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Abstract

An obfuscator is a compiler that transforms any program (which we will view in this work
as a boolean circuit) into an obfuscated program (also a circuit) that has the same input-output
functionality as the original program, but is “unintelligible”. Obfuscation has applications for
cryptography and for software protection.

Barak et al. [CRYPTO 2001] initiated a theoretical study of obfuscation, which focused
on black-box obfuscation, where the obfuscated circuit should leak no information except for its
(black-box) input-output functionality. A family of functionalities that cannot be obfuscated
was demonstrated. Subsequent research has showed further negative results as well as positive
results for obfuscating very specific families of circuits, all with respect to black box obfuscation.

This work is a study of a new notion of obfuscation, which we call best-possible obfuscation.
Best possible obfuscation makes the relaxed requirement that the obfuscated program leaks as
little information as any other program with the same functionality (and of similar size). In
particular, this definition allows the program to leak non black-box information. Best-possible
obfuscation guarantees that any information that is not hidden by the obfuscated program is
also not hidden by any other similar-size program computing the same functionality, and thus
the obfuscation is (literally) the best possible. In this work we study best-possible obfuscation
and its relationship to previously studied definitions. Our main results are:

1. A separation between black-box and best-possible obfuscation. We show a natural obfus-
cation task that can be achieved under the best-possible definition, but cannot be achieved
under the black-box definition.

2. A hardness result for best-possible obfuscation, showing that strong (information-theoretic)
best-possible obfuscation implies a collapse in the polynomial hierarchy.

3. An impossibility result for efficient best-possible (and black-box) obfuscation in the pres-
ence of random oracles. This impossibility result uses a random oracle to construct hard-
to-obfuscate circuits, and thus it does not imply impossibility in the standard model.
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1 Introduction

An open question in computer security is whether computer programs can be obfuscated; whether
code can be made unintelligible while preserving its functionality. This question is important
as obfuscation has wide-ranging applications, both for software protection and for cryptography.
Beyond its theoretical importance, the question of obfuscation is of great practical importance.
Numerous ad-hoc heuristical techniques are used every day by practitioners to obfuscate their
code, even though many of these techniques do not supply any provable notion of security.

A theoretical study of obfuscation was initiated by Barak, Goldreich, Impagliazzo, Rudich,
Sahai, Vadhan and Yang [2]. They studied several notions of obfuscation, primarily focusing
on black-box obfuscation, in which an obfuscator is viewed as a compiler that, given any input
program or circuit, outputs a program with the same functionality from which it is hard to find
any deterministic information on the input program. Formally, black-box obfuscation requires that
anything that can be efficiently computed from the obfuscated program, can also be computed
efficiently from black-box (i.e. input-output) access to the program. Their main result was that this
(strong) notion of obfuscation cannot always be achieved, as they were able to present an explicit
family of circuits that provably cannot be black-box obfuscated.

Barak et al. [2] considered also an alternative notion of obfuscation called indistinguishability
obfuscation that sidesteps the black-box paradigm. An indistinguishability obfuscator guarantees
that if two circuits compute the same function, then their obfuscations are indistinguishable in
probabilistic polynomial time. This definition avoids the black-box paradigm, and also avoids the
impossibility results shown for the black-box obfuscation notion. Indeed, Barak et al. showed
that it is simple to build inefficient indistinguishability obfuscators. One disadvantage of indis-
tinguishability obfuscation is that it does not give an intuitive guarantee that the circuit “hides
information”. This is apparent in their proposed construction of an inefficient indistinguishability
obfuscator, where a small circuit is revealed which is equivalent to the original circuit. For some
functionalities, this is a great deal of information to give away.

1.1 This Work

We propose a new notion of obfuscation, best-possible obfuscation, that avoids the black-box
paradigm, and also gives the appealing intuitive guarantee that the obfuscated circuit leaks less
information than any other circuit (of a similar size) computing the same function. This work is a
study of this new notion of best-possible obfuscation.

Instead of requiring that an obfuscator strip a program of any non black-box information, we
require only that the (best-possible) obfuscated program leak as little information as possible.
Namely, the obfuscated program should be “as private as” any other program computing the same
functionality (and of a certain size). A best-possible obfuscator should transform any program
so that anything that can be computed given access to the obfuscated program should also be
computable from any other equivalent program (of some related size). A best-possible obfuscation
may leak non black-box information (e.g. the code of a hard-to-learn function), as long as whatever
it leaks is efficiently learnable from any other similar-size circuit computing the same functionality.

While this relaxed notion of obfuscation gives no absolute guarantee about what information is
hidden in the obfuscated program, it does guarantee (literally) that the obfuscated code is the best
possible. It is thus a meaningful notion of obfuscation, especially when we consider that programs
are obfuscated every day in the real world without any provable security guarantee.
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In this work we initiate a study of best-possible obfuscation. We explore its possibilities and
limitations, as well as its relationship with other definitions of obfuscation that have been sug-
gested. We formalize the best-possible requirement in Definition 2.5, by requiring that for every
efficient learner who tries to extract information from an obfuscated circuit, there exists an efficient
simulator that extracts similar information from any other circuit with the same functionality and
of the same size. We consider both computationally best-possible obfuscation, where the outputs
of the learner and simulator are indistinguishable with respect to efficient distinguishers, and in-
formation theoretically best-possible obfuscation (perfect or statistical), where even an unbounded
distinguisher cannot tell the difference between the two. We emphasize that statistically or per-
fectly best-possible obfuscation refer to the distinguisher, whereas for the learner we only consider
information that can be learned efficiently given the obfuscated circuit. This strengthens negative
results.1 Moreover, while we focus on efficient obfuscation, where the obfuscator’s running time
is polynomial in the size of the circuit being obfuscated, we find even the challenging question of
achieving inefficient best-possible (or black-box) obfuscation to be of complexity-theoretic (and pos-
sibly practical) interest. Some of our negative results rule out even inefficient obfuscation (whenever
we refer to obfuscation we mean efficient obfuscation unless we explicitly state otherwise).

Relationship with Previous Definitions. We study how best-possible obfuscation relates to
black-box obfuscation, and present a separation between the two notions of obfuscation. The proof
of this result also gives the first known separation between black-box and indistinguishability obfus-
cation. The separation result considers the complexity class of languages computable by polynomial
sized ordered decision diagrams or POBDDs; these are log-space programs that can only read their
input tape once, from left to right (see Section 3). We observe that any POBDD can be efficiently
best-possible obfuscated as a POBDD (Proposition 3.2), whereas there are many natural functions
computable by POBDDs that provably cannot be black-box obfuscated as any POBDD (Proposi-
tion 3.3). These two results give new possibility results (for best-possible and indistinguishability
obfuscation), and simple natural impossibility results (for black-box obfuscation). Note that the
impossibility result for black-box obfuscation only applies when we restrict the representation of
the obfuscator’s output to be a POBDD itself.

We also compare the notions of best-possible and indistinguishability obfuscation. Proposition
3.4 shows that any best-possible obfuscator is also an indistinguishability obfuscator. For efficient
obfuscators the definitions are equivalent (Proposition 3.5). For inefficient obfuscation, the differ-
ence between the two definitions is sharp, as inefficient information-theoretic indistinguishability
obfuscators are easy to construct (see [2]), but the existence of inefficient statistically best-possible
obfuscators even for the class of languages recognizable by 3-CNF circuits (a sub-class of AC0)
implies that the polynomial hierarchy collapses to its second level.

We believe that the equivalence of these two definitions for efficient obfuscation motivates further
research on both, as the “best-possible” definition gives a strong intuitive security guarantee, and
the indistinguishability definition may sometimes be technically easier to work with.

Impossibility Results. We explore the limits of best-possible obfuscation. As noted above, we
begin by considering information-theoretically (statistically) best-possible obfuscation. In Theorem
4.1 we show that if there exist (not necessarily efficient) statistically secure best-possible obfuscators
for the simple circuit family of 3-CNF circuits (a sub-class of AC0), then the polynomial hierarchy

1Our positive result on perfectly best-possible obfuscation applies also to unbounded learners.
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collapses to its second level. Corollary 4.2 of this theorem states that also if there exists an
efficient statistically secure indistinguishability obfuscator for the same simple circuit family, then
the polynomial hierarchy collapses to its second level. This is the first impossibility result for
indistinguishability obfuscation in the standard model.

We also consider best-possible obfuscation in the (programmable) random oracle model. In
this model, circuits can be built using special random oracle gates that compute a completely
random function. Previously, this model was considered by Lynn, Prabhakaran and Sahai [18] as a
promising setting for presenting positive results for obfuscation. We show that the random oracle
can also be used to prove strong negative results for obfuscation. In Theorem 5.1 we present a
simple family of circuits with access to the random oracle, that are provably hard best-possible
obfuscate. This impossibility results extends to the indistinguishability and black-box notions of
obfuscation. We note that using random oracles for obfuscation was originally motivated by the
hope that giving circuits access to an idealized “box” computing a random function would make it
easier to obfuscate more functionalities (and eventually perhaps the properties of the “box” could
be realized by a software implementation). We, on the other hand, show that the existence of
such boxes (or a software implementation with the idealized properties) could actually allow the
construction of circuits that are impossible to obfuscate. Although this negative result does not
rule out that every circuit without random oracle gates can be best-possible obfuscated, we believe
it is illuminating for two reasons. First, as a warning sign when considering obfuscation in the
random oracle model, and secondly as its proof hints that achieving general purpose best-possible
obfuscation in the standard model would require a significant leap (a discussion of this point appears
at the end of Section 5).

1.2 Related Work

Negative Results. Hada [16] considered the problem of obfuscation, and gave negative results
for obfuscating pseudo-random functions under a strong definition of obfuscation. Barak et al. [2]
showed that black-box obfuscation cannot always be achieved. They showed this by presenting
families of functions that cannot be black-box obfuscated: there exists a predicate that cannot be
computed from black-box access to a random function in the family, but can be computed from
(non black-box access to) a circuit implementing any function in the family. Thus they showed that
there exist circuits that cannot be obfuscated, but it remained possible that almost any natural
circuit could be obfuscated. Goldwasser and Kalai [14], showed that if the definition of obfuscation
is strengthened even further with a requirement that the obfuscation leak no more information than
black-box access even in the presence of auxiliary input, then a large class of more natural circuits
cannot be obfuscated.

Positive Results. The functionalities for which obfuscation was ruled out in [2] and [14] are
somewhat complex. An interesting open question is whether obfuscation can be achieved for simpler
classes of functionalities and circuits. A significant amount of attention has been paid to the
question of obfuscating point functions. A point function Ip(x) is defined to be 1 if x = p, or 0
otherwise. Canetti [6] showed (implicitly) how to obfuscate point functions (even under a strong
auxiliary-input definition), using a strong variant of the Decisional Diffie-Hellman assumption.
Lynn, Prabhakaran and Sahai [18] suggested working in the random oracle model and focused on
obfuscating access control functionalities (note that impossibility results of [2] and [14] extend to
the random oracle model). They observed that in the random oracle model point functions can
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be obfuscated, leading to obfuscation algorithms for more complex access control functionalities.
Wee [23] presented a point function obfuscator based on the existence of one-way permutations
that are hard to invert in a very strong sense.

Other solutions for obfuscating point functions are known if the obfuscator doesn’t need to
work for every point, but rather for a point selected at random from a distribution with some
min-entropy. For this relaxed requirement Canetti, Micciancio and Reingold [8] presented a scheme
that uses more general assumptions than those used by [6] (their solution is not, however, secure
in the presence of auxiliary inputs). Dodis and Smith [9] were able to obfuscate proximity queries
in this framework.

Hohenberger, Rothblum, shelat and Vaikuntanathan [17] gave a positive result for obfuscating
a very natural and more complex cryptographic functionality (i.e. re-encryption) under a security-
oriented definition.

The Random Oracle Model. The random oracle model is an idealization, in which it is assumed
that all parties have oracle access to a truly random functionR. The parties can access this function
by querying the random oracle at different points. The Random oracle methodology is a heuristic
methodology, in which the random oracle is used for building provably secure cryptographic objects,
but then, to implement the cryptographic object in the real world, the random oracle is replaced
by some real function with a succinct representation. This methodology was introduced by Fiat
and Shamir [11], and later formalized by Bellare and Rogaway [3].

A clear question raised by this methodology is whether the security of the cryptographic ob-
jects in an ideal world with a random oracle can be translated into security for the real-world
implementation. In principle, this was answered negatively by Canetti, Goldreich and Halevi [7],
who showed that there exist cryptographic schemes that are secure in the presence of a random
oracle, but cannot be secure in the real world, regardless of the implementation of the random
oracle. Their work left open the possibility that the random oracle methodology could still work
for “natural” cryptographic practices. This was ruled out by Goldwasser and Kalai [13] for the
Fiat-Shamir method [11], which uses a random oracle for obtaining digital signatures from iden-
tification schemes. The method was shown to have the potential of leading to insecure signature
schemes regardless of the possible implementation of the random oracle.

In the context of obfuscation, Lynn, Prabhakaran and Sahai [18] explored which circuits could
be obfuscated in the (programmable) random oracle model, where the view generated by the black-
box simulator is indistinguishable when taken over a randomly selected oracle (Section 5 of this
work considers the same model). They used the random oracle R to obfuscate a point function Ip

(when p is given to the obfuscator) using the value R(p). On input x the obfuscated circuit outputs
1 if and only if R(x) = R(p). The only information about p in the obfuscated circuit is the value
R(p), and this ensures that the obfuscation does not leak any non black-box information about
Ip. They then proceeded to show how to obfuscate point functions with more general outputs (on
input x = p the function outputs some value, and otherwise it outputs ⊥), multi-point functions
and other more complex access control circuits. Narayanan and Shmatikov [20] gave a positive
result for obfuscating databases in the random oracle model. In Section 5 of this work we explore
whether indeed the random oracle model is a promising setting for further work on obfuscation.
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1.3 Organization

We begin by presenting notation and formal definitions in Section 2. We compare our new defini-
tion of obfuscation with previous definitions in Section 3. In Section 4 we present impossibility
results for statistically best-possible obfuscation. Section 5 deals with obfuscation in the random
oracle model, including an overview of the model, and gives impossibility results for computation-
ally best-possible obfuscation (in the random oracle model). We conclude with discussions and
extensions in Section 6.

2 Definitions and Discussion

2.1 Notation and Preliminaries

Notation. Let [n] be the set {1, 2, . . . n}. For x, y ∈ {0, 1}n we use x ◦ y to denote the concate-
nation of x and y (a string in {0, 1}2n). For a (discrete) distribution D over a set X we denote
by x ∼ D the experiment of selecting x ∈ X by the distribution D. A function f(n) is negligible
if it smaller than any (inverse) polynomial: for any positive polynomial p(), there exists some n0

such that for all n ≥ n0 it holds that f(n) < 1
p(n) . When we say that for several input lengths

f(n) ≤ neg(n), we mean that there exists a negligible function neg() that is larger than f() for
those input lengths. When we say that f() ≤ neg() we mean that there exists a negligible function
that is larger than f() for all but finitely many input lengths.

Distributions, Ensembles and Indistinguishability. An ensemble D = {Dn}n∈N is a se-
quence of random variables, each ranging over {0, 1}`(n) where l : N → N. We consider only
ensembles where `(n) is polynomial in n (we occasionally abuse notation and use D in place of
Dn). An ensemble D is polynomial time constructible if there exists a probabilistic polynomial
time Turing Machine (PPTM) M such that Dn = M(1n).

Definition 2.1. The statistical distance between two distributions X and Y over {0, 1}`, which we
denote by ∆(X, Y ), is defined as:

∆(X, Y ) =
1
2

∑

α∈{0,1}`

|Pr[X = α]− Pr[Y = α]|

Definition 2.2 (Computational Indistinguishability [15, 24]). Two probability ensembles D and
F are computationally indistinguishable if there exists a negligible function neg, such that for any
PPTM M, that receives 1n and one sample s from Dn or Fn, and outputs 0 or 1, for large enough
n’s:

|Prs∼Dn [M(1n, s) = 1]− Prs∼Fn [M(1n, s) = 1]| ≤ neg(n)

2.2 Previous Definitions of Obfuscation

In the subsequent definitions, we consider a family C of probabilistic polynomial size circuits to be
obfuscated. For a length parameter n let Cn be the circuits in C with input length n. The size of
the circuits in Cn is polynomial in n. If the obfuscator O is a polynomial-size circuit, then we say
it efficiently obfuscates the family C, and that C is efficiently obfuscatable. Whenever we refer to
obfuscation, we will mean (efficient) black-box obfuscation unless explicitly noted otherwise. For
definitions of obfuscation in the random oracle model, see Section 5.

5



Definition 2.3 (Black-Box Obfuscation [2]). An algorithm O that takes as input a circuit in C and
outputs a new circuit, is said to be a black-box obfuscator for the family C, if it has the following
properties:

• Preserving Functionality:

For any input length n, for any C ∈ Cn:

Pr[∃x ∈ {0, 1}n : O(C)(x) 6= C(x)] ≤ neg(n)

where the probability is over O’s coins.

• Polynomial Slowdown:

There exists a polynomial p(n) such that for all input lengths, for any C ∈ Cn, the obfuscator
O only enlarges C by a factor of p: i.e., |O(C)| ≤ p(|C|).

• Virtual Black-box:

For any polynomial size circuit adversary A, there exists a polynomial size simulator circuit
S such that for every input length n and every C ∈ Cn:

|Pr[A(O(C)) = 1]− Pr[|SC(1n) = 1]| ≤ neg(n)

where the probability is over the coins of the adversary, the simulator and the obfuscator.

If in addition the obfuscator O is also efficient (runs in time polynomial in the size of the circuit
being obfuscated), then we say O is an efficient black-box obfuscator for the family C.
Definition 2.4 (Indistinguishability Obfuscation [2]). An algorithm O, that takes as input a circuit
in C and outputs a new circuit, is said to be a (computational/statistical/perfect) indistinguishability
obfuscator for the family C, if it has the preserving functionality and polynomial slowdown properties
as in Definition 2.3, and also has the following property (instead of the virtual black-box property).

• Computationally/Statistically/Perfectly Indistinguishable Obfuscation:

For all large enough input lengths, for any circuit C1 ∈ Cn and for any circuit C2 ∈ Cn that
computes the same function as C1 and such that |C1| = |C2|, the two distributions O(C1)
and O(C2) are (respectively) computationally/statistically/perfectly indistinguishable.

If in addition the obfuscator O is also efficient (runs in time polynomial in the size of the circuit
being obfuscated), then we say O is an efficient indistinguishability obfuscator for the family C.

2.3 New Definition of Obfuscation

In this section we introduce a new definition for an obfuscator that does as well as is possible. This
definition (similarly to Definition 2.4) avoids the black-box paradigm.

Informally, best-possible obfuscation, as presented below in Definition 2.5, guarantees that
anything that can be learned efficiently from the obfuscated O(C1), can also be extracted efficiently
(simulated) from any program C2 of similar size for the same function. Thus, any information that
is exposed by O(C1) is exposed by every other equivalent circuit of a similar size, and we conclude
that O(C1) is no worse an obfuscation than any of these other circuits (it is, in other words, the
best obfuscation possible).
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Definition 2.5 (Best-Possible Obfuscation). An algorithm O that takes as input a circuit in C and
outputs a new circuit, is said to be a (computationally/statistically/perfectly) best-possible obfuscator
for the family C, if it has the preserving functionality and polynomial slowdown properties as in
Definition 2.3, and also has the following property (instead of the virtual black-box property).

• Computational/Statistical/Perfect Best-Possible Obfuscation:

For any polynomial-size learner L, there exists a polynomial size simulator S such that for
every large enough input length n, for any circuit C1 ∈ Cn and for any circuit C2 ∈ Cn that
computes the same function as C1 and satisfies |C2| = |C1|, the two distributions L(O(C1))
and S(C2) are (respectively) computationally/statistically/perfectly indistinguishable.

If in addition the obfuscator O is also efficient (runs in time polynomial in the size of the circuit
being obfuscated), then we say O is an efficient best-possible obfuscator for the family C.

An Alternative Formulation. When dealing with best-possible obfuscators, we often refer to
the “empty” learner; this is the learner that simply outputs whatever obfuscation it gets as input.
If there exists an efficient simulator M for the “empty” learner, then there exists an efficient
simulator M′ for every efficient learner L: M′ on input C2 simply computes M(C2) and outputs
the result of L(M(C2)). We know that for circuits C1, C2 of identical size and identical functionality
the distributions O(C1) and M(C2) are indistinguishable, and thus also L(O(C1)) and M′(C2) =
L(M(C2)) must be indistinguishable.

Thus, an equivalent definition to “Best Possible” could do away with the learner and only
require the existence of an efficient simulator, i.e., a simulator S such that for circuits C1, C2 of
identical size and identical functionality the distributions O(C1) and S(C2) are indistinguishable.2

We feel, though, that this looses some of Definition 2.5’s intuitive appeal.

Efficient and Inefficient Obfuscation. Note that while it seems that (for any reasonable notion
of obfuscation) it would be important for obfuscators to be efficient, we find even the question of
inefficient obfuscation to be interesting, both from a complexity-theoretic and possibly also from
a practical point of view. In some applications, it may be sufficient to obfuscate a small kernel
of the program, and the program owner may be willing to invest a huge amount of time in this
obfuscation procedure (especially if the obfuscation guarantee is information-theoretic). The main
focus of our work, though, is efficient obfuscation. When we refer to black-box, best-possible or
indistinguishability obfuscators we mean efficient obfuscators unless we explicitly note otherwise.

More on Statistical Guarantees. The notion of computationally best-possible obfuscation
gives the guarantee that an whatever an efficient learner can learn from the obfuscation is indis-
tinguishable to efficient distinguishers from what can be efficiently learned from any other circuit
with the same functionality and of a similar size. This certainly seems sufficient for the software-
protection applications of obfuscation, but of course it would be even better if no distinguisher
(even inefficient) could distinguish the (efficient) learner’s output from what can be efficiently
learned from any other circuit with the same functionality and of a similar size. This is the guaran-
tee given by perfectly best-possible obfuscation (by perfect indistinguishability, we mean that the

2In fact, this shows that efficient indistinguishability obfuscation implies efficient best-possible obfuscation, by
taking the indistinguishability obfuscator O to also be the simulator. See Proposition 3.5 for a full proof.
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distributions are identical — statistical distance 0). Statistically best-possible obfuscation bounds
the information-theoretic distinguisher’s advantage in distinguishing the learner’s output from what
can be learned from another functionally equivalent circuit. For statistical indistinguishability, un-
less noted otherwise, we only assume that the distinguisher’s advantage (the statistical distance) is
smaller than a (specific) constant. This strengthens negative results.

We observe that the existence of an inefficient perfectly best-possible obfuscator, implies the
existence of an efficient one that uses the simulator to obfuscate. A similar argument also applies
to statistically best-possible obfuscation, unless the statistical distance guarantee is very weak.

Note that the “ultimate” information-theoretic guarantee would be that everything that can be
learned even by an inefficient learner from an obfuscated circuit, can also be simulated perfectly and
efficiently by an efficient simulator from any functionally equivalent circuit of the same size. In fact,
our positive result for best-possible obfuscation (see Proposition 3.2) gives such a guarantee. Our
negative results for information-theoretically secure obfuscation are strengthened by considering
only efficient learners.

Throughout this work, when we refer to best-possible or indistinguishability obfuscators we
always mean computational (and efficient, see above) obfuscators unless we explicitly note otherwise.

3 Comparison with Prior Definitions

In this section we compare the new definition of best-possible obfuscation to the black-box and
indistinguishability definitions proposed by Barak et al. [2].

3.1 Best-Possible vs. Black-Box Obfuscation

Best-possible obfuscation is a relaxed requirement that departs from the black-box paradigm of
previous work. We first observe that any black-box obfuscator is also a best-possible obfuscator.

Proposition 3.1. If O is an efficient black-box obfuscator for circuit family C, then O is also an
efficient (computationally) best-possible obfuscator for C.
Proof. Assume for a contradiction that O is not a best-possible obfuscator for C. This implies that
there is no best-possible simulator for the “empty” learner that just outputs the obfuscated circuit
it gets. In particular, O itself is not a good simulator. Thus there exists a polynomial p and a
distinguisher D, such that for infinitely many input lengths n, there exist two circuits C1, C2 ∈ Cn,
such that |C1| = |C2| and C1 and C2 are equivalent, but:

|Pr[D(O(C1)) = 1]− Pr[D(O(C2)) = 1]| ≥ p(n)

Now consider D as a predicate adversary for the black-box obfuscator O. The black-box simulator S
for D clearly behaves identically on C1 and C2 (because they have the same functionality), but D’s
behavior on O(C1) and O(C2) is non-negligibly different. Thus (for infinitely many input lengths)
S is not a black-box simulator for D, a contradiction.

Next, we provide a (weak) separation result. We exhibit a natural (low) complexity class, that
of languages computable by polynomial size ordered binary decision diagrams (POBDDs), such
that best-possible obfuscation within the class is achievable, but there are simple functionalities
that are provably impossible to black-box obfuscate within the class.
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Ordered Binary Decision Diagrams (OBDDs). The computational model of ordered binary
decision diagrams was introduced by Bryant [5]. An ordered binary decision diagram is a rooted
directed acyclic graph with a vertex set V containing non-terminal vertices, each with two children,
and terminal vertices (without children), each labeled 0 or 1. Each edge e in the graph is marked
with an input literal `e (e.g. `e could be x1, x8 etc.). For every non-terminal vertex, the labels of
its (two) outgoing edges should be negations of each other (e.g. x3 and x3). An input x ∈ {0, 1}n

is accepted by an OBDD if and only if after removing every edge e for which `e = 0 there exists a
path from the root node to a terminal node labeled by 1. In addition, in an OBDD, on every path
from the root vertex to a terminal vertex, the indices of the literals of edges on the path must be
strictly increasing. We will focus on polynomial-size OBDDs, or POBDDs. We note that another
way to view POBDDs is as logarithmic-space deterministic Turing Machines whose input tape head
can only move in one direction (from the input’s first bit to its last).

Bryant [5] showed that OBDDs have a simple canonical representation. For any function, there
exists a unique smallest OBDD that is its canonical representation. Moreover, for polynomial-size
OBDDs, this canonical representation is efficiently computable.

Note that we defined obfuscation for circuits, not OBDDs, but for every OBDD, there exists a
boolean circuit (that computes the same functionality) from which it is easy to extract the OBDD.
When we refer to obfuscating the family of OBDDs, we are implicitly referring to obfuscating the
underlying family of circuits representing OBDDs.

We begin by observing that POBDDs can be perfectly best-possible obfuscated as POBDDs
(namely the output of the obfuscator is a POBDD itself). This is a corollary of POBDDs having
efficiently computable canonical representations.

Proposition 3.2. There exists an efficient perfectly best-possible (and perfectly indistinguishable)
obfuscator for POBBDs.

Proof. The best-possible obfuscator for a POBDD P simply takes P , computes (efficiently) its
canonical representation, and outputs that program as the best-possible obfuscation. The canonical
representation has the same functionality as P , is no larger than P , and (most significantly) is
unique, depending only on the functionality of P . The simulator gets a POBDD P ′ and also
efficiently computes its canonical representation. The canonical representations of P and P ′ are
identical if and only if P and P ′ compute the same functionality. Thus the obfuscator is indeed a
perfectly best-possible obfuscator for the family of POBDDs.

We next show that there exists a family of languages computable by POBDDs, that cannot be
black-box obfuscated (efficiently or inefficiently) as POBDDs (i.e the resulting program itself being
represented as a POBDD). This gives a (weak) separation between best-possible and black-box
obfuscation. The weakness is that it remains possible that any input POBDD can be black-box
obfuscated such that the output circuit is no longer a POBDD but is in some higher complexity
class.

Proposition 3.3. There exists a family of languages computable by POBDDs, that cannot be
black-box obfuscated as POBDDs.

Sketch. Intuitively, because POBDDs have a simple efficiently computable canonical representation,
non black-box information can be extracted from a POBDD by reducing it to its “nice” canonical
form, and then extracting information from this canonical form.
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More formally, consider (for example) the simple family of point functions {Ip}p∈{0,1}n , where
the function Ip outputs 1 on input the point p and 0 everywhere else. Note that point functions
are computable by POBDDs. Now observe that any POBDD computing a point function for a
point p can be reduced to its canonical representation, from which p is easily extracted. Thus
for any supposed obfuscator that obfuscates point functions as POBDDs there exists an adversary
that (for every point) can extract all the bits of the point from the “obfuscated” POBDD. Clearly,
no black-box simulator can successfully extract even a single bit of the point for a non-negligible
fraction of point functions. Thus there exists no black-box obfuscator that obfuscates POBDDS
computing point functions as POBDDs.

We note that many other natural languages computable by POBDDs cannot be black-box
obfuscated as POBDDs. Black-box obfuscation of POBDDs as more complex circuits remains an
intriguing open question.

3.2 Best-Possible vs. Indistinguishability Obfuscation

As mentioned above, the notions of best-possible obfuscation and indistinguishability obfuscation
are related, though the guarantees given by these two types of obfuscation are different. In this
section we will show that any best-possible obfuscator is also an indistinguishability obfuscator.
Furthermore, for efficient obfuscation, the two notions are equivalent. For inefficient obfuscation
(which we still find interesting), however, the notions are not equivalent unless the polynomial
hierarchy collapses. In fact, inefficient indistinguishability obfuscators exist unconditionally (see
[2]). On the other hand, building even inefficient best-possible obfuscators remains an interesting
open question. We begin by showing that best-possible obfuscation is in fact at least as strong as
indistinguishability obfuscation.

Proposition 3.4. If O is a perfectly/statistically/computationally best-possible obfuscator for cir-
cuit family C, then O is also a (respectively) perfect/statistical/computational indistinguishability
obfuscator for C.
Sketch. To prove the claim, consider the “empty” learner L that just outputs whatever obfusca-
tion it is given, and its simulator S. Let δ be the distinguishability measure (computational or
statistical) in the (computational or perfect/statistical) guarantee of the obfuscator. We get that
for any two circuits C1 and C2 that are of the same size and compute the same functionality:
δ(L(O(C1)),S(C2)) = δ(O(C1),S(C2)) ≤ ε, and δ(L(O(C2),S(C2))) = δ(O(C2),S(C2)) ≤ ε, and
thus (since computational and statistical distinguishabilities are transitive):

δ(O(C1),O(C2)) ≤ 2ε

Note that the perfect/statistical/computational guarantee is preserved.

As noted above, if we restrict our attention to efficient obfuscators, indistinguishability obfus-
cators are also best-possible obfuscators.

Proposition 3.5. If O is an efficient perfect/statistical/computational indistinguishability obfus-
cator for a circuit family C, then O is also an efficient (respectively) perfectly/statistically/ compu-
tationally best-possible obfuscator for C.
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Proof. Let O be an efficient indistinguishability obfuscator. Then for any learner L, let S be the
(efficient) simulator that gets a circuit C2, runs O(C2), and then activates L on O(C2). We get that
if O is a perfect/statistical/computational indistinguishability obfuscator, then for any two circuits
C1 and C2 that are of the same size and compute the same functions, the two distributions L(O(C1))
and S(C2) = L(O(C2)) are perfectly/statistically/computationally indistinguishable (because O is
an indistinguishability obfuscator). Thus O is also an efficient best-possible obfuscator.

Note that the efficiency of the indistinguishability obfuscator is essential to guarantee the effi-
ciency of the simulator, without which the obfuscator does not meet the best-possible definition.

It is important to note that there is no reason to believe that the two notions of obfuscation are
equivalent for inefficient obfuscation. In fact, whereas [2] design exponential-time indistinguisha-
bility obfuscators, there is no known construction for inefficient best-possible obfuscators. We find
even the construction of inefficient best-possible obfuscators to be an interesting problem.

We end this subsection by observing that if P = NP then it is not hard to construct efficient
perfect best-possible obfuscators (and indistinguishability obfuscators) for every polynomial-size
circuit. In fact this complexity assumption is almost tight. We will show in Theorem 4.1, that if
statistically best-possible obfuscators can be built even for very simple circuits, then the polynomial
hierarchy collapses to its second level.

Proposition 3.6. If P=NP then the family of polynomial-sized circuits can be efficiently perfectly
best-possible obfuscated.

Proof. Assume P = NP . For any circuit C, it is possible to efficiently extract the smallest lexico-
graphically first circuit Cmin that is equivalent to C (this problem is solvable using a language in the
second level of the polynomial hierarchy). As Barak et al. [2] note, such an extraction procedure
is a perfectly indistinguishable obfuscation of C, and thus there exists an efficient perfect indistin-
guishability obfuscator for the family of polynomial-size circuits. By Proposition 3.5 it is also an
efficient perfectly best-possible obfuscator for the family of polynomial-size circuits. Note that even
if P 6= NP then we get an inefficient indistinguishability obfuscator. It remains, however, unclear
whether we can get an inefficient best-possible obfuscator, as the (always efficient!) simulator can
no longer run the “circuit minimization” procedure.

4 Impossibility Results for Statistically best-Possible Obfuscation

In this section we present a hardness result for statistically best-possible obfuscation. In Section
3 it was shown that if P = NP then every polynomial-sized circuit can be perfectly best-possible
obfuscated, thus we cannot hope for an unconditional impossibility result. We show that the con-
dition P = NP is (nearly) tight, and in fact the existence of statistically best-possible obfuscators
even for the class of languages recognizable by 3-CNF circuits (a sub-class of AC0) implies that the
polynomial hierarchy collapses to its second level. This result shows the impossibility of statistically
best-possible obfuscation for any class that contains 3-CNF formulas (and in particular also for the
class of general polynomial sized circuits).

Theorem 4.1. If the family of 3-CNF formulas can be statistically best-possible obfuscated (not
necessarily efficiently), then the polynomial hierarchy collapses to its second level.
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Proof. A Simple Case. We begin by considering a simple case: suppose that the family of 3-
CNF formulas can be perfectly best-possible obfuscated (not necessarily efficiently) while perfectly
preserving functionality (i.e. the obfuscated circuit never errs). We can use the Simulator S for the
“empty” learner, to construct an NP proof for Co-SAT (a Co-NP -complete problem). To see this,
consider an input 3-CNF formula ϕ of size |ϕ|. We would like to find a witness for non-satisfiability
of ϕ. Towards this end, we first construct an unsatisfiable formula ψ of size |ϕ|. A witness for the
non-satisfiability of ϕ is a pair of random strings (r, r′) such that the output of the simulator S on
ϕ with randomness r is equal to its output on ψ with randomness r′. This proof system is indeed
in NP :

• Efficiently Verifiable. The simulator is efficient, and thus the witness is efficiently verifiable.

• Complete. If ϕ is unsatisfiable, then ϕ and ψ compute the same function (the constant 0
function) and are of the same size. We know that O is a perfect best-possible obfuscator and
thus the distributions O(ϕ), S(ϕ), S(ψ), O(ψ) are all identical. This implies that there must
exist (r, r′) such that S(ϕ, r) = S(ψ, r′).

• Sound. If ϕ is satisfiable, then because the obfuscator perfectly preserves functionality, the
distributions O(ϕ), O(ψ) are disjoint (they are distributions of circuits with different func-
tionalities). Thus the distributions S(ϕ), S(ψ) of the (perfect) simulator’s output are also
disjoint, and there exist no (r, r′) such that S(ϕ, r) = S(ψ, r′).

Full Proof. The full proof for the case of statistically best-possible obfuscation follows along
similar lines, giving a reduction from a Co-NP -complete problem (circuit equivalence) to a problem
in AM .3 By the results of Fortnow [12], Aliello and H̊astad [1], and Boppana, H̊astad and Zachos
[4] (see also Feigenbaum and Fortnow [10]), this collapses the polynomial hierarchy to its second
level. First, assume that the statistically best-possible obfuscator guarantees statistical distance at
most 1

10 between the simulator and obfuscator. We begin with some complexity theory background:

Background. The statistical difference (SD) problem was introduced by Sahai and Vadhan [22].
It is a promise problem that receives a pair (C1, C2) of polynomial-size circuits, that can each be
used to sample a distribution. The yes-instances of the problem are pairs of circuits for which the
statistical distance between the distributions generated by the two circuits is at least 2

3 , no-instances
are pairs of circuits for which this distance is at most 1

3 . Sahai and Vadhan [22] prove that SD is
complete for the complexity class SZK of languages with statistical zero-knowledge protocols. The
complement of SD, the problem SD is thus also in SZK (and is in fact also complete), by the result
of Okamoto [21] that SZK is closed under complement.

The results of Fortnow [12], Aliello and H̊astad [1], and Boppana, H̊astad and Zachos [4] show
that if there is a Co-NP -complete problem in SZK, then the polynomial hierarchy collapses to its
second level.

The problem of checking the equivalence of 3-CNF formulas consists of checking, given two
3-CNF formulas over n boolean input variables (say that the formulas must be of the same size),
whether they agree on all possible assignments to the n variables. Checking the equivalence of
3-CNF formulas is Co-NP complete (there is a simple reduction to it from the Co-NP complete
problem 3SAT ).

3Actually, this is a problem in statistical zero knowledge: the complement of the Statistical Difference Problem,
introduced by Sahai and Vadhan [22].
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Outline. We assume that the family of 3-CNF formulas can be statistically best-possible ob-
fuscated (even inefficiently). We will use the simulator to construct an efficient (Karp) reduction
from the CoNP -compete problem of 3-CNF equivalence testing, to the SD problem, which has a
statistical zero-knowledge protocol.

In particular, this reduction will imply that if there exists a statistically best-possible obfuscator
for the family of 3-CNFs, then there exists a statistical zero-knowledge protocol checking the
equivalence of 3-CNFs. This collapses the polynomial hierarchy.

The Reduction. Let S be the (efficient) simulator for the “empty” learner that just outputs the
obfuscated circuit that it is given. The reduction receives two identical size 3-CNF formulas, φ1

and φ2. It proceeds to generate two circuits C1 and C2. The circuit Ci is simply the simulator S
with the formula φi hardwired as its input. The two circuits (C1, C2) generate the distributions
S(φ1),S(φ2) respectively, and they will be the input to SD.

• Completeness: If φ1 ≡ φ2, then by the properties of the best-possible obfuscator ∆(O(φ1),S(φ1)) ≤
1
10 , and ∆(O(φ1),S(φ2)) ≤ 1

10 . Thus ∆(S(φ1),S(φ2)) < 1
3 , and (C1, C2) ∈ SD

• Soundness: If φ1 6≡ φ2, then by the preserving functionality property of the obfuscator, the
two distributions O(φ1) and O(φ2) are very far (at statistical distance almost 1). On the
other hand, ∆(O(φ1),S(φ1)) ≤ 1

10 , and ∆(O(φ2),S(φ2)) ≤ 1
10 , and thus we conclude that

∆(S(φ1),S(φ2)) > 2
3 , and (C1, C2) 6∈ SD.

Note that the reduction is efficient even if the obfuscator is not, as it only uses the code of the
simulator (which is always efficient).

Proposition 3.2 and Theorem 4.1 give examples of circuit classes that can and cannot be sta-
tistically best-possible obfuscated. The proofs give characterizations of circuit classes that can be
statistically best-possible obfuscated. A sufficient condition for statistically best-possible obfusca-
tion of a class of circuits is having an efficiently computable canonical representation, a necessary
condition is having a statistical zero knowledge proof for the equivalence problem.

Finally, a corollary of this theorem is that the same class of 3-CNF formulas cannot be statisti-
cally indistinguishability obfuscated in polynomial time unless the polynomial hierarchy collapses.
This is the first impossibility result for indistinguishability obfuscation in the standard model.

Corollary 4.2. If the family of 3-CNF formulas can be efficiently statistically indistinguishability
obfuscated, then the polynomial hierarchy collapses to its second level.

Proof. By Proposition 3.5, if there exists an efficient statistical indistinguishability obfuscator for
the family of 3-CNFs, then there also exists an efficient statistically best-possible obfuscator for
the same family. This, in turn, implies (by Theorem 4.1) that the polynomial hierarchy collapses
to its second level.
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5 Best-Possible Obfuscation in the Random Oracle Model

In this section we present an impossibility result for (efficient) computationally best-possible ob-
fuscation in the (programmable) random oracle model. We begin by describing the model and
recasting the definitions of obfuscation in the presence of random oracles.

5.1 Definitions, Revisited

The Random Oracle Model. In the random oracle model we assume that all parties (the
circuits, obfuscator, adversary etc.) have access to a random oracle and can make oracle queries.
All oracle queries are answered by a single function R, that is selected uniformly and at random
from the set of all functions. Specifically, for each input length n, R will be a function from {0, 1}n

to {0, 1}p(n) for some polynomial p. For simplicity, we will assume throughout this work that for
all n’s the function R is a random permutation 4 on {0, 1}n. Circuits access the random oracle by
making oracles queries using a special oracle gate. It is important that we assume that calls to
these oracle gates are clearly visible when running the circuit.

Obfuscation in the Random Oracle Model. When considering obfuscation in the random
oracle model, all circuits are allowed oracle access (including the circuits to be obfuscated), and all
probabilities are taken over the selection of a random oracle.

In all definitions of obfuscation (Definitions 2.3, 2.4, 2.5), in the the preserving functionality
requirement, the probability that there exists an input for which the obfuscated circuit gives the
wrong answer is taken also over the selection of the random oracle.

In the Virtual Black-box requirement of Definition 2.3, we require that for any polynomial size
circuit adversary A, there exists a polynomial size simulator circuit S such that for every input
length n and every C ∈ Cn:

|Pr[A(O(C)) = 1]− Pr[|SC(1n) = 1]| ≤ neg(n)

where the probability is over the random oracle, the coins of the adversary, the simulator and the
obfuscator.

In the Indistinguishability Obfuscation requirement of Definition 2.4 and the Best-Possible Ob-
fuscation requirement of Definition 2.5, all distributions are taken over the random oracle (this also
affects the circuits being obfuscated, which may include values that depend on the random oracle).

5.2 The Impossibility Result

We show how to use a random oracle to build circuits that cannot be best-possible obfuscated for
point functions. We note that the use of the random oracle both strengthens and weakens this
result. The result is strengthened because a random oracle could conceivably help obfuscation (a la
[18]), but weakened because the random oracle is used to build a circuit that cannot be obfuscated.
Moreover, in the proof we need to assume that a distinguisher can see the obfuscated circuit’s oracle
calls and that it can access the random oracle itself. It is still possible that all circuits that do not
use the random oracle can be best-possible obfuscated.

4Note that results hold for random function oracles (as long as the function’s range is significantly larger than its
domain, say at least twice as large).

14



We show that a specific family of circuits for computing point functions cannot be obfuscated
in the presence of a random oracle R. A point function Ip is the function that outputs 1 on input
p and 0 on all other inputs. We begin by presenting the family of point function circuits for which
we will show impossibility of obfuscation.

Definition 5.1 (The circuit family {Cr
p}). For any input length n, the family of circuits {Cr

p}n

defines a set of circuits on inputs of length n. Each point p ∈ {0, 1}n and pad r ∈ {0, 1}n define a
circuit Cr

p that computes the point function Ip. The data contained in the circuit Cr
p is:

• The pad r is included in Cr
p “in the clear”.

• The point p is “hidden”, the only information that is given about it is y = R(p ◦ r).

For an input x ∈ {0, 1}n, to compute the point function Ip, the circuit Cr
p outputs 1 if and only

if R(x ◦ r) = y (recall y = R(p ◦ r)). Otherwise the circuit outputs 0.

We claim that the family of point function circuits {Cr
p} cannot be best-possible obfuscated.

Theorem 5.1. The circuit family {Cr
p} cannot be efficiently computationally best-possible obfus-

cated.

Proof Intuition. Observe that any obfuscator O must preserve the functionality of a circuit Cr
p .

Furthermore, the only information the obfuscator has about the point p is the value R(p ◦ r). To
preserve functionality, for any input x, the obfuscated circuit O(Cr

p) needs to find out whether
x = p. Now, because the only information available to the obfuscator and the obfuscated circuit
about p is the value R(p ◦ r), for most inputs x, the obfuscated circuit must ask the random oracle
for the value R(x◦ r). Thus, for many x’s, one of the (polynomially many) oracle calls of O(Cr

p)(x)
should be to R(x ◦ r).

In the proof we construct a distinguisher between obfuscated circuits and the output of the
“empty” learner’s simulator. For a random pad s ∈ {0, 1}n, we examine the distinguisher Ds that
is given an obfuscation O(Cr

p) of a circuit Cr
p computing a (randomly chosen) point function Ip.

The distinguisher Ds runs the circuit O(Cr
p) on a random input x, and tries to “guess” whether

the circuit Cr
p has s for its pad, i.e. whether r = s. To do this, the distinguisher runs O(Cr

p) on a
random input x ∈ {0, 1}n and outputs 1 if and only if O(Cr

p) queried the random oracle on x ◦ s.
Let r ∈ {0, 1}n be a second random pad. Recall that we concluded above that for a random

input x we expect O(Cs
p)(x) to query the random oracle on x ◦ s. On the other hand, for a random

pad r, the probability (over the independently random s) that O(Cr
p) queries the random oracle on

x ◦ s is very small. Thus, the distinguisher Ds behaves very differently on O(Cs
p) than on O(Cr

p),
even though both these circuits have exactly the same functionality! This means that O is not a
best-possible obfuscator.

Proof. Throughout this proof we restrict our attention to the “empty” learner that just outputs
the obfuscation it gets, and the simulator S for this “empty” learner. We begin by describing the
distinguisher (family) we will use.
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The Distinguisher Ds. Every pad s ∈ {0, 1}n defines a distinguisher Ds. This distinguisher gets
as input a (probabilistic) oracle circuit C with n-bit inputs (we will consider input circuits that are
obfuscations of circuits in the family {Cr

p}). The distinguisher chooses a random input x ∈ {0, 1}n

and random coins r for the circuit C, and then runs C on input x with randomness r. If in this
execution C makes the oracle query x ◦ s then Ds outputs 1, otherwise Ds outputs 0.

Claim 5.1. Let O be any efficient obfuscator.

Pr
[Ds(O(Cs

p)) = 1
] ≥ 1− neg()

where the probability is over random s, p ∈ {0, 1}n, the coins of O and Ds, and the selection of the
random oracle R.

Proof. We show that for random s, p, x ∈ {0, 1}n, with high probability over the coins of O and
O(Cs

p) and the random oracle R, during its execution O(Cs
p)(x) queries the random oracle on x◦ s.

To see this, first assume that with probability a (over random x, p, s ∈ {0, 1}n, O, O(Cs
p) and

R) neither O(Cs
p) nor O(Cs

p)(x) query the random oracle on p ◦ s or x ◦ s. Now we claim that also
with probability a, neither O(Cs

p) nor O(Cs
p)(p) queries the random oracle on p ◦ s or x ◦ s. This

is because as long as neither O(Cs
p) nor O(Cs

p)(z) queries either p ◦ s or x ◦ s, their views (over
the random variables and the selection of a random oracle) are identically distributed regardless
of whether z = x or z = p. We conclude that with probability a the behavior of O(Cs

p)(x) and
O(Cs

p)(p) are identical, in particular their outputs are identically distributed, even though Cs
p(x)

is 0 (with all but negligible probability) and Cs
p(p) is 1! Thus, by the preserving functionality

requirement, a must be negligible.
For a random s, p, x ∈ {0, 1}n, the probability that the obfuscator O on input Cs

p queries p ◦ s
or x ◦ s is negligible (over its coins and R). The probability that O(Cs

p)(x) queries p ◦ s is also
negligible (recall x is random). But we just saw that to maintain functionality either O(Cs

p) or
O(Cs

p)(x) must make one of the oracle queries p ◦ s, x ◦ s! We conclude that with all but negligible
probability O(Cs

p)(x) must query x ◦ s.
In particular, this implies that for random s, p ∈ {0, 1}n, when Ds chooses a random x ∈ {0, 1}n

and runs O(Cs
p)(x) (with random coins), with all but negligible probability (over all the random

variables, O’s coins and the random oracle) O(Cs
p)(x) queries x ◦ s and Ds(O(Cs

p)) outputs 1.

Claim 5.2. O be any efficient obfuscator.

Pr
[Ds(O(Cr

p)) = 1
] ≤ neg()

where the probability is over random s, r, p ∈ {0, 1}n, the coins of O and Ds, and the selection of
the random oracle R.

Proof. For any input x, the oracle queries made byO(Cr
p)(x) are completely independent of s. Since

O(Cr
p)(x) only makes a polynomial number of queries, the probability that one of those queries is

to x ◦ s is negligible.

16



Putting together Claims 5.1 and 5.2, we conclude that for any efficient obfuscator, for a random
s, r, p ∈ {0, 1}n, the distinguisher Ds distinguishes O(Cs

p) from O(Cr
p), a contradiction to the best-

possible obfuscation requirement. We conclude that the circuit family {Cr
p} cannot be best-possible

obfuscated.
The pad s is a source of non-uniformity in the distinguisher. We have shown that a random s

makes for a good distinguisher with high probability, and thus for every alleged obfuscator there
certainly exists a good (non-uniform) distinguisher that breaks it.

The family of circuits that we show cannot be obfuscated is a family that computes point
functions. This may seem contradictory, as Lynn, Prabhakaran and Sahai [18] showed that a class
of circuits computing point functions can be obfuscated in the random oracle model. The source
of this disparity is that they (as well as all other known positive results on obfuscating point
functions) only consider obfuscators that get the point in the clear, whereas the family of point
function circuits that we present ({Cr

p}) hides information about the point. Malkin [19], was the
first to ask whether any point function implementation can be black-box obfuscated.

Theorem 5.1 shows impossibility for simpler and more natural functionalities than those con-
sidered in previous results, but does so using circuits with random oracle gates.

Extensions. We note that this impossibility result applies also to black-box obfuscation (because
black-box obfuscation also implies best-possible obfuscation, see Proposition 3.1).

One possible objection to this impossibility result, is that the information revealed by obfus-
cation of circuits in the family {Cr

p} (namely the pad r) is not related to the point p. We note,
though, that it seems essential that an obfuscator strip programs of all non black-box information.
Indeed, we view leaking information that is unrelated to the functionality as a serious problem,
as one of the goals of obfuscation for software protection is “stripping” programs of non-essential
information (e.g. embarrassing code comments, indications of software bugs etc.).

Implications for a world without random oracles. We conclude with an informal discussion
of the ways in which our proof uses the random oracle model, and how one could hope to remove
this assumption. Our construction uses the random oracle R in two ways. First, R is used to hide
information about p in the circuit family {Cr

p}. Essentially, we use R to obfuscate a point function
(where the point is p ◦ r). Intuitively, since we know how to (black-box) obfuscate point functions
without using random oracles, we could use (strong) cryptographic assumptions in place of the
random oracle for this.

The second place in our proof where we use the properties of random oracles is when we assume
a distinguisher can see the points on which the obfuscated circuit queries the random oracle. If
we want to get rid of the random oracles, this is a more troubling assumption. The issue is that
even if we could use some other method to hide information about the point p in the standard
model, there is no reason to assume we could identify any internal computation of the obfuscated
circuit. For example, consider using Canetti’s point function obfuscation and giving the obfuscator
a circuit C that hides some information on p by exposing only fz(p, r) = (z, zp◦r) 5. Even if on any
input x the obfuscated circuit always computes the value fz(x, r) = (z, zx◦r), there is no guarantee

5Here z is a randomly chosen member of Z∗b (for b selected randomly by choosing a random prime a such that
a = 2b + 1), and p ◦ r corresponds to some member of the group.
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that a distinguisher can identify these computations! Thus O(C) may not expose any information
on r. We note, however, that to prove that an obfuscator can obfuscate any circuit computing a
point function, one would have to construct an obfuscator that indeed hides internal computations.
Thus it seems that even for achieving the (seemingly modest) goal of best-possible obfuscation for
polynomial-size point-function circuits, one would have to present a method for hiding complex
internal computations of a circuit. Such a method, in and of itself, seems to require significant
progress on the problem of obfuscation.

6 Concluding Remarks and Discussions

We conclude with a discussion of best-possible obfuscation and issues raised in this work.

Input/Output Representation. Several of our results highlight the issue of the representation
of an obfuscator’s input and output. At times (in Section 3) we restrict the representation of both
the obfuscator’s input and output functionality to be “simple” circuits representing POBDDs. At
other times (in the proof of Theorem 5.1), we construct complex circuits that hide information
about their functionality from the obfuscators. In general, restricting the input representation
makes the task of obfuscation easier (see discussion in Section 5), whereas restricting the output
representation makes the task of obfuscation harder, and we use this in Proposition 3.3 to show
that point functions cannot be black-box obfuscated as POBDDs. Previous positive results on
obfuscation considered obfuscators that get a particular representation of the functionality (e.g.
the point p for the point function Ip). Future work on black-box (and non black-box) obfuscation
should consider the question of which representations of the desired functionality are obfuscated.

This issue was also raised by Malkin [19], who asked whether any point function implementation
can be black-box obfuscated in the standard model. An relaxed (but related6) formulation of this
question is whether the family of polynomial-size circuits computing point functions can be best-
possible obfuscated. The proof of Theorem 5.1 answers this question negatively in the presence
of random oracles, but either an impossibility proof or a provably secure obfuscator (in a world
without random oracles) may have interesting consequences.

Circuit Sizes. In our definition of best-possible obfuscation (Definition 2.5) we compare the
obfuscated circuit O(C1) with circuits C2 of the same size as C1 (and computing the same func-
tionality). This definition requires that the obfuscation of C1 leak as little information as any
equivalent circuit of a specific (polynomially) smaller size. We could make stronger requirements,
such as leaking less information than an equivalent circuit C2 that is as large as O(C1), twice as
large as C1, etc. (all results would still hold). In general, the larger the circuit used as a benchmark
(C2), the stronger the definition. The important point is guaranteeing that O(C1) leaks as little
information as any other functionally equivalent circuit of a related size.

Auxiliary Input. Goldwasser and Kalai [14] augment the virtual black-box requirement of ob-
fuscation to hold in the presence of auxiliary input. They note that this is an important requirement
for any obfuscation that is used in practice, as auxiliary input comes into play in the real world.

6This formulation is equivalent to the original question raised by Malkin under the assumption that point functions
can indeed be obfuscated when the point is given in the clear. In this case, a best-possible obfuscation leaks as little
information as the black-box obfuscated point function circuits, and is thus also a black-box obfuscation.
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Following this argument, we could extend the best-possible obfuscation requirement to hold in the
presence of auxiliary input. This is a strengthening of the definition, and thus all negative results
clearly still hold. The positive result of Proposition 3.2 (obfuscating POBDDs) also holds even in
the presence of (dependent) auxiliary input.

Weaker Variants. In light of the negative results of Theorems 4.1 and 5.1 it is interesting to
consider weaker variants of best-possible obfuscation (Definition 2.5). While the variants below lose
some of the appealing intuitive “garbling” guarantee of Definition 2.5, meeting any of them would
all give at least some indication that the obfuscator truly garbles circuits.

• Hiding Less Information. One natural approach is to follow in the footsteps of Barak et al.
[2], and consider best-possible predicate obfuscators: an obfuscation is predicate best-possible
if any predicate of the original circuit that can be learned from the obfuscation, could also be
learned from any other circuit of a similar size computing the same functionality. While this
definition is weaker than computationally best-possible obfuscation, the proof of Theorem 5.1
rules out even general-purpose predicate best-possible obfuscation in the random oracle model
(and perhaps gives some intuition that this type of obfuscation would be hard to achieve in
the standard model).

• Weaker Indistinguishability. Canetti [6] and Wee [23] relax the virtual black-box requirement,
requiring only polynomially small indistinguishability between the output of an adversary and
its simulator. Moreover, they allow the simulator’s size to depend (polynomially) on this
indistinguishability parameter. We note that negative results in this work (Theorems 4.1
and 5.1) hold even if we require only polynomially small indistinguishability and allow the
simulator’s size to depend (polynomially) on the indistinguishability parameter.

• Weaker Functionality. Definition 2.5 requires that with all but negligible probability, the
obfuscated circuit perfectly preserves the functionality of the original circuit. We could relax
this, and require only that for every input, with all but a small constant error probability,
the obfuscated circuit outputs the same output as the original circuit. Our negative results
apply even under this weakened preserving functionality requirement. The positive result
on best-possible obfuscation of POBDDs (Proposition 3.2) gives an obfuscator that perfectly
preserves the functionality of the circuit it obfuscates.
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