on it if the expression is eval-

uated at all.

The former information is used to drive the worker/wrapper

split that follows. Both annotations are used during pro-

gram transformation and 
ode generation to transform 
all-

by-name into 
all-by-value.

9.2 Finding �xpoints

As we have already remarked, �nding �xpoints for nested

re
ursive fun
tions 
an be expensive. For example, 
onsider

the following Haskell fun
tion:

f xs = [y+1 | x <- xs, y <- h x℄

GHC will turn the list 
omprehension (whi
h really has two

nested loops) into something like the following:

f [℄ = [℄

f (x:xs) = letre


g [℄ = f xs

g (y:ys) = y+1 : g ys

in

g (h x)

The trouble is that the analyser must �nd a �xpoint for the

inner fun
tion, g, on ea
h iteration of the �xpoint �nder for

the outer fun
tion, f. If fun
tions (or list 
omprehensions)

are deeply nested, as 
an o

ur, this 
an lead to exponen-

tial behaviour, even if ea
h �xpoint iteration 
onverges after

only two 
y
les.

While this remains the worst-
ase behaviour, there is a sim-

ple tri
k that dramati
ally improves the behaviour of 
om-

mon 
ases. It relies on the following observation. The itera-

tions of the �xpoint pro
ess for f generates a monotoni
ally

in
reasing sequen
e of demand signatures for f. Therefore,

ea
h time we begin the �xpoint pro
ess for g, the environ-

ment 
ontains values that are greater (in the demand latti
e)

than the 
orresponding values the previous time we en
oun-

tered g. It follows that the 
orre
t �xpoint for g will be

greater than the 
orre
t �xpoint found on the previous iter-

ation of f. Therefore we 
an begin the �xpoint pro
ess for g

not with the bottom value, but rather with the result of the

previous analysis.

It is simple to implement this idea. Ea
h iteration of the

f's �xpoint pro
ess yields a new right-hand side for f, as

well as its demand type. We simply feed that new right

hand side, whose binders are de
orated with their demand

signatures, into the next iteration. Then, when beginning

the �xpoint pro
ess for g, we 
an start from the demand

signature 
omputed, 
onveniently atta
hed to the binding

o

urren
e of g.

In pra
ti
e, most of the �xpoint pro
esses of the inner fun
-

tion then 
onverge in a single iteration, whi
h prevents ex-

ponential behaviour.

This te
hnique is fairly well-known as folk lore, but it was

not written down until Henglein's paper [?℄. (This paper

is fairly dense, and the fa
t that it 
ontains this extremely

useful implementation ha
k may not be immediately appar-

ent.)

SLPJ: The explanation is a bit armwavey; 
an it be im-

proved? There should be some nunbers to ba
k this up. John:

I like it! Of 
ourse, numbers would be good. Analysis times

on some ben
hmarks with and without the optimisation?

9.3 Splitting �

In x5.3 we noted the importan
e of in
luding information

about free variables in the demand signature 
omputed for

a lo
al de�nition. What we did not mention there is that do-

ing so greatly enri
hes the latti
e of demand signatures, and


an therefore make 
onvergen
e of �xpoints mu
h slower. In-

deed, we found this to be a real problem in pra
ti
e. Even

using the �xpoint te
hnique des
ribed above, we still en-


ountered exponential behaviour.

Some 
areful inspe
tion of a
tual examples showed that the

trouble really 
on
erned variables that are used lazily. Con-

sider:

f x y = let g z = if x then (y,z) else (z,y)

in

...g...g...

The argument of x5.3 was that g should get a demand sig-

nature something like:

g : h1; h[x 7! S; y 7! L℄; Li ) Li

The mapping in the demand signature says that a 
all of g

pla
es a stri
t demand on x and a lazy demand on y.

Something is gained by unleashing a stri
t demand on x at

g's 
all sites; we may get better overall stri
tness for x (x5.3).

However, nothing is gained by unleashing a lazy demand on

y at g's 
all sites. Ea
h 
all site (whether saturated or not)

will unleash a lazy demand, and they will all 
ombine to

give an overall lazy demand (unless there is some other stri
t

demand on y). It would be simpler and more dire
t, after

analysing the right hand side of g, to give g the simpler

signature:

g : h1; h[x 7! S℄; Li ) Li

and to derive a lazy demand on y from the de�nition of g

(rather than from its 
all sites).

So the idea is this. After analysing the right hand side of a

fun
tion, split the � it returns into the variables with lazy

demands and those with stri
t demands. Put only the stri
t

demands into the demand signature for the fun
tion; the

lazy ones 
an simply 
oat outwards. More pre
isely, here is

the revised let(re
) rule:

S[[letre
 x = e in b℄℄ � s

= letre
 n = arity(e)

� ) � = S[[e℄℄ �

0

Str

n

(Str)

(�

lazy

; �

str

) = split(�)

�

0

= �[x 7! hn; �

str

) �i℄

�

0

) �

0

= S[[b℄℄ �

0

s

in �

0

&�

lazy

) �

0

This re�nement turns out to be devastatingly e�e
tive in

pra
ti
e. Several troublesome programs that took a huge

number of �xpoint iterations before now 
onverged in one

or two.

SLPJ: Again, is this enough? Numbers needed here too.

John: No, this is not 
lear. This dis
usses only stri
tness

analysis | but what happens on
e absen
e is added? Is it

Lazy demands that are fa
tored out? Or is Abs also fa
-

tored? What is the 
riterion in general? My guess is that
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anything w Abs 
an be fa
tored, but we should really do a

proof that doing so does not 
hange the result. Will think

about this.

10 What does it all mean?

Ba
kwards stri
tness-and-absen
e analysis has a ni
e theory

developed by Wadler and Hughes [?℄, whi
h we shall adapt

to give a semanti
s to the demands and demand types in

this paper.

10.1 Proje
tions and absen
e analysis

In this se
tion we will 
onsider the semanti
s of absen
e

demands, as des
ribed in Se
tion 7, leaving stri
tness for

the next se
tion.

Wadler and Hughes' theory [?℄ is based on interpreting a

demand as a proje
tion: a fun
tion from a domain to itself

that is idempotent and approximates the identity. That is,

p : D ! D is a proje
tion if p = p Æ p and p v id.

An example of a proje
tion is the fun
tion whi
h maps every

value to ?, and indeed, this is how we shall interpret A |

it is the proje
tion whi
h dis
ards its argument entirely.

A x =?

Now we 
an see that if a fun
tion f satis�es

f = f Æ A

then it must be a 
onstant fun
tion | sin
e, for all x, fx =

f ?. That is, it does not use its argument, or to put it

another way, it pla
es the demand A on its argument!

If we think of a proje
tion as mapping a value to \the part

that is used", repla
ing the unused parts by ?, then it is


lear that we should interpret the demand U (use the whole

value) as the identity proje
tion:

Ux = x

A fun
tion f may pla
e the demand U on its argument if

f = f Æ U

All fun
tions satisfy this 
ondition, of 
ourse, whi
h just says

that every fun
tion \may use" its argument. In pra
ti
e the

best information is given by the least proje
tion p su
h that

f = f Æ p

A stati
 analyser 
annot in general �nd the least su
h p, but

we are satis�ed if it usually �nds a \small" one.

Demands on tuples are modelled by proje
tions that apply

other proje
tions on the 
omponents separately. Thus (re-


alling that Haskell tuples are lifted)

U(p

1

; p

2

) (x; y) = (p

1

x; p

2

y)

U(p

1

; p

2

) ? = ?

Now it is straightforward to verify, for example, that

fst = fst Æ U(U;A)

that is, fst pla
es the demand U(U;A) on its argument.

The `&' operator is needed when fun
tion arguments are

used more than on
e, for example in the de�nition

f x = g (x,x)

If g pla
es the demand U(p

1

; p

2

) on its argument, then f

pla
es the demand p

1

&p

2

, as we have seen. If we ask what

this implies semanti
ally, we see that if

g = g Æ U(p

1

; p

2

)

then it must be true that

f = f Æ (p

1

&p

2

)

Restating this in terms of g, whenever g = gÆU(p

1

; p

2

), then

we must have

g = g Æ U(p

1

&p

2

; p

1

&p

2

)

This 
ondition 
onstrains how we may de�ne `&' on proje
-

tions. It will always hold, provided

U(p

1

; p

2

) v U(p

1

&p

2

; p

1

&p

2

) (1)

sin
e then

g Æ U(p

1

&p

2

; p

1

&p

2

) w g Æ U(p

1

; p

2

)

= g

w g Æ U(p

1

&p

2

; p

1

&p

2

)

(sin
e U(p

1

&p

2

; p

1

&p

2

) v id). An obvious way to ful�ll

equation 1 is to take

p

1

&p

2

� p

1

t p

2

and indeed, as we saw above, for absen
e analysis `&' is

the same as `t'. But we will use equation 1 again when we


onsider stri
tness analysis, and derive a better result.

So far we have assumed that the result of the fun
tion is


onsumed with demand U , but we 
an easily generalise the

idea: if the fun
tion fun
tion f is 
alled with a demand p on

its result, we may say it pla
es a demand q on its argument

if

p Æ f = p Æ f Æ q

For example, given the de�nition

swap (x,y) = (y,x)

we 
an 
he
k that

U(U;A) Æ swap = U(U;A) Æ swap Æ U(A;U)

That is, if the se
ond 
omponent of the result is not used,

then neither is the �rst 
omponent of the argument | as

expe
ted.

This is the way Wadler and Hughes modelled absen
e |

but does it 
orre
tly handle the awkward 
ases involving

error dis
ussed in se
tion 2.2? Yes it does, provided we use

Peyton-Jones et al's semanti
s of \impre
ise ex
eptions" [?℄.
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This semanti
s is designed to allow the 
ompiler to make

transformations that 
hange the error that an erroneous pro-

gram en
ounters, without thereby identifying all errors with

?. In the semanti
s, erroneous programs denote a set of

possible errors, not just one, and when the program is run

the result is guaranteed only to be a member of the set.

The sets are ordered using the Smyth powerdomain order,

so that larger, less-pre
ise sets approximate smaller, more-

pre
ise ones. Non-termination is then identi�ed with the set

of all possible errors | the largest, least-pre
ise error set of

all.

Now re
all

g2 (x,y) = error x

whi
h \diverges", but uses x. Clearly

g2 = g2 Æ U(U;A)

(that is, y is not used), but

g2 6= g2 Æ U(A;A)

sin
e when g2 is applied to (x; y) it returns a singleton set of

possible errors just 
ontaining x, while the right hand side

returns ?, the set of all possible errors. Thus we 
annot say

that x is not used.

10.2 Proje
tions and stri
tness

The theory above models absen
e analysis ni
ely, but is not

suÆ
ient to model stri
tness analysis. Intuitively, the prob-

lem is that, having used ? to represent a missing value |

something whi
h will trigger divergen
e if evaluated | we


annot at the same time use it to represent divergen
e itself.

Wadler and Hughes' solution was to add a new bottom el-

ement to the semanti
 domain, below the existing one (i.e.

lifting the domain), with the new element representing di-

vergen
e itself. To avoid 
onfusion, the new bottom will be


alled & (\lightning bolt"). It is important to realise that

we do not need to give a new semanti
s to Haskell, in whi
h

lightning bolts appear. We interpret Haskell programs as

usual, but we model demands by proje
tions on the semanti


domain with one additional element, lightning bolt, rather

than the original semanti
 domain. We will need to lift the

semanti
s of Haskell fun
tions to the extended domain, but

given a fun
tion f this is easily done by taking f &=&. At

every other point, f retains the usual semanti
s.

Now, in the extended domain we distinguish between a 
lo-

sure whi
h will loop if evaluated (?), and non-termination

itself &. We 
an therefore model evaluating a 
losure as a

proje
tion:

S & = &

S ? = &

S x = x; otherwise

We map an unevaluated looping 
losure (?) to true di-

vergen
e (&), while leaving terminating values un
hanged.

This is the proje
tion that models stri
t demand; we 
an ask

whether f uses its argument stri
tly when 
alled in a stri
t


ontext, just be asking whether

S Æ f = S Æ f Æ S

Applying both sides to ? we see

(S Æ f) ? = (S Æ f Æ S) ?

=) S (f ?) = S (f (S ?))

=) S (f ?) = S (f &)

=) S (f ?) = S &

=) S (f ?) = &

=) f ? = ?

so this 
ondition does indeed imply that f is stri
t. Similarly

we 
an de�ne stri
tness proje
tions on tuples

S(p

1

; p

2

) & = &

S(p

1

; p

2

) ? = &

S(p

1

; p

2

) (x; y) = &; if p

1

x=& or p

2

y=&

= (p

1

x; p

2

y); otherwise

and �nally, we model L (no evaluation) just by the identity

fun
tion. Now we 
an pose questions \does f pla
e demand

q on its argument when 
alled with demand p" by asking

whether

p Æ f = p Æ f Æ q

as before.

How should the & operator be de�ned on the domain with

lightning bolt? In the last se
tion, we 
on
luded that it must

be de�ned so that

U(p

1

; p

2

) v U(p

1

&p

2

; p

1

&p

2

)

In this se
tion we have repla
ed U(p

1

; p

2

) by S(p

1

; p

2

), but

we 
an make the same argument and 
on
lude that & must

satisfy

S(p

1

; p

2

) v S(p

1

&p

2

; p

1

&p

2

)

However, we 
an now take advantage of the fa
t that

S(p

1

; p

2

) returns & if either p

1

or p

2

does, by de�ning

(p

1

&p

2

) x =

�

&; if p

1

x =& or p

2

x =&

p

1

x t p

2

x; otherwise

This is the semanti
 de�nition of &: it takes advantage of

stri
tness in either operand, but if neither is stri
t behaves

as t. Clearly this de�nition satis�es the ne
essary 
ondition,

and moreover we have that p

1

&p

2

v p

1

t p

2

and in general

is di�erent, so we obtain a more pre
ise analysis.

The result of all this is a uni�ed semanti
 framework for

stri
tness and absen
e analysis. SLPJ: Well, no one 
ould

argue with something as desirable as a \uni�ed semanti


treatment". Every s
hoolgirl should have one. But what

the di
kens is it, and what 
an one do with su
h a wonder?

John: Promulgate Truth, Freedom, and the Fun
tional Way,

of 
ourse! OK, I take your point.

10.3 Proje
tions and fun
tion values

Wadler and Hughes' arti
le was restri
ted to a �rst-order

language. Numerous attempts were made to generalise the

approa
h to higher-order languages [?, ?, ?℄, but these all

involved departing more-or-less radi
ally from the simple

model of demands as proje
tions. In this paper, on the other

hand, we 
an model our analysis in a purely proje
tion-based

framework. We do need to adapt the theory a little to handle

fun
tion values, though.
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SLPJ: OK, this is a great statement. Sounds as if there is

a qualitiative breakthrough here, yes? John: Yes, it's good!

I'm going to reread some of the old proje
tion papers, though,

just to make sure the idea doesn't appear in some 
orner.

Firstly, we will need proje
tions on fun
tion values. In this

se
tion we use the notation

(p! q) f = q Æ f Æ p

to denote su
h proje
tions. Clearly if p and q are proje
tion

on types � and � , then p! q is a proje
tion on fun
tions of

type � ! � . The 
all demands S(p) used in the analysis 
an

be modelled by fun
tion proje
tions ID ! p: they impose a

demand on the result of a fun
tion, but not on its argument.

Wadler and Hughes' safety 
ondition for proje
tion analysis,

p Æ f = p Æ f Æ q


an now be rephrased as

(ID ! p) f = (q ! p) f

or as

(ID ! p) f = (ID ! p) ((q ! ID) f)

So, when this 
ondition holds, if we see a use of f in a 
ontext

where it is evaluated by (ID ! p), then we 
an safely apply

another proje
tion (q ! ID) to evaluate it a bit more.

More generally, if we know that e appears in a 
ontext p

0

e,

then we 
an repla
e e by q

0

e (thus dis
arding 
omponents

or making evaluation stri
ter) provided that p

0

e = p

0

(q

0

e).

We will take this new form to be the safety 
ondition for the

analysis in this paper.

Safety 
ondition: Let the result of analysing an

expression e with demand p

0

be the demand q

0

.

Then we must have

p

0

e = p

0

(q

0

e)

When e is a �rst order fun
tion, p

0

is ID ! p (i.e. S(p))

and q

0

is q ! ID, then this 
ondition redu
es to Wadler and

Hughes' original safety 
ondition. But the new 
ondition

also applies dire
tly to higher-order and 
urried fun
tions.

For example, suppose f is a 
urried fun
tion of type �

1

!

: : : �

n

! � , 
alled in the 
ontext S

n

(p) (meaning p nested

inside n appli
ations of S). A proje
tion q

0

produ
ed by the

analyser will be of the form q

1

! : : : q

n

! ID, satisfying

S

n

(p) f = S

n

(p) ((q

1

! : : : q

n

! ID) f)

A 
all in a stri
t 
ontext, p (f e

1

: : : e

n

), 
an thus be repla
ed

by

p (((q

1

! : : : q

n

! ID) f) e

1

: : : e

n

)

whi
h is equal to

p (f (q

1

e

1

) : : : (q

n

e

n

))

That is, we 
an evaluate ea
h e

i

in the 
ontext q

i

. We see

that the list of argument demands [q

1

: : : q

n

℄ in a demand

type 
an thus be modelled semanti
ally by the proje
tion

q

1

! : : : q

n

! ID.

SLPJ: Whi
h in turn makes me wonder whether we shouldn't

represent a demand type using 
urried arrows for the � part

instead of the [s

1

; ::s

n

℄ notation? John: Yes... I like that

idea!

SLPJ: I think we want some soundness statement like: if

S[[e℄℄� d = � ) �

then

d(E(e)�) = d(�(E(e)�(�)))

That would help to set the overall 
ontext for the work of

this se
tion.

John: Yes! I agree 
ompletely.

10.4 The demand environment

Of 
ourse, in general the meaning of an expression | even

a fun
tion | depends on the environment. The seman-

ti
s of an expression is indeed a fun
tion from the environ-

ment to its value; the semanti
s of a fun
tion-valued ex-

pression is 
onsequently a 
urried fun
tion from the envi-

ronment and arguments to its result. When we analyse a

Haskell expression of type �

1

! : : : ! �

n

! � , we are re-

ally analysing something whose semanti
s lies in the type

Env ! �

1

! : : : ! �

n

! � . So we should expe
t the pro-

je
tion we obtain, a

ording to the safety 
ondition above,

to be of the form

q

�

! q

1

! : : : q

n

! ID

where q

�

is a proje
tion on the environment. Of 
ourse,

we represent su
h proje
tions 
omponentwise (by giving a

proje
tion for ea
h name) { for example [x 7! q

1

; y 7! q

2

℄.

Thus we see that the demand environments that appear in

demand types are also modelled naturally as a part of a

proje
tion on the semanti
s of expressions.

10.5 Result demands

What of result demands? To explain them semanti
ally, we

make a slight digression.

SLPJ: I think we 
ould give this diression when talking of

the demand environment, 
ouldn't we? John: Well, the �rst

part is just explaining that proje
tions on environments 
or-

respond to part of demand types. This applies however we

use environments. Then this next bit is about using a jolly

strange semanti
s in order to get better results | I thought

it well to separate them.

First of all, noti
e that every use of an identi�er is (obvi-

ously) within the s
ope of its de�nition | and therefore,

within the s
ope of every other identi�er whi
h was in s
ope

at its de�nition. To put it another way, the environment at

the point a variable is used is always stri
tly larger than the

environment at the point the variable was bound. If a vari-

able is bound by a let or letre
 binding, then the value it is

bound to is interpreted in the environment in s
ope at the

de�nition. It follows that, if there are no name 
lashes, we


an equally well interpret the bodies of let-bound variables

in the s
ope where the variable is used, instead of where it

is de�ned. That is, dynami
 binding is equivalent to stati


binding, provided there are no name 
lashes (and assum-

ing that �-expressions are 
losed in the environment where

they appear, i.e. there is no \FUNARG problem"). GHC
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eliminates name 
lashes in an earlier phase by renaming of-

fending variables, so we are justi�ed in assuming that they

do not o

ur.

SLPJ: I kind of understand, but would it not be 
learer to

give a fragment of the denotational semanti
s thus: instead

of

E(letx = rinb)� = Eb�[x 7! E(r)�℄E(x)� = �(x)

we have

E(letx = rinb)� = Eb�[x 7! E(r)℄E(x)� = �(x)�

Theorem: this 
hange makes no di�eren
e. John: Yes,

OK. That'll be an improvement.

So let us 
onsider a semanti
s for Haskell in whi
h let and

letre
 bindings bind names to fun
tions from the environ-

ment where they are used to a value. As we have argued,

the semanti
s is equivalent to the standard one, for name-


lash-free programs. The advantage of using this semanti
s

is that it lets us asso
iate demands on the free variables of

a let bound variable with the point where it is used, rather

than the point where it is de�ned, whi
h as we saw in se
-

tion 5.3, 
an give us more a

urate results. But now an

o

urren
e of a variable denotes a fun
tion from a possibly

larger environment to a value, so the result of analysis must

give us a proje
tion on this larger environment, not on the

environment at the de�nition.

What proje
tion, then, should we apply when x is used, to

the values of variables whi
h were not in s
ope at the de�ni-

tion of x? One safe possibility is to apply A to them: sin
e

the body of x 
annot depend on them, this is 
ertain to be

safe. But if x is unde�ned then we 
an do better: sin
e the

result of evaluating x stri
tly will be & anyway, we might

as well proje
t the extra variables to & dire
tly. That is,

we 
an apply the least proje
tion �z !& to them. (This

proje
tion represents the bottom element of our proje
tion

domain, and so is 
alled the ? demand in the rest of this pa-

per). This \demand on new variables" is the result demand

of previous se
tions.

10.6 An operational approa
h

Stri
tness and absen
e analysis are just two of the analyses

whi
h GHC performs. Many of the others, su
h as \box de-

mand" analysis, dis
over mu
h more operational properties,

su
h as whether or not a parti
ular pointer need be passed to

a fun
tion. Although Wadler and Hughes' proje
tion-based

theory applies beautifully to the analyses in this paper, we


annot expe
t to extend it to 
over operational properties

also. We are working on a tra
e-based framework for de-

mands to handle su
h properties, whi
h we hope will appear

in a future paper.

11 Implementation

SLPJ: Measurements and results

12 Related work

SLPJ: John: you are going to write this, right?

Referen
es

A Box demand analysis

NOTE: This entire se
tion is probably wrong in se-

rious ways. But it's fumbling towards something

useful, I think.

We have now 
ompleted our tour of the stri
tness analyser.

There, the demand domains are standard (apart from 
all

demands), and so 
onstituted a familiar framework in whi
h

to develop our realisation of the analysis. We now turn our

attention to box-demand analysis, where the situation is re-

versed: the analysis is identi
al in form to that for stri
tness

analysis, but the domains are mu
h less familiar.

The purpose of box-demand analysis is to guide the un-

boxing transformation des
ribed in x2. Let us assume, for

example, that a fun
tion takes a pair as its argument and

is stri
t in the pair. Should we pass both 
omponents, or

one or the other, or neither, or should we pass the pair it-

self? These are the questions that box-demand analysis will

answer.

Note that even if only the 
omponents are passed, the 
alled

fun
tion 
an always re
onstru
t the tuple. Su
h reboxing is

sound (be
ause there is no notion of tuple identity or de-

stru
tive 
omponent update), but may be ineÆ
ient, espe-


ially in a loop.

A.1 Developing intuition

Before we 
an pro
eed further, we need to say what we mean

by the term \using the box of a value". The idea is that if a

fun
tion \uses the box" of its argument, then the argument

should be passed in boxed form to the fun
tion. Consider

the following fun
tions:

-- Whi
h of these "uses the box" for x?

f1 x = x -- Yes

f2 x = (x,True) -- Yes

f3 x = 
ase x of (a,b) -> (b,a) -- No

f4 x = 
ase x of (a,b) -> (x,a) -- Yes

f5 x = f3 x + 1 -- No

f6 x = (True, 
ase x of (a,b) -> a) -- Yes

f7 x y = if (
ase x of (a,b) -> a) -- No

then

(True, 
ase x of (a,b) -> a)

else

(False, y)

Here, f1 uses the box for x, be
ause it returns x itself; f2

uses the box for x be
ause it builds x into a pair. On the

other hand, f3 does not use the box for x be
ause the only use

it makes of x is to take it apart ; the worker for f3 should be

passed only the 
omponents of x, not x itself. The fun
tion

f4 takes x apart, like f3, but it also builds x into a pair (like

f2) so it does use the box. If the box is not passed to the

worker for f4, the worker will have to re-box the pair.

The next fun
tion, f5, illustrates the transitive property we

seek: If x is passed to a fun
tion that itself does not use the

box, then we want that property to propagate to the 
aller;

in this 
ase, f5 does not use the box be
ause f3 does not.
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Box-demand and stri
tness are not altogether separable. For

example, f5 does use the box for x, be
ause it is lazy in

x, so x must be passed unevaluated (and hen
e boxed) to

the fun
tion. However, f7 illustrates a subtle point that we

missed altogether in the beginning. It is 
ertainly stri
t, and


ertainly does not use the box for x. But if we 
onsider only

the then bran
h, we see it is pre
isely the same as f6's right

hand side. So it would be wrong to say that the then bran
h,

being lazy in x, uses the box for x, be
ause there may be

other reasons why the fun
tion in whi
h the sub-expression

o

urs is stri
t in x.

The 
on
lusion is this: the box-demand analysis must treat

sub-expressions and fun
tions di�erently. For example, the

expression

(True, 
ase x of (a,b) -> a)

does not use the box for x, but the fun
tion

(\x -> (True, 
ase x of (a,b) -> a))

does use the box for its argument. We will elaborate this

point in xA.4.

A.2 Dealing with 
onditionals

Consider the following expression:

f x as = 
ase as of

[℄ -> x

(b:bs) -> 
ase x of (a,b) -> a

Does f \use the box" of x or not? In one of the 
ase

bran
hes, the answer is `Yes', while on the other the answer

is `No'. So what are we to say for the whole expression?

Our 
hoi
e is to say that f does not use the box of x. Here

is the example that 
onvin
ed us:

last2 :: (Int,Int) -> [Int℄ -> (Int,Int)

last2 p [℄ = p

last2 p (x:xs) = 
ase p of (a,b) -> last2 (b,x) xs

In the base 
ase, last2 returns the pair p. In the re
ursive


ase, it builds a new pair before re
ursing. Should we pass

the boxed pair to last2 on the grounds that one bran
h uses

the box? By no means! On every iteration ex
ept the last,

we would simply take apart the newly 
onstru
ted pair, so

we 
an save a great deal of allo
ation by instead a

epting

the reboxing 
ost in the base 
ase.

Unfortunately, one 
an also 
onstru
t examples where the

reverse is true:

wug :: (Int,Int) -> [Int℄ -> [(Int,Int)℄

wug p [℄ = 
ase p of (a,b) -> [(b,a)℄

wug p (x:xs) = 
ase p of (a,b) -> if x==a

then p : wug p xs

else wug p xs

Here, in the base 
ase we take the pair apart, while in the

re
ursive 
ase we also use the box; and wug is still stri
t in

p. If we pass p unboxed (i.e. just pass the 
omponents) we

will in
ur a reboxing 
ost ea
h time round the loop.

One 
an imagine many 
lever s
hemes, but we have adopted

one simple one: we regard an expression as using the box

only if every exe
ution path (i.e. 
ase bran
h) uses the box.

In our system, neither last2 nor wug use the box. In pra
-

ti
e this seems to work pretty well. A

umulating-parameter

T

b

[[Int#℄℄ = f?; A;B; Tg Unlifted integers

T

b

[[Int℄℄ = U(T

b

[[Int#℄℄) Lifted integers

[ f?; A;Bg

= f?; A;B; U(?); U(A); U(B); U(T )g

T

b

[[(t

1

,t

2

)℄℄ = U(T

b

[[t

1

℄℄; T

b

[[t

2

℄℄) Produ
t types

[ f?; A;Bg

T

b

[[[t℄℄℄ = f?; A;B; Tg Sum types

T

b

[[t

1

->t

2

℄℄ = S(T

b

[[t

2

℄℄) Fun
tions

[ f?; A;Bg

T

b

[[�℄℄ = f?; A;B; Tg Unknown types

Figure 13: Box-demands at various types

T

A B

Figure 14: Box demands for unlifted integers (Int#)

fun
tions like last2 are 
ommon, whereas wug is highly 
on-

trived (hen
e its name).

John: These examples suggest that we should assign 
ase

bran
hes weights, perhaps by pro�ling, perhaps by analysis,

and say the box is used if it used in bran
hes whose weight

sums to at least 50%. Do we have eviden
e that this is not

worthwhile? Perhaps we should mention the possibility, any-

way.

A.3 The box-demand domain and its operations

Based on these intuitions, we are now ready to present the

domain of box demands. The syntax of box demands is

U(T) = T

U(A) U(B)

U( )A B

Figure 15: Box demands for lifted integers (Int)
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The set BDemand is the set of box demands b de�ned below.

Box demand b ::= ? Needed in a divergent 
omputation

j A Absent, de�nitely not used

j B Box de�nitely used

j U(b) Box may be unused, 
omponents b

j S(b) Call, with result box demand b

j T No information

Box demand sequen
e: b ::= [b

1

; : : : ; b

n

℄ Tuple 
omponents

j

^

b Length-polymorphi
 tuple 
omponents

Figure 12: Box demands

shown in Figure 12. As in the 
ase of stri
tness analysis,

the a
tual domain depends on the data type (Figure 13).

However, every box-demand domain 
ontains the following

four basi
 elements, arranged in a diamond latti
e, as shown

in Figure 14. An expression e may pla
e the following box-

demands on a variable x:

� A (Absent): x is not mentioned anywhere in e; the

wrapper need not pass the argument to the worker at

all.

� B (Box): every exe
ution path in e uses the box of x;

the wrapper should pass the box to the worker.

� T (Top): not all exe
ution paths use the box for x;

if the fun
tion is stri
t, the wrapper should pass the


omponents, but not the box, to the worker.

� ? (Bottom): e goes into an in�nite loop, or 
alls the

error fun
tion.

The dis
ussion about 
onditionals, in the previous se
-

tion, explains why B 
ontains de�nite information (\every

path...") whereas T is less de�ned (\not every path...").

These four points suÆ
e for unlifted types, sum types, and

unknown types (Figure 13), but we need more stru
ture for

produ
t and fun
tion types:

� U(b) (Unboxed): used for produ
t types only. Not all

exe
ution paths need the box (the produ
t itself), and

the joint need for ea
h 
omponent is des
ribed by b. If

the fun
tion is stri
t, the wrapper may pass the 
om-

ponents des
ribed by b instead of the box.

We identify U(

^

T ) with T , mu
h as we identify S(

^

?) =

? in the stri
tness analyser.

� S(b) (Call): a 
all demand, used for fun
tion types

only. Call demands work in exa
tly the same way as

for stri
tness analysis. The value is a fun
tion, whi
h

when applied will have box demand b imposed on its

result. Like U , we identify S(T ) = T .

The ordering on box demands is shown in Figure 16, to-

gether with the `lub' and `both' operators. SLPJ: How 
an

we justify these de�nitions? It's a big Figure to give without

elaboration, but it's a bit hard to justify ex
ept by armwav-

ing. Are any of the de�nitions surprising, worthy of more

explanation?

Noti
e that we 
annot identify U(A) with A. To see why,


onsider

a1, a2 :: Int -> [Bool℄

a1 x = [ x `seq` True ℄

a2 x = [True℄

The fun
tion a1 pla
es box-demand U(A) on x, whereas a2

pla
es demand A. It would be patently wrong to say that x

is not used at all by a1.

Similar reasoning shows that we must distinguish U(?) from

?. Consider

a3 :: Int -> Bool -> [Bool℄

a3 x b = if b then

error (a1 x)

else

[b℄

The demand on x arising from the 
all error (a1 x) is

? & U(A) | the ? 
omes from the fa
t that error diverges,

while the U(A) 
omes from the 
all of a1. By Figure 16,

? & U(A) = U(?&A) = U(?)

Now if U(?) = ?, the overall demand on x from a3 would

be A t ? = A, whi
h is plainly wrong.

We 
ould have additionally permitted stru
tured box de-

mands B(b), meaning that all bran
hes need the box and

in addition the 
omponents are needed b mu
h. But we


hose to use simple B only, on the grounds that if we pass

the box, then the runtime advantage of additionally passing

some 
omponents is dubious.

A.4 The box demand analysis fun
tion

The box demand analysis fun
tion, B[[e℄℄, has almost exa
tly

the same form as the stri
tness analyser, S[[e℄℄ (Figure 6),

ex
ept that we use the box-demand domain in Figure 12, and

its operators in Figure 16, instead of the stri
tness-demand

domain and its operators. Sin
e it is simply a stepping stone

to the joint-demand analyser, whi
h we present in detail

later, we will brie
y summarise the di�eren
es between S[[e℄℄

and B[[e℄℄, rather than giving the full de�nition of the latter.

There are several important di�eren
es. Firstly, the \vanilla

demand" (used when approximating a demand transformer)

is B, not S; that is, the vanilla demand uses the box of the

returned value.
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? v b

A v U(A)

B v U(B)

b

1

v b

2

) U(b

1

) v U(b

2

)

b v T

b

1

v b

2

) S(b

1

) v S(b

2

)

? t b = b

A t A = A

A t B = T

A t S(b) = T

A t U(b) = U(A t b)

B t B = B

B t U(b) = U(B t b)

B t S(b) = S(b)

U(b

1

) t U(b

2

) = U(b

1

t b

2

)

U t S(b) = T

S(b

1

) t S(b

2

) = S(b

1

t b

2

)

T t b = T

a

? & ? = ?

? & A = ?

? & B = B

? & S(b) = S(?&b)

? & U(b) = U(?&b)

? & T = B

A & b = b

B & B = B

B & S(b) = S(b)

B & U(b) = U(B&b)

B & T = B

S(b

1

) & S(b

2

) = S(b

1

&b

2

)

S(b

1

) & U(b) = S(b

1

)

S(b) & T = S(b)

U(b

1

) & U(b

2

) = U(b

1

&b

2

)

U(b) & T = U(T&b)

a

John: These de�nitions are not 
onsistent. t should be the

least upper bound operator for the v ordering, whi
h demands

for example that B v S(b). Call demands have been forgotten


ompletely in the de�nition of v.

Figure 16: Ordering and operations on box demands

Se
ondly, the lookup fun
tion de�ned in Figure 5 returns A,

not L, for variables not in the domain of �:

�(T)x = A if x 62 dom(�)

�(X)x = ? if x 62 dom(�)

�(r)x = �(r) if x 2 dom(�)

In the same way, the �rst equation of the box-demand anal-

yser looks like this:

B[[e℄℄ � A = T) [ ℄[ ℄

(see the �rst equation of Figure 6). That is, if we analyse

e with an absent demand, we return a demand type that

pla
es only an absent demand on all its free variables.

Thirdly, in xA.1 we showed that the box-demand analysis

must treat sub-expressions and fun
tions di�erently. This

di�eren
e 
an be neatly 
atered for in the equation for a


alled lambda:

B[[nx:e℄℄ � S(s) = let r ) �� = S[[e℄℄ � s

s

x

= �(r)x

in r ) F(s

x

) : ��nfxg

(see the 
orresponding equation in Figure 6). When the

demand s

x

be
omes a fun
tion argument, we must for
e it

to be boxed unless the fun
tion is stri
t, using the auxiliary

fun
tion F(s

x

):

F(A) = A

F(U(s)) = U(F(s))

F(s

x

) = s

x

if demand on x is stri
t

= B otherwise

(This de�nition of F(s

x

) informally assumes that we have

stri
tness information available, whi
h we will have when we


ombine the two analyses in the next Se
tion.) Noti
e that

F(�) must be applied re
ursively to the 
omponents of a U

demand. John: What?? This seems to say that if the de-

mand on the argument is unboxed (U(s)), then the demand

type says the argument is unboxed regardless of whether the

fun
tion is stri
t or not! I'm assuming that the se
ond equa-

tion \takes pre
eden
e" over the third, sin
e it is more spe-


i�
. This is a mixup, surely?

These are the major di�eren
es between the two analysers.

There are other minor ones | for example, the treatment

of B[[nx:e℄℄ � U(b) | but rather than present them in detail,

we pro
eed to the joint-demand analyser.

A.5 The error fun
tion again

The box-demand analyser also shows that we really do need

to keep a free-variable map of a demand type even when the

result-type 
omponent is X, something that is not ne
essary

for stri
tness (x5.5). Consider the following box-demand

analysis:

B[[error x℄℄ � B = (X; [x 7! B℄)

The error fun
tion has box-demand signature B -> X; that

is, it uses the box of its argument, and diverges (X). It is

important to remember that x is used, via the mapping,

otherwise it will be taken as absent, whi
h is not right (
.f.

x2.2).
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B Joint demand analysis

We have now des
ribed two separate ba
kwards analysers,

one for stri
tness and one for box-demand. Sin
e their form

is identi
al, it is natural to ask whether we 
an 
ompute

both analyses at on
e. The way to do so is to 
ombine their

domains together.

One way to do so would be to take the 
artesian produ
t

of the two domains, but in pra
ti
e the two 
omponents

will often have the same stru
ture, so the produ
t spa
e

would have more points than ne
essary. Hen
e, we de�ne

a single \zipped up" domain, whi
h 
aptures the essential

information, and des
ribe its meaning by inje
ting it into

the 
artesian produ
t domain.

B.1 Zipped-up demand representation

SLPJ: I am 
on
erned about how to motivate the 
hoi
e of

elements of this domain, and its type translation. For exam-

ple, should Err be in the Int# domain; why do we eliminate

one out of the four points we'd get from taking the 
artesian

produ
t? Should Err be in the -> domain?

SLPJ: There's also a diÆ
ulty with having Seq in the �

domain, be
ause its semanti
s is hS(

^

L); U(

^

A)i, but U(

^

A)

isn't in the box-deman domain for �. Maybe it should be?

But then we have �ve points, not four. Maybe we abbreviate

U(

^

A) as plain U?

Figure 17 shows the syntax of joint demands. We explain

what ea
h of these joint demands means using the fun
tion

I[[℄℄, whi
h inje
ts ea
h joint demand into the produ
t spa
e

StrDmd � BDemand. We 
an give intuitions for ea
h de-

mand, as follows:

� Bot means that the argument will be used only in non-

terminating expressions; its semanti
s is simply h?;?i.

� Abs means that the argument will not be evaluated

nor used at all. Its semanti
s is hL;Ai: the stri
tness


omponent says that it is lazy, while the box-demand


omponent says that it is not used.

� Top means that we know nothing about the use of the

argument.

� Call(d) means that the argument is a fun
tion, that

the value is needed, and when the fun
tion is applied

(to one argument), the demand on its result is d. Its

semanti
s is simply a 
ombination of the 
all demands

from the stri
tness and box-demand latti
es.

Comment: I've 
hanged if to when above | a 
all de-

mand Call(d) does mean that the fun
tion will be ap-

plied, doesn't it?

� Eval(d) means that the argument is used stri
tly, and

its 
omponents are demanded as des
ribed by d. Its se-

manti
s are given by a 
ombination of S on the stri
t-

ness side, and U on the box-demand side.

� The demand Defer(d) means that the argument may

or may not be evaluated, but that the box demand on

it is des
ribed by the box-demand 
omponent of d. We

noted in xA.1 the importan
e of re
ording box-demand

information even in lazy 
ontexts.

d ::= Bot

j Top

j Abs

j Call(d)

j Eval(d)

j Defer(d)

j Box(d)

d ::= d

1

: : : d

n

j

^

d

Semanti
s

I[[Bot℄℄ = h?;?i

I[[Abs℄℄ = hL;Ai

I[[Call(d)℄℄ = hS(s); S(b)i

I[[Top℄℄ = hL; T i

I[[Defer (d)℄℄ = hL;U(b)i

I[[Box(d)℄℄ = hs; Bi

I[[Eval(d)℄℄ = hS(s); U(b)i

where hs; bi = I[[d℄℄

Abbreviations

Lazy = Box(Top)

Err = Box(Bot)

Str = Box(Seq)

Seq = Eval(

d

Abs)

Identities

Defer(

d

Top) = Top

Box(Abs) = Lazy

Box(Top) = Lazy

Box(Defer(d)) = Lazy

Box(Call(d)) = Call(d)

Box(Box(d)) = Box(d)

Figure 17: Syntax and semanti
s of joint demands

� The demand Box(d) means that the box is needed in

every bran
h, with the stri
tness spe
i�ed by the eval-

uation demand 
omponent of d.

Figure 17 also de�nes a few useful abbreviations:

� The demand Lazy means that the argument may or

may not be needed.

� The demand Seq means that the expression will be

evaluated, but its value will be ignored. This is the

demand that seq imposes on its �rst argument.

� The demand Err = h?; Bi is the demand that (say)

error s imposes on s. It expresses the fa
t that the

box of s is needed, but from a stri
tness point of view

the demand on s is hyperstri
t (?).

25



T

z

[[Int#℄℄ = f?; T op;Absg Unlifted

integers

T

z

[[(t

1

,t

2

)℄℄ = Eval(T

z

[[t

1

℄℄; T

z

[[t

2

℄℄) Produ
ts

[ Box(Eval(T

z

[[t

1

℄℄; T

z

[[t

2

℄℄))

[ Defer (T

z

[[t

1

℄℄; T

z

[[t

2

℄℄)

[ f?; T op;Abs;Err;Lazyg

T

z

[[t

1

->t

2

℄℄ = S(T

z

[[t

2

℄℄) Fun
tions

[ f?; T op;Absg

T

z

[[[t℄℄℄ = f?; T op;Abs;

Err; Seq; Str; Lazyg

Sums

T

z

[[�℄℄ = f?; T op;Abs;

Err; Seq; Str; Lazyg

Unknown

types

Figure 18: Type translation for zipped-up demands

� The demand Str = Box(Eval(

d

Abs)) = hS(

^

L); Bi

means that the argument will be evaluated, that its

value is needed, and that its 
omponents may or may

not be evaluated. This is the plain stri
t demand.

The latti
e even for simple types, su
h as Int is now quite


ompli
ated, and intution begins to be
ome an unreliable

guide. For example, is it true that Box(Box(d)) = Box(d)?

That is why we have presented the two analyses separately:

we 
an now 
al
ulate the answer to su
h questions.

Box(Box(d)) = Box(hs; Bi)

= hs; Bi

= Box(d)

where hs; bi = d

(In this 
al
ulation we are slightly sloppy about writing 
alls

to I[[℄℄, be
ause they 
lutter up the reasoning.) Figure 17

gives some other useful identities that 
an be veri�ed in the

same way.

B.2 Operation over joint demands

Figure 19 gives the \lub" and \both" operators for joint

demands. Again, we 
an 
al
ulate these fun
tions, as the

following example shows:

Abs tDefer(d) = hL;Ai t hL; bi

= hL;A t bi

= Defer (Abs t d)

We simply 
onvert to the produ
t spa
e, perform the oper-

ation 
omponent-wise, and 
onvert ba
k (approximating if

ne
essary).

B.3 The demand analysis fun
tion

The main analysis fun
tion, J [[e℄℄, in Figure 20, takes exa
tly

the same form as the stri
tness and box-demand analysers

already presented.

One di�eren
e is that the rather informal fun
tion F(�), in-

trodu
ed in xA.4, 
an now be de�ned formally (Figure 21),

hs; bi 2 Demand = StrDmd�BDemand

hs

1

; b

1

i v hs

2

; b

2

i i� s

1

v s

2

^ b

1

v b

2

Peter to �ll in here

Figure 19: Joint demand domain and its operations

F(d) takes a demand d for the free variable x of an

expression e, and returns the demand appropriate for

the argument of the fun
tion \x->e.

John: Why doesn't Eval have an argument in the

fourth equation here?

F(Top) = Lazy

F(Defer(d)) = Lazy

F(Eval(d)) = Eval(F(d))

F(Box(Bot)) = Eval

F(Box(d)) = Box(F(d))

F(Bot) = Abs

F(d) = d

D

T

(dt) takes a demand type dt and returns a \de-

ferred" demand type, by dis
arding all the stri
tness

information from dt, retaining only box-demand in-

formation.

John: What does the third line mean here? It's a bit


onfusing to omit I[[℄℄ everywhere.

D

T

(r ) ��) = T) [ ℄D

�

(�)

D

�

(�) = [x 7! D(�(x)) j x 2 dom(�)℄

D(hs; bi) w hL; bi

D(Bot) = Abs

D(Abs) = Abs

D(Top) = Top

D(Call(d)) = Lazy

D(Box(d)) = Lazy

D(Defer (d)) = Defer (d)

D(Eval(d)) = Defer (d)

Figure 21: Auxiliary fun
tions for joint demand analysis

be
ause the demand embodies stri
tness information as well

as boxity.

The main di�eren
e between the joint analysis and the sep-

arate ones is des
ribed next.

B.4 Deferred demands

Consider what happens when we analyse an expression with

a lazy demand, su
h as Lazy. The stri
tness analyser

stopped at this point, returning the top demand type (�rst
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J [[e℄℄ � d takes an expression e, a demand environment � and an evaluation demand d, and 
omputes a

demand type dt for e.

J [[e℄℄ : StrEnv ! JDemand! DemandType

� : StrEnv = V ar ! DmdSig

J [[e℄℄ � Abs = T) [ ℄[ ℄

J [[e℄℄ � d = D

T

(J [[e℄℄ � Str) where d is non-stri
t

J [[P ℄℄ � d = PT (P; d) where P is a produ
t 
onstru
tor

J [[x℄℄ � d = let r ) �� = DT (�(x); d) if x 2 dom(�)

= T) [ ℄[ ℄ otherwise

in r ) ��& [x 7! d℄

J [[e

1

e

2

℄℄ � d = let r

1

) d
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: �

1

�
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℄℄ � d
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) �
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) �
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�

2
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d

x

= �(r)x

in r ) F(d

x

) : ��nfxg

J [[nx:e℄℄ � d = D

T

(J [[nx:e℄℄ � Call(Str))

J [[
ase e of (x; y) -> a℄℄ � d = let r

a

) �

a

�

a

= J [[a℄℄ � d

r

e

) [ ℄�

e
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a

(r

a

)x; �

a

(r

a

)y)

in r

a

) �

a

�

a

nfx; yg & r

e

) [ ℄�

e

J [[
ase e of p

i

-> a

i

℄℄ � d = let r

i

) �

i

�

i

= J [[a

i

℄℄ � d

r

e

) �

e

�

e

= J [[e℄℄ � S

in

(

F

r

i

) �

i

�

i

nfv(p

i

)) & r

e

) �

e

�

e

J [[letre
 x = e in b℄℄ � d = letre
 n = arity(e)

r ) [d

1

; : : : ; d

n

℄� = J [[e℄℄ �

0

Call

n

(Str)

sig = d

1

! : : :! d

n

! (r; �)

�

0

= �[x 7! sig℄

in J [[b℄℄ �

0

d

PT (P; d) takes a produ
t 
onstru
tor C and a demand d, returns the 
onstru
tor's demand type given

that demand.

PT (P; Call

m

(Eval(d

1

; : : : ; d

n

))) = T) [d

1

; : : : ; d

n

℄[ ℄ if n = m = arity(P )

= T) [ ℄[ ℄ otherwise

DT (sig; d) takes a demand signature sig and a demand d, and applies the demand transformer des
ribed

by sig to d, returning a demand.

DT (d

1

! : : :! d

n

! (r; �); Call

m

(d)) = r ) [d

1

; : : : ; d

n

℄� if n � m

= D(T) [ ℄�) otherwise

Figure 20: The joint demand analysis
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equation in Figure 6, but that is not right for the joint de-

mand analyser, be
ause the demand type it returns distin-

guishes variables that are absent from those that are men-

tioned. Only if the demand is Abs 
an we simply stop (�rst

equation in Figure 20). On the other hand, we 
annot sim-

ply pro
eed by re
ursing over the stru
ture of the expression;


onsider

J [[length xs℄℄ � Lazy

If we use the equation for appli
ations, we will get a stri
t

demand for xs, whi
h is not right. The solution is given in

the se
ond equation of Figure 20:

J [[e℄℄ � d = D

T

(J [[e℄℄ � Str) where d is non-stri
t

If the in
oming demand d is non-stri
t, we analyse the ex-

pression with a stri
t demand, and then apply the fun
tion

D

T

(dt) to the demand type thereby produ
ed. D

T

(�), pro-

noun
ed \defer", is de�ned in Figure 21. It throws away all

the information about arguments and results, and applies

D(�) to the demand of ea
h of the free variables mentioned

in �

3

.

The fun
tion D(�) is de�ned Figure 21, using the semanti
s

of joint demands, by the equation:

D(hs; bi) w hL; bi

That is, D(�) dis
ards the stri
tness information, but retains

the boxity information. John: This isn't an equation, whi
h

ba�ed me! What we mean, I take it, is that D(hs; bi) is the

least d su
h that I[[d℄℄ w hL; bi.

Given this de�ning equation, together with the semanti
s

of joint demands in Figure 17, the e�e
t of D(�) on ea
h

joint demand 
an simply be read o� (Figure 21). The joint

demands do not fully 
over the produ
t demand spa
e; hen
e

the approximation \w" in de�ning equation for D(�).

The importan
e of all this was illustrated by example f7 in

xA.1:

f7 x y = if (
ase x of (a,b) -> a)

then

(True, 
ase x of (a,b) -> a)

else

(False, y)

The se
ond sub-expression (
ase x of (a,b) -> a) will be

analysed with a lazy demand (be
ause it is the argument of

a lazy pair 
onstru
tor). From a stri
tness point of view it is

lazy in x, and from a boxity point of view it does not use x's

box. So we analyse the sub-expression with a stri
t demand,

to give demand Eval(Str;Abs) for x, and then apply D(�) to

that demand, to give Defer (Str;Abs), whi
h is hL;U(BA)i.

This is pre
isely the reason that Defer demands exist in the

joint-demand latti
e; approximating to Lazy, say, whi
h is

hL;Bi, would lose too mu
h absen
e information.

Exa
tly the same situation arises when a lambda is analysed

with a demand that is weaker than a 
all demand; we analyse

with a vanilla 
all demand, and use D

T

(�) to dis
ard the

stri
tness information in its result.

3

In prin
iple we should also apply D(�) to the argument demands,

but in fa
t we lose no useful information by simply dis
arding the

argument demands altogether, be
usea their boxity information is in

any 
ase dis
arded by F(�). SLPJ: Do we need to say more? Less?

Evaluation Evaluation in the wrapper

? Completely evaluate the argument.

S(s) Evaluate argument to whnf; evaluate


omponents a

ording to s.

S(d) Evaluate the argument to whnf.

L Do not evaluate argument.

Box Argument passing

? Pass the evaluated argument.

A Do not pass the argument.

B Pass the (possibly evaluated) argument.

U(b) If argument is evaluated then pass 
om-

ponents b mu
h if available; else pass

the (possibly evaluated) argument.

S(b) Pass the (possibly evaluated) argument.

T Pass the (possibly evaluated) argument.

Figure 22: What the wrapper does

B.5 The worker-wrapper split revisited

Figure 22 des
ribes how the joint demands spe
i�ed in Fig-

ure 17 drive the worker-wrapper split.

Note that sin
e Str abbreviates hS(

^

L); Bi, an argument with

demand Str will be evaluated and its value (but no 
ompo-

nents) will be passed to the worker.

Comment: Demonstrate the worker-wrapper split on a few

examples.

John: Why pass the evaluated argument when the box de-

mand is ?? Wouldn't is be just as valid not to pass the

argument? (Monotoni
ity is worrying me).

John: What does passing 
omponents \if available" mean?

Surely if the argument is evaluated, then the 
omponents are

available?

B.6 Summary

C Experien
e with the implementation

Comment: In
reased or de
reased pre
ision, 
ompiled pro-

gram eÆ
ien
y, 
ompiler speed, . . .

D What remains to be done

This is all very pragmati
 and I would really like help with

putting in pla
e some formal underpinnings. In parti
ular:

� I think it's �ne to have a somewhat ad ho
 latti
e of

demands, 
hoosing points that are of pragmati
 signif-

i
an
e, and otherwise approximating like 
razy. But

there should be an underlying mu
h more detailed lat-

ti
e, based on some prin
iples. For example, it seems

that `evaluate or not', `use the box or not', and `use the


omponents or not' are independent properties. (See

the di
ussion about deferred demands in xB.4.)

The 
onsumer-properties 
urrently shown in Figure 1

are a start in that dire
tion.
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� Along the same lines, I'd like to have a formal way to

say how & is de�ned. At the moment I'm just sti
king

my �nger in the air.

E Related work

TODO: Hughes 1988 and referen
es therein. Che
k in par-

ti
ular whether any of Wray 1985 and 1986, Dybjer 1987,

Hall 1987, Hughes 1985, Hughes 1987, Karlsson 1987 and

Wadler 1987b dis
uss the handling of tuples. Burn's evalua-

tion transformers? It is unlikely that any of these were used

to drive a worker-wrapper split. Fax�en 1996

Stri
tness analysis: My
roft 1981, ...

About whether 
all-demands are new: John: Sort of. I

wrote a paper on higher-order ba
kwards analysis 14 years

ago (!), in whi
h demands on fun
tions were of the form

habstra
t argument; demand on resulti. It's not exa
tly the

same, but it's 
lose: the only di�eren
e is that I 
ombined

a forwards abstra
t interpretation to 
olle
t demand trans-

formers, hen
e the abstra
t argument. Your 
all demands

are a simpli�
ation of the same idea. The simpli�
ation is

a good one, of 
ourse, but we should probably at least refer

to my old paper.

F Con
lusion

Comment: Some words about the tri
kiness of designing

an analysis that 
olle
ts several kinds of information at the

same time, whose results are used to guide a transforma-

tion with somewhat subtle e�e
ts, and whi
h should obtain

as mu
h useful, approximate, information as fast as possible.
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