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Abstract. Compared to SAT, there is no simple concept of what a solu-
tion to a QBF problem is. Furthermore, as the series of QBF evaluations
shows, the QBF solvers that are available often disagree. Thus, proof
generation for QBF seems to be even more important than for SAT.
In this paper we propose a new uniform proof format, which captures
refutations and witnesses for a variety of QBF solvers, and is based on
a novel extended resolution rule for QBF. Our experiments show the
flexibility of this new format. We also identify shortcomings of our for-
mat and conjecture that a purely resolution based proof calculus is not
powerful enough to trace the most efficient solvers.

1 Introduction

The decision problem for the logic of Quantified Boolean Formulas (QBF) is
the canonical PSPACE-complete problem. A vast number of problems can suc-
cinctly be formulated in QBF. Every finite two-player game can be modeled in
QBF [1, 2]. A multitude of AI planning [3–5], and modal logic problems [6] can
be formulated in QBF, but also unbounded and bounded model checking for
finite-state systems [7–9], as well as other formal verification problems [10, 5].

There exist many different flavors of QBF solvers, based on DPLL [11–16], Q–
Resolution [17], BDDs [18], Skolemization [19] or Hyper Binary Resolution [20].
However, state-of-the-art QBF solvers are not yet reliable enough. The validity
of many hard instances at recent QBF competitions had to be ‘guessed’ by means
of a majority vote of the contestants, and often the solvers disagree [21].

Certificates for the decision problem of propositional logic (SAT) are easy to
define. For satisfiable instances, solvers provide a satisfying assignment, and in
case of an unsatisfiable instance, a resolution proof is computed. In both cases,
the output can be verified easily by means of efficient (polynomial) and easy-
to-inspect proof checkers. The satisfying assignment, or the resolution proof,
correspond to a certificate of the correctness of the result. In case of SAT, these
certificates serve many additional purposes: for example, satisfying assignments
are often used as counterexamples. Resolution proofs are often used as an input
for other algorithms. As an example, the computation of Craig interpolants relies
on a resolution proof.



A certificate in the context of QBF refers to a proof of validity or invalidity
of a formula. As in the case of unquantified SAT, certificates can serve dual
purposes: first, they establish trust in the correctness of the result. The second
motivation is to use certificates as input to other algorithms. When formulating
a two–player game as a QBF, we wish to determine if there exists a winning
strategy. If so, we are also interested in the strategy itself. Besides knowing that
we can win the game, we also want to know how to win. The same holds for
invalid formulas: not only do we want to know that a formula is invalid, we also
want to find out why there is no solution and we wish to convince ourselves of
that fact in a, preferably, concise way.

As shown by Tseitin [22], allowing definitions of fresh variables in Boolean
formulas can exponentially shorten refutations. In this paper, we extend Tseitin’s
result to the quantified setting. We apply it in our proposal for a certificate
format, which allows variable definitions of predefined structure to simplify the
extension of QBF solvers with certificate generation code.

To the best of our knowledge, there exist only two suggestions for QBF
certificates: One in the form of an “inference log”, from which a BDD–based
model or a refutation for a QBF can be reconstructed [23], and a method to
generate unsatisfiable cores from traces of search–based solvers [24]. (In the QBF
setting—similar to propositional logic—an unsatisfiable core is a subset of the
clauses of a QBF formula in prenex normal form, which is still unsatisfiable.)

The first approach probably does not scale well because of the growth of
the BDDs. For some instances it takes considerably more time to reconstruct
the model from the inference log than it took to generate the model in the first
place [23]. The inference log that is provided can serve as a refutation trace.
However, due to five different inference strategies that the solver can choose,
there are many different kinds of instructions in the inference logs. Among them
are context switches between inference styles, explicit and symbolic variants
of inference rules, such as resolution, substitution, and assignment, but also
rollback and commit operations to undo earlier operations, as well as “other
control information” [23]. This set of instructions, tailored to keep the overhead
of the solver as small as possible, results in the need for a heavyweight proof
checker.

The second approach provides only an unsatisfiable core and depends on the
particular QBF solver used. In essence, both approaches just “trace”, what the
solver is doing and are thus far from a unified format that could be used to
certify the computation of QBF solvers based on totally different algorithms.

However, our proposal is only a first step towards a uniform format. It clearly
lacks the ability to capture important features of certain QBF solvers, such as
long distance resolution [12], and expansion [17, 19]. We conjecture that the
extension rule is not enough to linearly trace the proof process of such solvers.

Our extension rule is described in Section 2, and we discuss how to apply
it to the major QBF solving algorithms. In order to evaluate the overhead of
generating certificates, we extend three different solvers with this capability.



These implementations are described in Sec. 3. We provide the results of the
evaluation in Sec. 4.

2 Theory

We consider closed Quantified Boolean Formulas (QBF) in prenex normal form.
Thus, a formula is the concatenation of a quantifier prefix and a matrix of clauses.
Let V be an infinite set of variables and let Ω : V → {∃,∀} be a function that
marks variables either as existential (∃) or as universal (∀). We define an order
< over V such that x1 < x2 for x1, x2 ∈ V iff x2 is in the scope of x1, i.e.,
‘larger’ variables are in the scope of ‘smaller’ variables.

The set of literals contains all variables and their negations ¬v with v ∈ V .
As usual, we extend the notion of negation to literals and identify ¬¬v with
v. We also extend the order < and Ω to literals in the natural way (without
ordering the two literals of a variable). A clause is a disjunction of literals. A
clause is trivial if it contains a literal and its negation. An empty clause is a
clause without literals. A quantified formula in conjunctive normal form (CNF)
is a conjunction of clauses. We assume the quantifier prefix Ω to be implicitly
given, and do not mention it explicitly. In the following we just use the term
formula to denote a quantified formula in CNF. A formula without clauses is
called the empty formula.

A variable of a formula is called the innermost (resp. the outermost) variable
if it is maximal (resp. minimal) among all variables of the formula with respect to
the order <. The semantics [[f ]] of a formula f is defined recursively by expanding
the outermost variable x of a formula f as follows. If Ω(x) = ∃ then define [[f ]]
as [[f{x ← 0}]] ∨ [[f{x ← 1}]], where the cofactor f{x ← c} of f is f in which
every occurrence of x is replaced by the Boolean constant c. More precisely, for
c = 0, clauses containing ¬x are deleted and x is removed from all clauses, and
similarly for c = 1. If Ω(x) = ∀, let [[f ]] = [[f{x← 0}]] ∧ [[f{x← 1}]]. Note that
empty clauses (resp. formulas) are equivalent to the Boolean constant 0 (resp. 1)
and are thus invalid (resp. valid).

Two non-trivial clauses C and D can be resolved iff C contains a literal l
and D its negation ¬l. The result of a resolution is the resolvent clause, which
is obtained as a disjunction of all literals in C and D except l and ¬l. This
is the same definition as for unquantified formulas. If a clause C contains a
universal literal l that is larger than all existential literals in C, then it can be
removed from C. The process of removing literals according to this rule is called
forall-reduction [25, 17] and the result obtained from repeated application until
no more literals can be removed is called the forall-reduct of C. A Q-resolution
step consists of a resolution step followed by forall-reduction of the resolvent.

The calculus described above is able to simulate the resolution-based, sound,
and complete refutation calculus of [25]. This also allows tracing refutation proofs
of QBF solvers based on DPLL [15] efficiently, even with further optimizations
such as trivial falsity [15], SAT and QBF based learning [5, 12, 16], and hyper
binary resolution [20].



We conjecture that in order to trace other algorithms – for instance, algo-
rithms that are structural or BDD-based – a much stronger proof system is
necessary. In order to obtain such a stronger proof system, which is one of our
main contributions in this paper, we add the following quantified extension rule.
It is an adaptation of the classical extension rule [22] to the quantified setting.

Definition 1 (Quantified Extension Rule). Let y be a fresh variable, which
does not occur in formula f , and let g be a formula that may only contain y and
variables in f . Furthermore, we demand that for any assignment to variables in
f there exists an assignment to y that satisfies g. We also require Ω(y) = ∃ and
z ≤ y for all variables z in g. Then the Quantified Extension Rule extends f by
g, i.e., it adds g conjunctively to f . We then call y a defined variable and g a
definition for y with respect to f .

Note that g does not need to enforce a functional dependency of y on other
variables in g. As a relation, g has to be total, e.g., it cannot define a partial
function, but it can be non-deterministic, e.g., the value of y does not need
to be unique. This is a slight generalization of the classical extension rule for
propositional logic [22].

In adapting the extension rule to the QBF setting, the crucial question is
where to “put” new variables, e.g., how defined variables are ordered with re-
spect to variables that already occur in the formula. It seems intuitive that new
variables can only be existential. It is also clear that they cannot be moved fur-
ther out than the innermost variable on which they depend. In the experimental
section we show that we actually need this freedom to move defined variables
as far out as possible. Keeping them in the innermost existential scope, as for
instance in the Tseitin encoding of a non–CNF QBF formula, is insufficient.

To enforce that proofs are polynomially checkable, one can fall back to the
original idea of Tseitin [22] and restrict the set of functions that can be defined
and the way they are encoded in to clauses. This is what we suggest to use in
practice. Useful functions are the constants, equality, negation, if-then-else and
conjunction. Conjunction is sufficient:

Definition 2 (Restricted Quantified Extension Rule). Let l, r be two lit-
erals over variables in the formula f , and y be a fresh variable, which does not
occur in f . Let g be the conjunction of the following 3 clauses (y ∨ l), (y ∨ r),
and (y ∨ l∨ r). We also require Ω(y) = ∃ and z ≤ y for all variables z in g. The
formula f can be extended by adding g.

The soundness of the restricted rule follows from the soundness of the generic
rule, which is proved next. It turns out that this rule is enough to produce proofs
from refutations of our BDD-based QBF solver Ebddres in linear time. Refer
to Sec. 4 for details.

For the proof of the following theorem we need the distributivity of substi-
tution (resp. cofactoring) over Boolean operators, which we formulate for con-
junctions as follows without proof:

Lemma 1. (f ∧ g){x← c} ≡ f{x← c} ∧ g{x← c}



Note that the post-fix operator for substitution has greater binding power
than Boolean operators. The right hand side of the equivalence in the Lemma is
thus read as (f{x← c})∧(g{x← c}). In the following we will omit parenthesis as
in Lemma 1 whenever possible. The next theorem shows that adding definitions
is sound and does not change the semantics of a formula.

Theorem 1 (Soundness of Quantified Extension Rule). Let g be a defi-
nition for y with respect to f . Then [[f ]] = [[f ∧ g]].

Proof. The proof is by induction on the number of variables in f∧g. Let x be the
outermost variable in f ∧ g. First assume that x is different from y, the variable
defined by g, and Ω(x) = ∃. The definitions and the lemma imply:

[[f ∧ g]] = [[(f ∧ g){x← 0}]] ∨ [[(f ∧ g){x← 1}]]
= [[f{x← 0} ∧ g{x← 0}]] ∨ [[f{x← 1} ∧ g{x← 1}]]
= [[f{x← 0}]] ∨ [[f{x← 1}]] = [[f ]]

In the next to last step we have to apply the induction hypothesis twice for the
definitions g{x← c} with respect to f{x← c}. The second case with Ω(x) = ∀
is identical, except that all the disjunctions ‘∨’ are replaced by conjunctions ‘∧’.

In the base case we assume that x = y. From the definition of the extension
rule, we know that Ω(x) = ∃, and that x does not occur in f . Since all variables
z in g have to be smaller or equal to y, g is either constant or only contains y
as variable. Therefore g is either equivalent4 to the Boolean constant 1, to the
literal ¬x, or to the literal x. Otherwise, it is impossible to satisfy g by assigning
a value to x. If g ≡ 1, then [[f ∧ g]] = [[f ∧ 1]] = [[f ]]. Without loss of generality,
assume g ≡ x. Then

[[f ∧ g]] = [[(f ∧ g){x← 0}]] ∨ [[(f ∧ g){x← 1}]]
= [[f{x← 0} ∧ g{x← 0}]] ∨ [[f{x← 1} ∧ g{x← 1}]]
= [[f ∧ g{x← 0}]] ∨ [[f ∧ g{x← 1}]]
= [[f ∧ 0]] ∨ [[f ∧ 1]] = [[f ]]

ut

Expansions as in Quantor [17] and long distance resolution as in Quaffle [12]
allow some kind of reasoning across quantifier alternations. With expansions
it is in principle possible to resolve clauses on outer variables that stem from
different copies of the expanded clauses. Similarly, long distance resolution allows
to compactly capture in a learned clause the effect of propagating information
from an outer existential scope through an universal quantifier into an inner
existential scope and back to the outer existential scope.

Currently we do not know how to efficiently simulate expansions and long
distance resolution in our proof format. We conjecture that an even stronger
proof system is necessary for this purpose.
4 with respect to equivalence of propositional unquantified formulas [16].



Definition 3 (Model). Let Vi be the set of variables in a formula that have
a quantification level less than or equal to i and let Ei and Ai be the sets of
existentially resp. universally quantified variables in Vi, i.e., Ei ∪ Ai = Vi. A
model M of the formula is then a set of functions

M := {fvk
: Bk−1 → B | vk ∈ En},

where every fvk
depends exactly on the k − 1 variables from Vk−1.5

This definition is essentially the same as the one used by Kleine Büning [26].
It is also used in sKizzo [27] to certify satisfiable resp. valid instances. The
functions fv are also called Skolem-functions. Using our extension rule we can
provide a model as a set of extensions to the formula by defining new variables
representing the value of the Skolem functions. Our certificate thus contains a
list of pairs of the form (v, fv) where fv is the fresh variable encoding the Skolem-
function for v. With this approach, we have implemented model generation for
two solvers, Ebddres and Squolem, presented in detail in Sect. 3. A general
discussion for model generation with the extension rule for different QBF solvers
is presented below.

As discussed above, new variables have to be ordered carefully. If they are
simply quantified in the innermost scope, the corresponding function could de-
pend on variables with higher quantification level than the one that it serves as
a model for. For example, in a formula with the quantification sequence ∃e∀a∃g,
the newly defined variable g may depend on the value of a, which may turn the
defined function into an invalid model. Therefore our proof checker orders ex-
tension variables as low as possible, i.e., right after the variable with the highest
quantification level occurring in the extension function. Checking that a model
function does not depend on higher quantification levels is then trivial again.

However, checking the validity of a model according to Def. 3 is co-NP com-
plete [26, 28]. In general, our approach is to check each clause individually to be
tautological, leveraging incremental SAT solver technology. This can be achieved
by keeping the model functions in the SAT solver and adding the negation of
a clause, i.e., the negations of the clauses literals, as assumptions. The result-
ing problem must then be unsatisfiable, which means that it is impossible to
unsatisfy the given clause with the model provided. It is possible to provide a
refutation proof for each of those sub-problems (or, alternatively, for the whole
formula instead of separate clauses). The complexity of checking this (anno-
tated) model for validity is then polynomial in the size of the certificate. So far,
our certificates only contain the Skolem-functions. In future, we will study how
providing a refutation for each clause in the model affects the model generation
time and model size, as well as the model verification time.

In Skolemization-based solvers constructing a model is easy, since the solvers
basic strategy is to construct a model; it just has to dump the Skolem-functions
5 It is also possible to let the fvk only depend on the universally quantified variables

of Vk−1. However, our definition may result in more compact representations of the
functions fvk .



it generates. DPLL- and search-based solvers split on variables using different
strategies. Assuming the formula is valid, the solver always encounters either unit
clauses, and propagates this information, or splits on a new variable. Whenever
a unit clause (l) occurs under some variable assignment α to other variables, we
can read this as α ⇒ l, which corresponds to one entry in the function table
of the model function for the variable of l. This information can immediately
be dumped as xi = a1 ∧ ... ∧ an, where xi is a fresh variable and the ai are
the literals from α. When the evaluation is finished, the final model-function is
fv = x1 ∨ · · · ∨ xn.

In Q-Resolution-based solvers, particularly [16, 20], one can interpret any
resolution between two clauses c1 and c2 into a resolvent as the generation of
a conflicting clause. For instance, if c1 contains a literal x and c2 contains ¬x,
then ¬(c1\{x}) ∧ ¬(c2\{¬x}) may not happen, because x would have to be 1
and 0 at the same time to satisfy both clauses. One strategy to record a model
is to start with overspecified functions and to refine them whenever resolution
is applied. BDD-based solvers implementing the bucket algorithm [18] (and also
Ebddres) store intermediate BDDs for variables to be eliminated. From these,
it is possible to dump Skolem-functions using the extension rule. The procedure
for Ebddres is presented in more detail in Sect. 3.

An alternative way of providing a model is to provide a refutation for the
negation of a valid formula (which would then be invalid). Experiments that
negate a formula by translation of the resulting DNF back to a CNF using
the Tseitin-transformation have shown that this approach is infeasible. All of
the problems that could be solved within 600 seconds by three different solvers
(Quantor, sKizzo, Squolem) could either not be solved within the same time
when inverted, or took considerably more time to solve.

3 Implementation

We implemented Squolem, a new skolemization-based solver, which generates
both models and refutations. Squolem eliminates quantifiers from the inside
out by explicitly generating Skolem-functions for existential variables. For each
variable that is about to be eliminated, it collects all clauses in which the variable
occurs and interprets them as implications, e.g., (a∨ b) is interpreted as ¬a→ b.
The set of these implications essentially forms a function, by which the variable
is replaced.

In case of conflicting implications, e.g., ¬a→ b and ¬a→ ¬b, a clause stating
that this case cannot happen, e.g., (a), is added. In terms of the resolution
calculus, the conflict clause can directly be obtained as a resolvent from the two
conflicting implications. The process is iterated until either a complete model has
been constructed, or conflicting unit clauses occur. In the first case we output the
model, in the second case we output a q-resolution trace constructed from the
information about a clause’s parents, which we record during model construction.

We have instrumented two other already existing solvers, (i) the BDD-based
solver Ebddres [29, 30] and (ii) the search-based solver Quaffle [12]. Ebddres



produces both models and refutation traces whereas with Quaffle we are so far
limited to refutation traces. Unfortunately, in case of Quaffle we also had to
disable learning, since we cannot trace long distance resolution steps, as already
discussed above. Ebddres is a BDD-based QBF solver that eliminates variables
starting from the innermost scope. In order to eliminate a variable x, Ebddres
first builds a conjunction of all the clauses containing x and then quantifies x
using one standard BDD OR- resp. AND-operation if the variable is existential
resp. universal. After all variables are eliminated, a constant BDD is obtained.
For simplicity, the variable ordering for the BDDs is the reverse of the QBF
variable order. Thus, root variables are always eliminated.

Ebddres produces refutations by introducing a Tseitin variable for each
BDD node. This Tseitin variable is defined to be an if-then-else gate. Given a
BDD node n, let x be its variable and t, t0, and t1 the Tseitin variables introduced
for n, its left child, and its right child, respectively. Then the definition of t is
t⇔ (x ? t1 : t0). Thus, if x is true (false), the Tseitin variable t1 (t0) has to be
true. The refutation is constructed by first showing that the Tseitin variables for
the root nodes of the BDDs for every original clause have to be true. Then the
logical operations of the solving algorithm are traced until it is shown that the
Tseitin variable for the constant BDD zero has to be true, a contradiction. All the
details except for universal quantification can be found in [29, 30]. For universal
quantification, the proof rule is as follows. Let x be a universal variable to be
eliminated and t the variable corresponding to the root node of the BDD which
is the conjunction of all the clauses containing x. We have derived that t must
be true. The definition of t introduces (among others) the clause (¬t ∨ x ∨ t0).
Resolving this with (t) yields (x∨t0) which, based on Def. 1, can be forall-reduced
to (t0) since t0 is not in the scope of x. The proof for t1 is similar.

Ebddres produces models as follows. In the bucket algorithm, when variable
x is to be eliminated, a BDD containing precisely all the constraints on x is
built. Going from the root to the child where x is true (right child) gives another
BDD that encodes all the valuations where x has to be true to satisfy all the
constraints. If x is existential, then this is precisely a Skolem-function for x.
Thus the certificate consists of definitions of the Tseitin variables for this BDD
and the Skolem-function is set to be equivalent to Tseitin variable of the root
(analogously, we could have chosen the negation of the left child).

For the search-based solver Quaffle, the refutation is constructed as follows.
Assume (without loss of generality) that the innermost scope is existential. If
the instance is unsatisfiable, both choices for the truth value of an existential
variable lead to a conflict. For a universal variable, at least one choice leads to
a conflict. Whenever a conflict is reached, a conflict clause can be derived.

We produce refutation proofs from these conflict clauses. Consider for in-
stance the simple search tree example presented in Fig. 1 and let the solid lines
denote paths to conflicts. Let the left (right) arrow from a node mean setting the
truth value of a variable to false (true). Now, the leftmost path (¬x ∧ ¬y ∧ ¬z)
leads to a conflict producing the conflict clause (x ∨ y ∨ z). Similarly, the path
(¬x∧¬y∧z) produces the clause (x∨y∨¬z). We resolve these, and forall-reduce



the result (x ∨ y) and thus obtain the clause (x). Similarly, from the conflict
clauses from the right-hand side (where x is true) we get (¬x) and resolving the
two, the empty clause. The above representation is simplified. Our experimental
work has revealed that in most cases not a complete conflict clause is obtained
but one that subsumes it. The consequence of this is that it is possible to omit
some resolution steps.

If a formula has a large alternation depth,

∃x

∀y

∃z

Fig. 1. Quaffle search tree.

our proof-generation algorithm starts by re-
solving the literals from the innermost exis-
tential scope. Subsequently, the new clauses
are forall-reduced to eliminate the enclosing
universal scope. Then, the proof generation
eliminates the second innermost existential
scope and thus alternates between resolution
and forall-reduction until the outermost scope.

Note that we have only been able to in-
strument Quaffle without learning. So far,
it is an open problem how to handle long-

distance resolution in the presented framework. Secondly, we are not able to
create certificates, only refutation traces.

To verify the certificates that we extract, we implemented QBV, the Quan-
tified Boolean Verifier. The implemented algorithm executes applications of our
extension rules and q-resolutions, as listed in the certificate. The last statement
in a certificate is a conclusion line that either provides the index of an empty
clause (for refutations), or a list of equivalences of variables for a model. As
suggested in [27], we check every clause separately against the model. For this
purpose we use MiniSAT (Version 1.14p) in incremental mode, i.e., we load the
model into MiniSAT and then add the negation of a clause as an assumption,
which must result in an unsatisfiable problem. As stated earlier, this problem
is in general Co-NP complete. In a future version we will provide support for
refutations for every clause in the original formula, such that the complexity of
this step becomes polynomial (with adverse effects on the certificate generation
time).

4 Experimental Results

To show that certificate extraction is feasible we have conducted experiments
on the 2005 fixed instance and the 2006 preliminary QBF-Eval6 datasets, in
total 445 test cases. We used Ebddres, Quaffle, and Squolem to generate
certificates, and verified them using QBV.

The tests for Ebddres and Quaffle were run on a cluster of Intel Pen-
tium IV PCs (3 GHz) with 2 GB RAM each. We set a time limit of 600 seconds
and a memory limit of 1 GB. Ebddres is able to create a model for 80 instances

6 http://www.qbflib.org/



and a refutation trace for 86 instances. For Quaffle (without learning), 26
instances could be refuted. We first compare the time required to solve an in-
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Fig. 2. Certificate Generation Time vs. Solver Time for (a) Ebddres and (b) Quaffle

stance to the time needed to create the certificate. The results for Ebddres and
Quaffle are shown in Figs. 2(a) and 2(b), respectively. They show that for
both solvers, generating a certificate takes longer than solving the instance. For
Ebddres the overhead for models is about 15% and for refutations 440%. This
behavior is probably due to the fact that the refutation files for Ebddres are
so large, that merely saving them takes a lot of time. The same overhead is also
observed in the propositional case [29, 30].

For Quaffle the overhead is even higher, 1440%. However, this result is
not illustrative since we were only able to solve very few instances and these
instances belong to only 6 families. For one instance, ‘k lin p-4’, the trace gen-
eration overhead is only 1.6%.

We also compare the time needed to validate certificates to the time it takes
to generate them. The results for Ebddres and Quaffle are shown in Figs. 3(a)
and 3(b). Our experimental results show that, for Ebddres, it takes on average
longer to validate a certificate; again the overhead depends heavily on whether
the instance is valid or invalid. Validating models, takes on average over 100
times longer than to generate them. QBV actually times out on 15 instances
(time limit 600 seconds) where model generation is feasible. Refutations, on the
other hand, can be verified quicker, the ratio is 5.4. For Quaffle, the trace
validation times are neglible (on average < 0.04 seconds), as Fig. 3(b) shows.
The observed behavior is in line with the fact that verifying a model is in general
Co-NP complete whereas a resolution trace can be verified polynomially.

The tests for Squolem were run on an Intel Xeon 3.0 GHz machine with 4
GB RAM. Out of 445 instances in the original dataset, our solver finishes on 142
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Fig. 3. Certificate Generation Time vs. Validation Time (a) Ebddres and (b) Quaffle

within 600 seconds and a memory limit of 1 GB; 73 instances were found to be
valid, 69 invalid.

First we compare the time to solve an instance to the time needed to generate
a certificate. Naturally, in a purely Skolemization-based solver, there is a small
difference in those times. Fig. 4(a) shows that the overhead of certificate genera-
tion is usually very small (on average 3.5% for models and 4.5% for refutations,
with respect to solving time).
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Fig. 4. (a) Certificate Generation Time vs. Solver Time and (b) Certificate Generation
Time vs. Validation Time for Squolem



As a second experiment, we investigate the time taken to validate a certifi-
cate. Fig. 4(b) shows that the time taken to validate a refutation is negligibly
small (on average < 0.01 seconds); certificates of validity, on the other hand,
take on average 2.38 seconds to validate. The main contribution to this time
is the instance ‘qshifter 7’, which takes 144 seconds to validate. Excluding this
instance, the average validation time is 0.4 seconds. The reason for this extraor-
dinary high runtime on just this single instance is that MiniSAT actually runs
into a hard problem: 97% of the runtime is spent on the final model validation.

An interesting property of certificates is the size of the generated files. Table 1
gives an overview of the relative size of the generated certificates, with respect to
the size of the original formula file. We present the traces in the original ASCII
format as well as compressed with gzip. The data indicates that the certificates
generated by Ebddres are very large compared to Quaffle and Squolem.
Furthermore, its refutations (tracing complex BDD operations) are larger than
its models. For Squolem, on the other hand, the numbers suggest that models
are considerably larger than refutations. The certificate format is not optimized
for file size, but as the data indicates, the files compress well with gzip, if smaller
files are required.

Normal Compressed

Solver Type Best Avg. Worst Best Avg. Worst

Ebddres Valid <0.1 210.9 3304.3 <0.1 52.3 784.8
Invalid 1.0 6857.6 145414.0 1.0 1594.3 31948.3

Quaffle Valid - - - - - -
Invalid <0.1 3.4 17.0 <0.1 1.3 5.0

Squolem Valid 0.7 10.1 175.6 0.2 2.8 49.6
Invalid <0.1 3.3 55.0 <0.1 0.8 10.4

Table 1. Relative size of the generated certificates.

Finally, we compare our solvers with two state-of-the-art solvers, Quantor
and sKizzo. As Quaffle only produces refutation traces, we have no data on
valid instances for this solver. Thus, we chose to provide the number of invalid
instances that each solver is able to solve within 600 seconds and a 1 GB memory
limit, from the total 205 in the data set. The numbers in Tbl. 2 indicate that
our solvers together can solve about half as many instances.

Ebddres Quaffle Squolem Quantor sKizzo

Solved Instances 80 26 69 153 175

Solved Inst. (Union) 90 178

Table 2. The number of solved instances in the test set.



5 Reference Implementations

Ebddres, the instrumented version of Quaffle, and the exprimental data can
be downloaded from http://fmv.jku.at/ebddres. Squolem, the certificate
validator QBV, the experimental data, and a formal specification of the sup-
ported certificate format are available at http://www.verify.ethz.ch/qbv.

6 Conclusion

We show that it is possible to define a proof format for QBF that is applicable to
a wide range of different QBF solvers. Nevertheless, important common features
of other QBF solvers cannot be traced efficiently in this format. Even though it
seems that existential expansion steps of structural QBF solvers can be traced
with our format, we do not know how to trace universal expansion steps with
the current set of rules. The same applies to long distance resolution. This is in
contrast to SAT, where just adding the extension rule generates a proof calculus,
which is as powerful as any other known propositional proof system.
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