Comprehensive Comprehensions
Comprehensions with ‘Order by’ and ‘Group by’

Philip Wadler
University of Edinburgh

Abstract

We propose an extension to list comprehensions that makes it
easy to express the kind of queries one would write in SQLgisin
ORDER BY, GROUP BY, andLIMIT. Our extension adds expressive
power to comprehensions, and generalises the SQL corsthatt
inspired it. Moreover, it is easy to implement, using simgésug-
aring rules.

1. Introduction

List comprehensions are a popular programming languagaréea
Originally introduced in NPL [Dar77], they have made theiayw
into Miranda, Haskell, Erlang, Python, and Scala, amongeroth
languages.

It is well known that list comprehensions have much in com-
mon with database queries [TW89], but they are significaetg
powerful. For example, consider this SQL query

SELECT dept, SUM(salary)

FROM employees

GROUP BY dept

ORDER BY SUM(salary) DESCENDING
LIMIT 5

TheGROUP BY clause groups records together; tRDER BY sorts
the departments in order of salary bill; and tEMIT clause picks
just the first five records. This support for grouping andisgris

extremely useful in practice, but is not available in listrgrehen-
sions.

In this paper we propose an extension to list comprehensions
that makes it easy to express the kind of queries one wouté wri
SQL usingORDER BY, GROUP BY, andLIMIT. Here, for example,
is how the above SQL query would be rendered in our extension.

(the dept, sum salary)

| (name, dept, salary) <- employees
group by dept

order by Down (sum salary)

order using take 5].

Moreover, our extensions are significantly more general 8@L's
facilities. We make the following contributions.

[Copyright notice will appear here once ’preprint’ optiaremoved.]

Simon Peyton Jones
Microsoft Research

¢ We introduce two new qualifiers for list comprehensionsjer
and group (Section 3). Unusuallygroup redefines the value
and type of bound variables, replacing each bound variaple b
a list of grouped values. Unlike other approaches to graypin
(as found in Kleisli, XQuery, or LINQ), this makes it easy to
aggregate groups without nesting comprehensions.

Rather than having fixed sorting and grouping functionshbot
order by andgroup by are generalised by an optionaling
clause that accept any function of types

Va.(a — 1) — [a]l — [al
Va.(a — 1) — [a]l — [[all

respectively (Sections 3.2 and 3.5). Polymorphism eldgant
guarantees that the semantics of the construct is independe
of the particulars of how comprehensions are compiled.

e We present the syntax, typing rules, and formal semantics of
our extensions, explaining the role of parametricity (8ect).
Our semantics naturally accommodates the zip comprehansio
that are implemented in Hugs and GHC (Section 3.8).

e We show that the extended comprehensions satisfy the usual
comprehension laws, plus some new specific laws (Section 5).

Other database languages, such as LINQ and XQuery, havarsimi
constructs, as we discuss in Section 7. However, we beli@tend
other language contains the same general constructs.

2. The problem we address

List comprehensions are closely related to relationalutagand
SQL [TW89]. Database languages based on comprehensions in-
clude CPL [BLS 94], Kleisli [Won00], Links [CLWYO06], and the
LINQ features of C# and Visual Basic [MBB06]. XQuery, a query
language for XML, is also based on a comprehension notation,
called FLWOR expressions [BC®7]. Kleisli, Links, and LINQ
provide comprehensions as a flexible way to query databeses,
piling as much of the comprehension as possible into effiSEIL;
and LINQ can also compile comprehensions into XQuery.

Many SQL queries can be translated into list comprehensions
straightforwardly. For example, in SQL, we can find the name a
salary of all employees that earn more than 50K as follows.

SELECT name, salary
FROM employees
WHERE salary > 50

As alist comprehension in Haskell, assuming tables aresemted
by lists of tuples, this looks very similar:

[(name, salary)
| (name, salary, dept) <- employees
, salary > 50]

2007/6/18

Here we assume thamployees is a list of tuples giving name,
salary, and department name for each employee.

While translatingSELECT-FROM-WHERE queries of SQL into list
comprehensions is straightforward, translating othetuies, in-
cluding ORDER BY andGROUP BY clauses, is harder. For example,
here is an SQL query that finds all employees paid less than 50K
ordered by salary with the least-paid employee first.

SELECT name

FROM employees
WHERE salary < 50
ORDER BY salary

The equivalent in Haskell would be written as follows.

map (\(name,salary) -> name)
(sortWith (\(name,salary) -> salary)
[(name,salary)
| (name, salary, dept) <- employees
, salary < 50 1)

Since we cannot sort within a list comprehension, we do fahe
job in alist comprehension (filtering, and picking just tteeme and
salary fields), before reverting to conventional Hasketidtions to
first sort, and then project out the name field from the sorésdilt.
The functionsortWith is defined as follows:

Ord b => (a -> b) -> [a] -> [al
sortBy (\ x y ->
compare (f x) (f y))

sortWith ::
sortWith f

It takes a comparison-key extractor functibnwhich extracts from
each input record the key to be used as a basis for sorting. The
functionsortBy is part of the Haskell Prelude, and has type

sortBy :: (a -> a -> Bool) -> [a] -> [a]

It is given the function to use when comparing two elementhef
input list.

TranslatingGROUP BY is trickier. Here is an SQL query that
returns a table showing the total salary for each department

SELECT dept, sum(salary)
FROM employees
GROUP BY dept

An equivalent in Haskell is rather messy:

let
depts
nub [dept
| (name,dept,salary) <- employees]

in
[(dept,
sum [salary
| (name,dept’,salary) <- employees
, dept == dept’])
| dept <- depts]

This uses the library function

nub :: Eq a => [a] -> [a]

which removes duplicates in a list. Not only is the code hard t
read, butitis inefficient too: themployees listis traversed once to
extract the list of departments, and then once for each ttepat to
find that department’s salary bill. There are other ways tibarhis
in Haskell, some with improved efficiency but greater comibje
None rivals the corresponding SQL for directness and glarit

It is tantalising that list comprehensions offer a notatioat is
compact and powerful — and yet fails to match SQL. Furtheemor
ORDER BY andGROUP BY are not peripheral parts of SQL.: they are
both heavily used.

Thus motivated, we propose some modest extensions to the
list-comprehension notation that allows such SQL querebd
expressed neatly. For example, the two queries above car-be e
pressed using our extensions like this:

[name

| (name, salary, dept) <- employees
salary < 50

order by salary]

>

>

[(the dept, sum salary)
| (name, salary, dept) <- employees
group by dept]

>

Our extensions are modest in the sense that they can beregblai
in the same way as before, by a simple desugaring translation
Furthermore, they embody some useful generalisationsatieaiot
available in SQL.

3. The proposal by example

We now explain our proposal in detail, using a sequence ahexa
ples, starting wittorder by and moving on tgroup by. We use
informal language, but everything we describe is made peeiti
Section 4. To avoid confusion we concentrate on one paaticdt
of design choices, but we have considered other variantse akis-
cuss in Section 6.

We will use a table listing the name, department, and salary o
employees as a running example.

employees :: [(Name, Dept, Salary)]
employees = [("Simon", "MS", 80)
("Erik", "MS", 100)
("Phil" s "Ed" s 40)
("Gordon", "E4", 45)
("Paul", "Yale", 60)]
3.1 Order by
The SQL query

SELECT name, salary
FROM employees
ORDER BY salary

is expressed by the following comprehension

[(name, salary)
| (name, dept, salary) <- employees
, order by salary]

which returns

[("Phil", 40)
("Gordon", 45)
("Paul", 60)
("Simon", 80)

, ("Erik", 100)]

The sort key (written after the keywortdy) is an arbitrary
Haskell expression, not just a simple variable. Here, faneple,
is a rather silly comprehension, which sorts people by thelpct
of their salary and the length of their name:

[(name, salary)
| (name, dept, salary) <- employees
, order by salary * length name]

However, this generality has more than frivolous uses. We ca
readily sort by multiple keys, simply by sorting on a tuple:

[(name, salary)
| (name, dept, salary) <- employees

2007/6/18

, order by (salary, name)]

But suppose we want th@ghest salary first? SQL uses an addi-
tional keyword DESCENDING:

SELECT name, salary
FROM employees
ORDER BY salary DESCENDING name ASCENDING

We can use the power of Haskell to express this, simply byguein
different key extractor:

[(name, salary)
| (name, dept, salary) <- employees
, order by (Down salary, name)]

whereDown is elegantly defined thus:

newtype Down a = Down a deriving(Eq)
instance Ord a => Ord (Down a) where
compare (Down x) (Down y) =y ‘compare‘ x

SinceDown iS anewtype, it carries no runtime overhead,; it simply
tells Haskell how to build the ordering dictionary that isspad to
the sorting function.

3.2 User-defined ordering

Another useful way to generaliseder is by allowing the user to
provide the sorting function. For example, she may know éigar
ularly efficient way to sort the records — perhaps these paler
records have an integer index, so that radix sort is availablor
perhaps she wants a non-lexicographic comparison methpete
ple’s names. We therefore generalisgler to take an (optional)
user-defined function:

[(name, salary)
| (name, dept, salary) <- employees
, order by name using strangeSort]

If strangeSort sorts on the second letter of the person’s name we
would get

[("Paul", 60)
, ("Phil", 40)
, ("Simon", 80)
, ("Gordon", 45)
, ("Erik", 100) 1]

Here “using” is a new keyword that allows the user to supply the
function used for ordering the results:

strangeSort :: (a -> String) -> [a] -> [al

Omitting the “using f” clause, as we did in the previous section, is
equivalent to writing tising sortWith” (a function introduced in
Section 2).

Furthermore, there is nothing that requires that the usppléed
function should deorting! Suppose, for example, that we want to
extract all employees with a salary greater than 70, higbaistry
first. In SQL, we could do so as follows:

SELECT name, salary

FROM employees

WHERE salary > 70

ORDER BY salary DESCENDING

This translates to the comprehension

[(name, salary)

| (name, dept, salary) <- employees
, salary > 70

, order by Down salary]

which returns

[("EI‘ik" s
, ("Simon",

100)
80) 1

However, we might want to write this more efficiently, firstisthe
list and then only take elements while the salary is abovdirttie

[(name, salary)

| (name, dept, salary) <- employees

, order by Down salary

, order by salary > 70 using takeWhile]

This uses the standard library function to extract theahgegment
of a list satisfying a predicate.

takeWhile :: (a -> Bool) -> [a] -> [a]

In general, we can write
order by e using f
whenevere has typer and f has type
Va.(a — 1) — [al — [al.

We require f to be polymorphic in the element type which
guarantees that it gives uniform results regardless of ype bf
tuple we present, but we do not require it to be polymorphic in
the comparison-key type. Intuitively, the user-supplied function
will be given a list of records whose exact shape (how mangdiel
laid out how) is a matter for the desugaring transformattemthe
desugaring transform supplies the functifrwith a comparison-
key extraction function, whiclf in turn uses to extract a compari-
son key from each record. This key has a tyfdéxed by the sorting
function (not the desugaring transform). We return to thesgjion
of polymorphism in Section 4.4.

3.3 Dropping theby clause in ordering

The ability to process the record stream with a user-defined-f
tion, rather than with a fixed set of functions (sort ascegdgsort
descending, etc) is a powerful generalisation that takegalisbe-
yond SQL. Indeed, another apparently-unrelated SQL cacistr
LIMIT, turns out to be expressible usibegder using. Suppose
we want to find the three employees with the highest sala§Qh,
we would use th&IMIT notation:

SELECT name, salary

FROM employees

ORDER BY salary DESCENDING
LIMIT 3

We can do this using a trivial variant etder that drops the By”
clause:

[(name, salary)

| (name, dept, salary) <- employees

, order by Down salary

, order using take 3]

which returns

[("Erik", 100),
("Simon", 80),
("Paul", 60)1]

The effect of omitting theby clause is simply that the supplied
function is used directly without being applied to a keyragtor
function.

As a second (contrived) example, we could sort into desogndi
salary order by first sorting into ascending order and thearsng
the list:

[(name, salary)
| (name, dept, salary) <- employees

2007/6/18

, order by salary
, order using reverse]

In general, we can write
order using f

wheneverf is an arbitrary Haskell expression with type
Va. [a]l — [al.

Again, we requiref to be polymorphic in the element type
However, omitting by” is mere convenience, since

order using f = order by () using Azx. f

wherez does not appear ifi.

3.4 Group by

Having described howrder by works, we now move on to
group by. As an example, the SQL query

SELECT dept, SUM(salary)
FROM employees
GROUP BY dept

translates to the comprehension

[(the dept, sum salary)
| (name, dept, salary) <- employees
, group by dept]

which returns
[("MS", 180), ("E4", 85), ("Yale", 60)]

The only new keywords in this comprehension greup by. Both
the andsum are ordinary Haskell functions. The Big Thing to no-
tice is thatgroup by has changed the type of all the variables in
scope: before thgroup by each tuple contains a name, a depart-
ment and a salary, while after each tuple contaitistaf names, a
list of departments, andlest of salaries! Here is the comprehension
again, decorated with types:

[(the (dept::[Dept]), sum (salary::[Salary])
| (name::Name, dept::Dept, salary::Salary)

<- employees
, group by (dept::Dept)]

Hence we find the sum of the salaries by writisagm salary.
Functionthe returns the first element of a non-empty list of equal
elements:

the :: Eq a => [a] > a
the (x:xs) | all (x ==) xs = X

Thanks to thgroup by all values in thelept list will be the same,
and so we extract the department name by writihg dept.

Unlike SQL, which always returns a flat list, we can use compre
hensions to compute more complex structures. For exanmpliec
the names of employees grouped by department, we could write

[(the dept, name)
| (name, dept, salary) <- employees
, group by dept]

which returns

[("MS" s ["Simon" s "Erik"])
("Ed" s [llphilll s "Gordon"])
, ("Yale", ["Paul"])]

Or if we want to pair names with salaries, we could write

[(the dept, namesalary)
| (name, dept, salary) <- employees

, let namesalary = (name, salary)
, group by dept]

which returns

[("MS", [("Simon", 80), ("Erik", 100) 1])
("Ed", [("Phil", 40), ("Gordon", 45)])
("Yale", [("Paul", 60) 1)1

As above, the type afamesalary is changed by thgroup quali-
fier. Before thegroup qualifiernamesalary has type(Name, Salary),
but after it has typd (Name,Salary)]. In Section 4 we make pre-
cise what “before” and “after” mean, and we also formalise th
usual let notation for Haskell list comprehensions used in this
example.

3.5 User-defined grouping

Just as withorder, we can generalisgroup to take an (op-
tional) user-defined function. The default grouping fuomtiis
groupWith, which sorts on the group key:

groupWith :: Ord b => (a -> b) -> [a] -> [[a]]
groupWith f = groupBy (\x y -> £ x == f y)
. sortWith f
To accumulate adjacent groupsthout sorting, we may use the
following variant:
groupRun :: Eq b => (a -> b) -> [a] -> [[al]
groupRun f = groupBy (\x y -> f x == £ y)
For example, we may count the length of adjacent runs of srade
a given stock with the following.

[(the stock, length stock, average price)
| (stock, price) <- trades
, group by stock using groupRun]

If trades is the list

[("MSFT", 80.00)

, ("MSFT", 70.00)

, ("GOOG", 100.00)

, ("GOOG", 200.00)

, ("GOOG", 300.00)

, ("MSFT", 30.00)

, ("MSFT", 20.00)]

this returns

[("MSFT", 2, 75.00)
("GoOG", 3, 200.00)
("MSFT", 2, 55.00)]

In general, we can write
group by eusing f
whenevere has typer and f has type
Va. (@ — 1) — [al — [[all.

As before, we require f to be polymorphic in the element type
The only difference betweesort by andgroup by is that the
former takes a list to a list, while the latter takes a list tiisaof
lists.

3.6 Dropping the by clause in grouping

Itis also possible to drop thé&$” clause in a group. For example,
the following function breaks a stream into successive mina
given length.

runs :: Int -> [a] -> [[a]]
runs n = map (take n) . iterate (drop 1)

2007/6/18

For example, one can compute a running average over théiast t
trades for a given stock as follows.

[average price

| (stock, price) <- trades
, stock == ’MSFT’

, group using runs 3]

For the data above, this returns
[60.00, 40.00]

(since 60 = (80 + 70 + 30) / 3 and 40 = (70 + 30 + 20) / 3).
In general, we can write

group using f
wheneverf has type
Va. [a] — [[all

Again, we requiref to be polymorphic in the element type As
before, omitting by” is mere convenience, since

group using f = group by () using Az. f

wherex does not appear ifi.

3.7 Having

In SQL, while one filters rows witWHERE, one filters groups with
HAVING. Here is the previous query, modified to consider only
employees with a salary greater than 50K, and departmeuisga
at least ten such employees.

SELECT dept, SUM(salary)
FROM employees

WHERE salary > 50

GROUP BY dept

HAVING COUNT(name) > 10

In our notation, both th&@HERE andHAVING clauses translate into
guards of the comprehension.

[(the dept, sum salary)

| (name, dept, salary) <- employees
, salary > 50

, group by dept

, length name > 10]

The rebinding of variables to lists leads naturally to gsasdrving
the same purpose &R.VING clauses, when they appear after the
grouping operator.

3.8 Zp

GHC and Hugs have for some time supported an extension to

list comprehensions that makes it easy to draw from two Iists
parallel. For example:

[x+y
| x <- xs
|y <-ys1]

Here we draw simultaneously froms andys, so that ifxs is
[1,2,3] andys is [4,5,6] the comprehension returis,7,9].
Of course there can be multiple qualifiers in each of the felral
parts. For example:

[x+y
| x <- xs, order by x
Iy <-ysl

Here we sort the lisks before pairing with the corresponding
element ofys.

3.9 Parenthesised qualifiers

With the new generality of qualifiers, it makes sense to phesise
qualifiers. For example, consider

pl = [(x,y,2)
| (x <- xs
|y <-ys)
, z <- zs]

Here we draw fromxs andys in parallel, and then take all combi-
nations of such pairs with elements=f. For example, if

xs = [1,2]
ys = [3,4]
zs = [5,6]
then the comprehension would return
[(1,3,5), (1,3,6), (2,4,5), (2,4,6)]

It would mean something quite different if we wrote

p2 = [(x,y,2)
| x <- xs
I (y<-ys
, z <= zs)]

Here we take all combinations of elements frgm and zs, and
draw from that list anas in parallel. There are four elements in list
of combinations, but only two irs, so the extra ones are dropped,
and the query returns

[(1,3,5), (2,3,6)]

(The parentheses on the qualifiers are redundant in thisndeco
example, because we take comma to bind more tightly thaj bar.
Similar considerations apply rder andgroup. Consider

p3 = [(x,y)
| ¢ x <= [1..3]
, y <= [1..3]1)
, order by x >= y using takeWhile]

and
4 = [(x,y)
| x <= [1..3],
(y <= [1..3],

, order by x >= y using takeWhile)]

which differ only in how the qualifiers are parenthesisede Tirst
returns

[(1,0]
while the second returns
[(1,1, (2,1, (2,2, 3,1), (3,2), (3,3) 1.

Similarly, parentheses can be used to control exactly gewvnp
works. Consider

ps = [(x, y, the b)
| (x <= [1..3]
, y <= [1..3]
, let b= (x> 1y))
, group by b]
and
p6 = [(x, y, the b)
| x <= [1..3],
(y <= [1..3],

, let b = (x >=y)
, group by b)]

2007/6/18

which differ only in how the qualifiers are parenthesisede Tirst
returns

[(01,2,2,3,3,3], [1,1,2,1,2,3], True),
([1,1,2],[2,3,3], False)]

while the second returns

[(1, [1], True), (1, [2,3], False),
(2, [1,2], True), (2, [3], False),
(3, [1,2,3], True), (3, [], False)]

Not only the answers are different, but even thpges of the an-
swers. Since is in scope of thgroup in p5, it is bound to a list of
integers in the result, while sineeis not in scope ofroup in p6
comprehension, it is bound to an integer in the result.

If no parentheses are used, bottder andgroup scope as far
to the left as possible, so that

p3’ = [(x,y)
| x <= [1..3]
, y <= [1..3]

, order by x >= y using takeWhile]

behaves the same as example As we shall see in the next
section, the syntax ensures that there is always a qualifignet
left of anorder or group.

All of this may seem a little tricky, but the good news is that
parentheses are never required. Instead, one can simphynested
comprehension, at some modest cost in duplicated variabte b
ings. For examplep4 can be written:

4’ = [(x,y)
| x <- [1..3],
, y <= Iy |y <= 1[1..3]
, order by x >= y using takeWhile]]

4. Semantics

We now explain the semantics of extended comprehensiook; 1o
ing at the syntax, the translation into a language withontme-
hensions, the type rules, the role of parametricity, andltnrate
translation.

4.1 Syntax

The syntax of comprehensions is given in Figure 1. Werlet, =
range over variablesg, f, g over expressionsw over patterns,
andp, g, range over qualifiers. A comprehension consists of an
expression and a qualifier. There are two qualifiers that aisidgle
variable (generators anrkt), two that bind no variables (guards
and empty qualifiers), two that combine two qualifiers (czie®
product and zip), and two that modify a single qualifier (orde
and group). In a generator the expression is list-valuediewh

a guard the expression is boolean-valued. On the left hatel si
of a generator is a pattern which is (for now) an arbitrarigsted
tuple of variables. The empty qualifier is not much use in ficat
programs, but can be useful when manipulating comprehessio
using laws.

The grammar explicitly indicates that parentheses may bd us
with qualifiers. The order and group constructs extend agdar
the left as possible, and comma binds more tightly than bae. T
cartesian product of qualifiers is associative, so fhdy, r) and
(p, q),r are equivalent.

In the order and group constructs, either theclause or the
using clause may be optionally omitted, but not both. A missing
using clause expands to invoke the default functiarstwith
andgroupWith as defined in Sections 3.1 and 3.4:

g,order bye = ¢,order byeusing sortWith
g,group bye = g¢,group by e using groupWith

Variables =z,y, z

g, order [by €] [using f] Order

q,group [by €] [using f] Group
(g) Parentheses

Expressions e, f,g:=... | [elq]

Patterns w ==z | (w1,...,wn)

Qualifiers

p,q,r = w<-e Generator

| letw=e Let
| e Guard
) Empty qualifier
| pa Cartesian product
| »plgq Zip
|
|

Figure 1. Syntax of list comprehensions

TFg=A T,Ake:7T

COMP
I'Elelql:[7]
R

— VA
Fz:r={z:7}

Fw1:7'1:>A1
I—(wl,...,wn):(ﬁ,...

I'Fe:Bool
— GUARD —— UNIT
'ke=() r-0)=10

Fwn:mh = An
,Tn) = A1 U UA,

TUP

T'kte: 7] Fw:Tt=A
TFw<-e= A

GEN

F'Fe:7 Fw:t=A
'kletz=e= (z:7)

LET

F'kp=A T, Arqg= A/
I'kp,qg=AA

COMMA

'Fp=A TI'kFqg= A’
Fkplg=AA

BAR

'kFg=A T,AkFe:T
'k f:Va. (a—7)— [al — [al

I' - g,order byeusing f = A

ORDERL

I'tg=A TF f:Va. [la]l — [a]
T'F g,order using f = A

ORDER2

TFg=A T,Ake:7T
'k f:Va.(a —7)— [al — [lal]

I' - q,group by eusing f = [A]

GROUFL

I'q=A T'F f:Va. [lal — [[al]
I' - q,group by eusing f = [A]

ROUR2

Fi 2. Typing of list hensi
Igure 2. Typing otlist comprehensions - .o

A missingby clause expands as described in Sections 3.3 and 3.6: in the pattern, a guard or empty qualifiers binds no varigbles
a cartesian product or zip binds a pair consisting of the Houn

(ol i d b ing Ax. . . .
g,order using f g,order by () usingAz. f variables of the two contained qualifiers, and an order ougro

q,group using f = ¢q,group by () using A\z. f

binds the same tuple as its contained qualifier.
wherez does not appear ifi. We give typing rules and translations The semantics of qualifiers is also straightforward (Figlye
for missingby clauses directly, but the same rules can be derived A generator just returns its associated list, ariba returns a sin-
by applying the above expansion. gleton list consisting of the bound value. A guard returribegia
singleton list or an empty list, depending on whether theldsro
4.2 Types expression is true or false. The empty qualifier returns glston
The type rules for comprehensions are given in Figure 2. We le list containing the empty tuple. The cartesian product af tual-
T range over typesg range over type variables, afd and A ifiers is computed in the usual way [Wad92], mapping over each
range over environments mapping variables to types. Thiadgyp list of bindings to form a list of list of tuples, and concading the
judgement I e : 7 indicates that in environmeiitthe terme has result. The zip of two qualifiers is particularly straightfard —
typer. We only give here the rule for comprehensions (iwdavp). it just applieszip! Note thatp, q is defined so that the bound vari-
The typing judgement w : 7 = A indicates that patterm ables ofp are in scope when evaluatiggwhile p | g is defined so
of type 7 binds variables with typings described By A variable that the bound variables pfarenot in scope when evaluating
yields a single binding (rulgar), while a tuple yields the union of The order construct simply applies the function in theing
its bindings (ruleTup). clause to a lambda expression over the bound tuple with thg bo
The typing judgemertt - ¢ = A indicates thatin environment given in theby clause and the bindings returned by the contained
I the qualifierq binds variables with typings described Hy. A qualifier. Thegroup construct is similar, except the given function
guard and the empty qualifier yield no bindings (rusarbp and returns a list of list of tuples, which is converted to a lituples of
UNIT), while a generator andizt binding yield a binding for each lists by mapping with thenzip function. An auxiliary definition
variable inw (rulesGEN andLET). specifies a suitable versionafizip corresponding to the structure
A cartesian product and a zip yield the bindings introducgd b of the tuple of bound variables.
their contained qualifiers (rulesoMmA andBAR). However these To illustrate theunzip, consider again our example from Sec-
two rules are not identical: in the cartesian product alldivigs tion 3.4

introduced by the qualifier on the lgftare in scope for the qualifier
on the rightg, while this is not the case for a zip. [(the dept, sum salary)

. . | (name, dept, salary) <- employees

The rules forrder andgroup require thatf has a polymorphic roup by dept]

type and, in the case where there isyaclause, the return type » BTOUp by dep
of f's argument function must match the typecofrulesoRDERL The comprehension desugars as follows:
andGROUPL). The typing rules for group also indicate that the type
of the bound variables changes to contaits of the previous type
(rulesGrRoOUPL andGROURR). If A is the environment

map (\ (name,dept,sal) -> (the dept, sum sal))
(map unzip3
(groupWith (\ (name,dept,sal) -> dept)

T1:iTl,...,Tn:Tn employees))
then[A] is the environment The functionsgroupWith andsortWith were introduced in Sec-
21 [m] e 7] tions 2 and 3.5 respectively, while the standard Preludetiom

Note that in anorder or a group, the bindings yielded by the unzip3 :: [(a,b,c)] -> ([al, [b], [c])

contained qualifiey; are in scope for the expressienin the by implementSimzip (pane , dept, sa1) - L€t us follow how this works
clause, but not in scope for the expressjoim theusing clause. in detail. Here is the orfginal list of employees:
4.3 Translation employees = [("Simon", "MS", 80)

("Erik", "MS", 100)

We define the dynamic semantics of comprehensions by giving

a translation into a simpler, comprehension-free langudge ’ (::Phil"’" ::Ed:’ 40)
translation is given in Figure 3. It is specified in terms ofotw ’ ("Gordfn ’ "Ed . 45)
operations on qualifiers. if is a qualifier, then » ("Paul”, Yale", 60)]
e ¢, is a tuple of the variables bound in After applyinggroupWith we get
¢ [q] is the list of tuples computed hy groupWith (\(name,dept,sal) -> dept) employees

. = [[("Simon", "MS", 80)
For example, for the qualifier , ("Erik", "MS", 100) 1]

g = x <- [1,2,3], y <- [4,5] , [("Phil", "Ed", 40)
. . , ("Gordon", "E4", 45) 1]

the tuple of bound variables is . [("Paul", "Yale", 60) 1]

@ = x,y) Unzipping turns each list of triples into a triple of lists:

while the list of bindings is .
map unzip3

[q] = [(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]. (groupWith (\(name,dept,sal) -> dept) employees)
The top-level translation for comprehensions is given by =L EE,,i;ﬁ?’ "'Ggi(:;l;n:'l'j) E,,gi,, : ,,gi,,% : Eig:ig?] ;
[elql = map (Aqu.€) [q]. , (["Paul"], ["Yale"], [60])]

The definition ofq,, the tuple of variables bound by, is Finally, mapping(\ (name,dept,sal) -> (the dept, sum sal))
straightforward (Figure 3). A generator et binds the variables over this list gives the desired result

7 2007/6/18

[elq]l = map(Aqu.e)[q]
(w<-€)p = w
(letw=d), = w
(9 = ()
Ov = 0
(p 7q)u = (Po,)
®lgw = (pvaq)
(¢, order [by €] [using f])u = qu
(¢, group [by €] [using f])u = qu
[w<-€e] = e
[letw=d] = I[d]
[9] = ifgthen[(] else []
[01 =[0I
[p.d] =
[plal = zip[p] [q]
[g,order by eusing f] = [(Aq-e)[q]
[g, order using f] = f[q]
[g, group by eusing f] =

concat (map (Apy. map (Aqw. (Pv, q)) [q]) [r])

map unzip, (f (Ago-€) [[‘Z]])
f

lg, group using f] = mapunzip, (f [q])
unzip,e = ()
unzip, e = e
unzip,,)€ = (unzip,, (map (A(z1,...,2n).x1)e€), ..., unzip, (map (A\(z1,...,%n).Tn)e))
Figure 3. Translation of comprehensions
b, Q)U = pPv®qu
Plae = PO
[p.q] = concat (map (Ap,. map (Agv. pv ® qv) [a]) [P])
[plal = zipWith (Apv. Aqw- pv ® qv)[p] [4]

Figure 4. Translation of comprehensions with tuple concatenation

[elz<-¢€'1]
[elletw=4d]

[ele]
[el O] [e]l
Lelp.q]

[e | g, order by e using f]
[el g, order using f]
[el g, group by e’ using f]
[el g, group using f]

map (Az. e) €’
let w=d in [e]
if e then [e] else []

concat [[el gl |p]

[elgo<-f(Agv-€) [qulqll
lelg<-flqlqgll

Lel g <-mapunzip, (f(Agw.€')[gvlql)]
Lel go<-mapunzip, (f [gvlql)]

Figure 5. Another translation of comprehensions

[("Ms", 180)
s ("Ed" s 95)
, ("Yale", 60)]

4.4 Parametricity

The type rules fobrder andgroup require the supplied function
to have a universally quantified type. Here, for instancéhésrule
for order:
'tg=A T,Ate:T
't f:Va. (a—7)— [a]l — [al

I' - gq,order byeusing f = A

ORDERL

Arguably, we might instead have chosgno have a more general
type:
f:Vab. (a — b) — [a] — [al.

Or a more specific one:
f:i(c—71)— o] — [o]

whereo is the tuple typeri, ...,) whenAiszy : 71,...,%n :
. Why do we choose to universally quantify one argument but
not the other?

We do not choose the more general type because tbds
general. The choices we have seenfdanclude the following.

sortWith
takeWhile

Vab. 0rd b = (a — b) — [al — [al
Va. (a — Bool) — [a] — [al

If we requiredf to have the more general type, then we could not
instantiatef to either of these functions. So we need a more specific

type.

2007/6/18

Similarly, we do not choose the more specific type because it i
too specific; it requires us to fix details of how tuples of bound
variables are encoded. Indeed, the nested encoding ofstiple
the preceding section does not quite match the flat encoding o
environments given above. For example, recall that theifipral

q = x <- xs, y <-ys, z <~ zs

yields the tuple of bound variables ((x,y),z), whereas to

use the more specific type given above we would need to choose

¢ = (x,y,2).Sowe need a more general type.

Using a universally quantified type not only ensures that the
function has the right type to work with arbitrary encodirafgu-
ples, but also ensures that changing the encoding will nahg
the semantics. This follows because of semantic parartgtric
(sometimes called ‘theorems for free’), which ensures ensizlly
quantified functions satisfy certain properties [Rey83d8&.

In particular, the type

f:Va.(a —7)— [a]l — [al
has the following free theorem
maph- f(g-h)=fg-maph

and this is exactly what is required to ensure thafives the same
result for different ways of encoding the environment. Baraple,
we can relate the operation ¢fon the two different encodings of
tuples discussed above by choosing

h(z,(y,2)) = (z,y,2).
This has the consequence—which is exactly what we would

expect and hope forl—that the meaning of a comprehension is

independent of precise details of how binding tuples areded.

For instance, Figure 4 shows how to modify Figure 3 to use a
flat rather than a nested encoding. The new translation resdifi
the definitions ofy., [¢], andunzip, to use tuple concatenation
rather than pairing, where tuple concatenation takes anple and
ann-tuple and yields aiim + n)-tuple,

(1,1, Zm) ® (Y1,--yYn) = (T1,.+ s Tm, Y1+, Yn)-
In the special cases whene = 0 andm = 1 we have

0® @ oyn) = U1yeeoyn)

T® (Y1, Yn) = (T,Y1,--,Yn)

and similarly whem = 0orn = 1.
For instance, consider the qualifier

g = (x <- xs, y <~ ys), z <- zs

With the old translation (Figure 3), this yields the tuplebafund
variables

¢ = ((x,y),2)

while with the new translation (Figure 4), this yields thel&iof
bound variables

@ = (x,57,2)
The definition of[¢] is changed correspondingly. Thanks to our
requirement of universally quantified types farder andgroup,

we can guarantee that both choices of translation yield &nees
results.

4.5 Another translation

The style of translation given here differs from that in, fad87],

in that qualifiersq are translated separately into tuples of bound
variablesg,, and lists of bindingg¢]. Figure 5 gives an alterna-
tive, and more conventional translation, where qualifieasdlate
directly to binding constructs. It is easy to check that tlamsla-
tions of Figures 3 and 5 are equivalent. In particular, thsans

Patterns w =2z | K wi...w,

(w<=e)y = wy
(@) = =
(Kwi...wn)v = (Wi)vy---, (wn)v)
case x of
[w<-e] = -concat (map ()\x. w => [w,]) e)
other -> []

Figure 6. Refutable patterns in generators

that the new definitions of the traditional qualifiers (gexter,let,
guard, empty qualifier, and cartesian product) coincidé ttie tra-
ditional definitions, and hence that the new definition is ases-
vative extension of the old.

We choose the formulation of Figure 3 partly on aesthetic
grounds, because it gives a direct, compositional transiao
qualifiers themselves rather than only to qualifiers embedded in
a comprehension. Furthermore, fgroup andorder the transla-
tion is somewhat more compact and efficient, because it does n
require the construction of nested comprehensions.

4.6 Refutable patterns in generators

In Haskell, patterns built of variables and tuples are chlie
refutable, because a match against such a pattern cannot fail;
while other patterns are calle@futable. A generator containing

a refutable pattern acts as an implicit filter. For example:

[Maybe Int] -> Int
f xs = sum [x | Just x <- xs]

Here, only the elements a& that match the patter@Just x) are
chosen fronks.

Thus far, the syntax in Figure 1 and semantics in Figure 3
permits only irrefutable patterns, a choice we made to redludtter
and focus attention oprder and group. However, it is easy
to accommodate refutable patterns in generators, as we show
Figure 6.

5. Laws

The semantics we have given validates a number of laws.

We begin with a number of laws that carry over unchanged from
the usual treatment of comprehensions [Wad92]. It is a Bogmit
feature of the new formulation that it does not violate anyhefse
laws.

The most significant law is the nesting law (which also appear
as a line in Figure 5).

[elp,g]l = concat [[elqgl|p]

This is easily checked, as the left and right sides yield éoséime
term using the translation of Figure 3.
We also have a flattening law.

lelpa<-[flqgl,r] Le[z == f] | p,q,7[f :=x]]

This is an immediate consequence of nesting and the folpwin
simpler law.

lelz<-[flqll Lefz:=f]1q]

The simpler law is an immediate consequence of the translatid
the map composition law.

map f -map g = map (f-g)

([wad92] suggests the use of induction over the structureoaf-
prehensions to prove the flattening law, but this is not rearys

2007/6/18

A special case of the flattening law is:

q = qv<_[qv|q]

Among other things, this law can be used to make clear grgupin
without using parentheses, as we saw in Section 3.9.

Cartesian product is associative and has the empty quasier
unit.

Lel(p,q),r]l = Lelp(gr)]
[elp, O] = T[lelpl
el O,p] = Tlelpl

This is easily checked, using the fact thatncat andunit are
natural transformations and form a monad (whetet x = [x]).

map [- concat concat - map (map f)

map f-unit = unit-f
concat - concat = concat - map concat
concat -unit = id
concat -mapunit = id

Another law relates zip of cartesian product to cartesiadpct
of zip. If xs andys have the same length, and andvs have the
same length, then

(x <-xs | y<-ys), (u<-us | v <= vs)

(x <- xs, u<-us) | (y <- ys, v <~ vs)

The proof is by induction oks andys, with lemmas proved by
inducting overus andvs.

We also have some laws specifically applicablestder. Since
the default ordering function is a stable sort, sorting oa keys in
succession is equivalent to sorting on a pair of keys:

order by (d,e)

Applying two ordering functions in succession (when thexe i
no by clause) is equivalent to applying the composition of the two
functions:

order by d, order by e

order using f, order using g = order using (g- f)
Combiningby andusing is a bit messier:

order by d using f, order by e using g

order by (d,e) using Ah.g (snd-h)- f (fst-h)

The using function takes function h that extracts a pair of keys,
runs f passing it the extractor function for the first key, and then
similarly g passing it the extractor function for the second key.

However, analogues of the three above laws do not appear to

hold for group, since a single group changes all bound variables to
lists, while two adjacent groups change all bound variatidists
of lists.

6. Variations on the theme

Thus far we have concentrated on describingaeticular design
in complete detail. However there are many design choicdmeto
made, and we explore a few of them here, albeit in less detail.

6.1 Concrete syntax

We are unhappy with the use of the keywartier because, with
a user-defined function such aske, no reordering at all may

be involved. One suggestion is to re-use the keywottet”,
followed immediately by the function to use:

[(the dept, sum salary)

| (name, dept, salary) <- employees
, then sortWith by salary

, then takeWhile by salary < 50

, then take 5]

10

The “by” clause remains optional, but the ordering function is not.
(Perhaps it would read better to say'ing’ instead of ‘by” in this
context.)

6.2 Bindingin group

In our main designgroup implicitly re-binds all the in-scope
variables tolists of their previous type. This implicit re-binding
is very convenient in small examples, but it is arguably eath
surprising — it is certainly unique in Haskell's design — smight
be worth considering a more verbose but explicit syntax sisch

[(the_dept, namesalary)
| (name, dept, salary) <- employees
, the_dept <- group by dept
where (name,salary) -> namesalary

]

Here, thegroup form is extended to bind a fresh variabtée _dept,
which is of course takes one value for each group. There
clause specifies that themesalary list is constructed by stuffing
all the (name,salary) pairs from a group into a list. In general
one could have an arbitrary expression to the left of the'

One could debate the concrete syntax, but the main design
question is whether the clunkiness of extra syntax justifieextra
clarity.

6.3 Cubes and hierarchies

Another extension to SQL is tH&BE construct. The main idea is
to support multi-level aggregation. For example, supposéhave

a relationsales that gives the name, colour, size, and cost, of a
number of products. Consider the query

SELECT size, colour, sum(cost)
FROM sales
GROUP BY CUBE(size, colour)

This query shows the total cost of items in the following greu
o All items with the same size and colour.
o All items with the same size.
o All items with the same colour.
o All items.

The result relation is a table of triples, afuLL is used to indicate
an aggregated attribute. For example, the result recordslfitems
with the same colour might look like

(NULL, "red", 23), (NULL, "blue", 16), . ..

To support this kind of multi-level aggregation we need amétfer
generalisation of our notation:

[(atts, sum cost)
| (size, colour, cost) <- sales
, atts <- hgroup by [size,colour] using groupCube]

The construct is introduced by a new keywdigroup, and the
user-supplied grouping functiggroupCube has type

groupCube :: (a -> [String])
-> [([Maybe Stringl, [al)]

Here, the key-extractor function returns a list of stringeé¢ and
colour in this case), whicBroupCube uses to make groups under
various combinations of this list (as above). It differsnfrache
previousgroup by construct, because the grouping function must
return a list ofpairs: the first component records which subset of
the key list identifies this group, while the second compoheids

the members of the group. So the result of the above querytmigh
look like

2007/6/18

[([Nothing, Nothing], 302) -- All items
, ([Nothing, Just "red"], 45) -- Red items
, ([Nothing, Just "blue"], 8) -- Blue items
, (Just "big", Nothing), 99) -- Big items

..etc...]

In general hgroup requires the user-supplied functighto have
type:
fVa(a— 1) — [al — [(¢, [al)]

for some types, ¢.

Whether this extra generalisation is worth the bother isndpe
debate.
6.4
In a breadth-first search over a tree, one might write this:

| Node

Implicit result concatenation

concat [[t1,t2] tl t2 <- trees]

or alternatively

[t | Node _ t1 t2 <- trees, t <- [t1,t2]]

Neither is very appealing. A simple possibility, suggestedis

by Koen Claessen, is to allow the programmer to write a comma-
separated list of values before the initial vertical barre compre-
hension, thus:

[t1, t2 | Node

The semantics is given by either of the expressions abovee Mo
precisely:

t1 t2 <- trees]

en lq] concatMap (Aqv.[e1,...,en]) [q]

This proposal is orthogonal to the rest of this paper.

[61,..

7. Related work

We now consider how we would express the two SQL queries from
the introduction in XQuery and LINQ. Recall the queries are

SELECT name

FROM employees
WHERE salary < 50
ORDER BY salary

and

SELECT dept, SUM(salary)
FROM employees
GROUP BY dept

7.1 XQuery

We assume that the XQuery varial$employees is bound to a
sequence oémployee elements, where eacimployee element
contains aame, dept, andsalary element.

In XQuery, we would write the first query above as

<query1>{
for $employee in $employees
where $employee/salary > 50
order by $employee/salary
return $employee/name
}</query1>

XQuery is based on a notion of comprehension (called a FLWOR
expression), which includes amrder by clause similar to the one
described here, added precisely in order to make it easyradi@a
the behaviour of SQL. Unlike our extension to Haskell, usks o
order by are limited to sorting, with options for multiple keys
each in ascending or descending order.

We would write the second query as:

11

<query2>{
for $d in fn:distinct-values($employees/dept)
let $g = $employees[dept = $d]
return
<group>{
$dept,
<sum>{ fn:sum($g/salary) }</sum>
}</group>
}</query2>

This is similar to the technique used for Haskell of writingsted
comprehensions, but slightly smoother because the XPhtesof
XQuery provides compact notation for extracting elemergsfa
sequence or filtering on the value of an element. XQuery has no
construct that parallelSROUP BY directly.

Two proposals to add grouping constructs to XQuery have been
put forward by others. The first of these [BCG5] resembles ours
in that the grouping construct changes the sequence ofrigagdi
but it has explicit constructs to bind values that index gs(such
asdept) and values aggregated within groups (suchs@kary).
Here is how the running example would look:

<query2>{
for $e in $employees
group by $e/dept into $dept
nest $e/salary into $salaries
return
<group>{
$dept,
<sum>{ fn:sum($salaries) }</sum>
}</group>
}</query2>

The second proposal [Kay06] uses a predicate on adjacent ele
ments to decide where a break between groups should ocowr (si
ilar to groupBy in the current Haskell library), whereas our con-
struct looks at individual bindings. Neither proposal soig user-
defined functions for grouping or ordering.

7.2 LINQ
Using the LINQ features of C# 3.0, the first query is written as

from e in employees
where e.salary < 50
orderby e.salary
select e.name

As with XQuery, this is easy to write because comprehensioas
extended with amrderby construct that parallels the behaviour of
SQL, and is limited to sorting, again with options for muléifkeys
each in ascending or descending order.

We would write the second query as:

from e in employees
group e by e.dept into g
select new { g.Key, g.Sum(e => e.salary) }

This is shorthand for a nested comprehension

from g in
from e in employees
group e by e.dept
select new { g.Key, g.Sum(e => e.salary) }

LINQ can return nested structures, whereas SQL can onlymretu
flat relations. However, the LINQ construct is tied to a sfieci
grouping function, which returns a specific tuple with twareo
ponents, the key and the group.

The LINQ construct is rather different in structure than tme
we propose here; it introduces a new data structure to reptes

2007/6/18

groups, and a new construct that invokes the grouping fonetnd
loops over the returned groups; and it is tied to a specificgirg
function.

LINQ queries are general in a way that ours are not: LINQ
queries operate over an arbitraggntainer type, provided it sup-
ports a particular set of operations (includingderby, groupby
and several others). One reason for this generality is t@a@tp
meta-programming, so that a query generates a so-cetj@ds-
sion treethat can (in many cases) be translated to SQL. It is natural
to ask whether our extensions could similarly extend to aitrary
monad (or sub-class thereof), a direction we have not yetsiiv
gated.

[BCF+07]

[BLST94]

[Dar77]

8. Conclusion

List comprehensions are a very modest language consthey: t
provide syntactic sugar, but offer no new expressive polNever-
theless, syntactic sugar can be important and, in the D&awjro-
cess of language evolution, list comprehensions have predplt
therefore seems productive to consider extensions of yiisstic
sugar that share the modest cost of existing comprehensibihs
extending their power.

In this paper we have presented extensions to Haskell Iist co
prehensions that parallel tfe®DER BY andGROUP BY clauses of
SQL. Constructs that paralleRDER BY are also found in XQuery,
LINQ, and Links, but not in (unextended) Haskell, CPL, Edan
or Kleisli. A construct that parallelSsROUP BY is found in LINQ,
and proposed for extensions to XQuery, but does not appeanyin
other language so far as we know.

The new constructs proposed here are more general than thel'Wads7]
constructs in the other languages, because they work wjtFuzie-
tion of a given type, rather than being limited to specificdiions.

[Kay06]

[MBBOS]

[Rey83]

[TW89]

Parametricity of these functions plays an important rolerisuring [Wad89]
the semantics of such constructs is independent of paatidetails
of how tuples of bindings are represented.

The grouping construct is also unusual in that it rebindsheac [Wad92]
variable in scope, from a single value to a list of values.sThi
seems close in spirit to the behaviour GX0UP BY in SQL, but [Won00]

is arguably more uniform. The separa®ERE andHAVING clauses
are subsumed by comprehension guards, and the same construc
supports both aggregation and nested lists.

We have implemented a simple prototype of the translation
given here to confirm its correctness. We plan to implemeat th
new construct both in the GHC compiler for Haskell and in the
Edinburgh implementation of Links, and look forward to feadk
from their use. Links uses comprehensions to write quehes t
access a database, and the compiler converts as much ofahese
possible into SQL. The new constructs should allow us to ¢lemp
into queries that use SQIROUP BY and aggregate functions where
appropriate.

Because of the generality of the new constructs, we wonder
whether they might also constructively feed back into thsigte
of new database programming languages.

Acknowledgements

Many thanks to Erik Meijer, who prodded us to find comprehen-
sion equivalents for ‘order by’ and ‘group by’, and to Davi@lB
aban, Ezra Cooper, Gavin Bierman, Sam Lindley, Tom Schsjve
Jerome Simeon, and Don Syme for their helpful feedback.

References

[BCC+05] Kevin Beyer, Don Chamberlin, Lath S. Colby, Fatfacan,
Hamid Pirahesh, and Yu Xu. Extending XQuery for analytics.
In ACM SSIGMOD International Conference on Management

of Data, pages 503-514. ACM Press, June 2005.

12

[CLWY06]

Scott Boag, Don Chameberlin, Mary F. Fernandez, Daniel
Florescu, Jonathan Robie, and Jérome Siméon. Xquery
1.0: An xml query language. Technical report, W3C
Recommendation, January 2007.

P Buneman, L Libkin, D Suciu, V Tannen, and L Wong.
Comprehension syntaxSGMOD Record, 23(1):87-96,
March 1994.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeyerallop.
Links: Web programming without tiers. IFormal Methods
for Components and Objects. Springer Verlag, October 2006.

John Darlington. Program transformation and sgsi$t
Present capabilities. Technical Report Report 77/43, trape
College of Science and Technology, London, September
1977.

Michael Kay. Positional grouping in XQuery. Third Inter-
national Workshop on XQuery Implementation, Experiences,
and Perspectives (XIME-P). ACM Press, June 2006.

Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ
reconciling object, relations and xml in the .NET framework
In Proceedings of the 2006 ACM SGMOD International
Conference on Management of Data, page 706. ACM Press,
June 2006.

JC Reynolds. Types, abstraction and parametrignpal-
phism. In REA Mason, editofnformation Processing 83,
pages 513-523. North-Holland, 1983.

P Trinder and PL Wadler. Improving list comprehemsio
database queries. ourth IEEE Region 10 Conference
(TENCON), pages 186-192. IEEE, November 1989.

Phil Wadler. List comprehensions. In Simon Peytone},
editor, The Implementation of Functional Programming
Languages, pages 127-138. Prentice Hall, 1987.

PL Wadler. Theorems for free! In MacQueen, edifoyrth
International Conference on Functional Programming and
Computer Architecture, London. Addison Wesley, 1989.

Philip Wadler. Comprehending monad&lathematical
Structures in Computer Science, 2:461-493, 1992.

Limsoon Wong. Kleisli, a functional query systeduournal
of Functional Programming, 10(1):19-56, January 2000.

2007/6/18

