
Faster Laziness Using Dynamic Pointer Tagging

Simon Marlow
Microsoft Research

simonmar@microsoft.com

Alexey Rodriguez Yakushev
University of Utrecht, The Netherlands

alexey@cs.uu.nl

Simon Peyton Jones
Microsoft Research

simonpj@microsoft.com

Abstract
In the light of evidence that Haskell programs compiled by GHC
exhibit large numbers of mispredicted branches on modern proces-
sors, we re-examine the “tagless” aspect of the STG-machine that
GHC uses as its evaluation model.
We propose two tagging strategies: a simple strategy called semi-
tagging that seeks to avoid one common source of unpredictable in-
direct jumps, and a more complex strategy called dynamic pointer-
tagging that uses the spare low bits in a pointer to encode informa-
tion about the pointed-to object. Both of these strategies have been
implemented and exhaustively measured in the context of a produc-
tion compiler, GHC, and the paper contains detailed descriptions
of the implementations. Our measurements demonstrate significant
performance improvements (14% for dynamic pointer-tagging with
only a 2% increase in code size), and we further demonstrate that
much of the improvement can be attributed to the elimination of
mispredicted branch instructions.
As part of our investigations we also discovered that one optimisa-
tion in the STG-machine, vectored-returns, is no longer worthwhile
and we explain why.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; D.3.4 [Programming Languages]: Processors—Code Gen-
eration; Compilers; Optimization

General Terms Languages, Performance

1. Introduction
The Glasgow Haskell Compiler (GHC) is the most widely-used
compiler for a lazy functional language. Since its inception, GHC
has used the Spineless Tagless G-Machine (STG-machine) (Pey-
ton Jones 1992) as its core execution model; for over 10 years this
model remained largely unchanged, before eval/apply was adopted
as an alternative to push/enter as the mechanism for function calls
(Marlow and Peyton Jones 2004). In this paper we re-examine an-
other aspect of the original STG-machine, namely the concept of
“taglessness”.
The tagless aspect of the STG-machine refers to the way in which
a heap closure is evaluated. For example, consider

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’07, October 1–3, 2007, Freiburg, Germany.
Copyright c© 2007 ACM 978-1-59593-815-2/07/0010. . . $5.00
Reprinted from ICFP’07,, [Unknown Proceedings], October 1–3, 2007, Freiburg,
Germany., pp. 277–288.

f x y = case x of (a,b) -> a+y

In a lazy language, before taking x apart the compiler must ensure
that it is evaluated. So it generates code to push onto the stack a
continuation to compute a+y, and jumps to the entry code for x.
The first field of every heap closure is its entry code, and jumping
to this code is called entering the closure. The entry code for
an unevaluated closure will evaluate the closure and return its
value to the continuation; an already-evaluated closure will return
immediately.

In contrast, in a tag-ful approach, the closure to evaluate is entered
only if it is found to be not yet evaluated. Here the generated code
performs an extra test on the closure type – the tag – to determine
its evaluatedness and to avoid entering it unnecessarily.

The tagless scheme is attractive because the code to evaluate a clo-
sure is simple and uniform: any closure can be evaluated simply by
entering it. But this uniformity comes at the expense of perform-
ing indirect jumps, one to enter the closure and another to return to
the evaluation site. These indirect jumps are particularly expensive
on a modern processor architecture, because they fox the branch-
prediction hardware, leading to a stall of 10 or more cycles depend-
ing on the length of the pipeline.

If the closure is unevaluated, then we really do have to take an indi-
rect jump to its entry code. However, if it happens to be evaluated
already, then a conditional jump might execute much faster. In this
paper we describe a number of approaches that exploit this possibil-
ity. We have implemented these schemes and show that they deliver
substantial performance improvements (10-14%) in GHC, a mature
optimising compiler for Haskell. Specifically, our contributions are
these:

• We give the first accurate measurements for the dynamic be-
haviour of case expressions in lazy programs, across a range
of benchmark programs. First, we measure how often a closure
being scrutinised is already evaluated and, hence how often we
can expect to avoid the enter-and-return sequence (Section 4).
Second, we measure the distribution of data type sizes, which
turns out to be important (Section 6).

• We describe and implement semi-tagging, a simple approach
that avoids the enter-and-return associated with scrutinising
an already-evaluated closure. Section 5 describes a full im-
plementation and gives measurements of its effectiveness. As
well as bottom-line execution times, we measure its effect on
branch misprediction on a modern processor architecture. The
improvements are substantial: execution time improves by 7-
9%, while the branch misprediction rate is halved.

• We describe and implement an improvement to semi-tagging,
called dynamic pointer tagging. The idea is to use the spare low
bits of a pointer to encode (a safe approximation to) informa-
tion about the pointed-to closure, even though that information

277

can change dynamically. This technique appears to be novel.
Again we describe the details of the implementation, which are
less straightforward than for semi-tagging. Our measurements
of its effectiveness are promising: a further 4-6% increase in
performance (depending on processor architecture).

• We study the interaction of both these techniques with an exist-
ing optimisation called vectored returns. Vectored returns is an
attractive optimisation that has been implemented in GHC for a
decade. However, it carries a significant cost in terms of imple-
mentation complexity, and our new tagging schemes reduce its
potential benefits. In Section 7.2 we present measurements that
show that vectored returns are no longer attractive on today’s
processors, so the optimisation, and its attendant complexities,
can be safely retired.

A major contribution of the paper is that our implementation and
measurements are made in the context of a widely-used, highly-
optimising compiler for Haskell, namely GHC; and our measure-
ments are made against a large suite of benchmarks. Because GHC
is a mature compiler, all the easy wins are part of the baseline, so a
10-15% improvement on real programs is a dramatic result.

Our contributions are not limited to the context of GHC. Semi-
tagging and dynamic pointer tagging have an immediate relevance
for anyone building a compiler for a lazy functional language.

The paper contains quite a bit of nitty-gritty detail, but that too
is part of our contribution. Real compilers use many optimisa-
tion techniques, whose interaction is hard to foresee. We are able
to report on concrete experience of implementing various tagging
schemes, including their implementation costs as well as perfor-
mance effects.

2. Compiling case expressions
In this section we review the relevant parts of the execution model
and compilation scheme for the STG-machine implementation as
it is in GHC today. Our particular focus is the compilation scheme
for case expressions, such as the one in the body of map:

map :: (a->b) -> [a] -> [b]
map f xs = case xs of

[] -> []
(x:xs’) -> f x : map f xs’

Informally, the semantics of case are as follows:

• The variable xs is evaluated to weak-head normal form (WHNF).

• The appropriate alternative is chosen according to the outermost
constructor of the value of xs.

• If the pattern has variables, then these are bound to the fields
of the constructor (in this example, x and xs’ are bound in the
second alternative).

• The appropriate right hand side is evaluated in this extended
environment.

The precise semantics are given in the original STG-machine paper
(Peyton Jones 1992).

Operationally, in the STG-machine implementation in GHC, the
case expression is compiled to code that enters the variable being
scrutinised, after pushing on the stack a return address, or contin-
uation, for the alternatives. All heap objects have the uniform rep-
resentation shown in Figure 1. The first word of every object is an
info pointer, which points both to the entry code for the object, and
to the preceding info table for the object. The info table describes

Info pointer

Info

table

Payload

Object type

Layout info

Entry code

...

Type-specific

fields

Figure 1. A heap object

the layout of the object to the garbage collector. It also contains a
object type field which classifies the object as: a data constructor, a
thunk, a function closure, or one of a variety of other object types.
In the case of a data constructor, a further field in the info table
gives the tag of the constructor; each constructor in a data type has
a unique tag, starting at 0.

Because every heap object has associated entry code, we use the
term “closure” for any heap object. The entry code for a closure
always has the following meaning: it is executed with the register
R1 pointing to the closure, and it returns to the topmost stack frame
having evaluated the closure pointed to by R1, returning the result
in R1.

GHC uses C-- (Peyton Jones et al. 1999) as its back-end interme-
diate language. C-- can be thought of as a high-level assembly lan-
guage with nested expressions and named variables. GHC does not
currently use the procedural abstractions of C--, instead it generates
C-- code that directly manages an explicit stack. GHC’s purely-
functional intermediate language is translated into C-- before being
turned into either C or native code. We will therefore present our
generated code examples in C--.

Here, then, is the C-- code generated for the map example above,
prior to the work described in this paper:

map_entry() // On entry, f is in R2, xs in R3
{

// Save f on the stack, because it is
// live in the continuation
Sp[-4] = R2
// Set R1 to point to the closure to evaluate
R1 = R3;
// Put the continuation on the stack
Sp[-8] = map_ret;
// Adjust the stack pointer
Sp = Sp - 8;

// Indirect jump to the entry code
// for the closure in R1
jump R1[0];

}
data { word32[] = {...} } // Info table for map_ret
map_ret()

278

{ // R1 now points to the value of xs
info = R1[0];
tag = info[-8];
if (tag == 0) jump tag_0;
// Extract the fields:
x = R1[4];
xs’ = R1[8];
// Recover the free variables from stack
f = Sp[4];
// Code for (f x : map f xs’) follows
...

tag_0:
// Load [] into R1, adjust stack, and return
R1 = Nil_closure;
Sp = Sp + 8;
jump Sp[0];

}

The C-- procedure map_entry corresponds to the map function
itself, and map_ret is the continuation generated for the case by
the compiler. Note that map_ret is directly preceded by some data;
this is its info table. Return addresses have info tables just as heap
closures do; this makes stack frames have almost exactly the same
layout as heap closures. The info table for a return address describes
the layout of the stack frame for the garbage collector, just as the
info table for a heap closure describes the layout of the closure.

The code of map_ret begins by scrutinising the value returned, in
order to distinguish between the two cases. Each constructor in a
datatype has a distinct tag, which is stored in the info table of the
constructor. In the case of lists, [] has tag zero, and (:) has tag
one.

R1, R2, and R3, like the stack pointer Sp, are “registers” of the STG-
machine. They may be implemented by a real machine register,
or mapped to a memory location: the choice is left to the back-
end implementation. (In practice, since R1 is used so often by the
abstract machine, it is essential for good performance that it is
mapped to a real machine register by the back-end).

In C-- a memory access always uses byte addressing, this differs
from C, where the pointer type dictates the addressing granularity.
In this paper, we assume that all code examples are for a machine
with a word size of four bytes. This means that most of the mem-
ory accesses are done with offsets that are multiples of four (e.g.
R1[8]), except for some of the examples in Section 6.

3. Benchmark methodology

Before embarking on the discussion of our optimisation techniques,
we take a small detour to explain our benchmark methodology.
We benchmark Haskell code using the nofib benchmark suite
(Partain 1992), which contains 91 Haskell programs of various
sizes, ranging from small micro-benchmarks (tak, rfib) to large
programs solving “real” problems (e.g. LZH compression, hidden
line removal, and a Prolog interpreter). We make no apology for
including the micro-benchmarks: in practice even large programs
often have small inner loops, and the micro-benchmarks are useful
for highlighting extreme cases in sharp relief.

This paper contains several tables of results taken from runs of
the nofib benchmark suite, e.g. Figure 13. In these tables we do
not attempt to list every single result; rather we present a selection
of representative programs, and aggregate minimum/maximum and
geometric means taken over the whole suite.

For each benchmark, we can take a range of measurements:

• Runtime: wall-clock running time averaged over 10 runs on a
quiet machine

• Allocation: the amount of memory allocated by the program
over its lifetime

• Code size: the size of the binary in bytes

We made most of our measurements on two separate machines:

• An Intel Xeon, 2.4GHz, using the IA32 instruction set,

• An AMD Opteron 250, using the x86-64 instruction set with
64-bit pointers.

Additionally, we have extended GHC with support for reading
the CPU performance counters provided by many modern CPUs.
These enable us to take accurate measurements of CPU events such
as raw cycles, instructions executed, cache misses, branch mispre-
dictions, and so on. We performed our CPU-counter measurements
on the AMD Opteron system only.
We added hooks to the GHC runtime system that start and stop
the CPU performance counters around the execution of Haskell
code. We were thereby able to count events that occur during
the execution of the Haskell code (the “mutator”) separately from
those that occur in the garbage collector, which is important since
we’re primarily interested in what is happening in the program
itself. None of the techniques in this paper affect the amount of
memory allocated by the program, and hence the amount of work
the garbage collector has to do.

4. Measuring the dynamic behaviour of case
expressions

The target for our optimisation is this:

the code path taken when a case expression that scrutinises
a single variable finds that the closure referenced by the
variable is already evaluated.

For these cases, we can hope to generate a “fast path” that avoids
indirect jumps (and the associated branch mispredictions), by using
a more tag-ful approach.
Note that not all case expressions scrutinise a single variable.
GHC’s intermediate language allows case expressions that scru-
tinise an arbitrary expression; for example:

case (f x) of
[] -> ...
y:ys -> ...

However, only case expressions that scrutinise a single variable
can possibly take advantage of the fast path, so we restrict our
attention to this subclass of case expressions. For the remainder of
the paper, we will use the term “case expression” to mean “case
expression that scrutinises a single variable”.
The effectiveness of the optimisation depends crucially on the
frequency with which a case expression scrutinises an already-
evaluated variable. We know of no previous measurements of this
frequency, so we performed an experiment to find out. Our results
are given in Figure 2, which displays the dynamic proportion of
all variable-scrutinising case expressions that found the closure
to be already evaluated. There was a wide variation (min 0.2%,
max 99%), with a geometric mean of 62%. This figure indicates
that the already-evaluated scenario is common, and hence worthy
of attention; but the wide variation suggests that we should avoid

279

Program Evaluated scrutinee (%)
anna 65.1
cacheprof 72.8
constraints 54.5
fulsom 41.5
integrate 67.6
mandel 73.9
simple 78.6
sphere 72.8
typecheck 56.5
wang 41.9
(81 more) . . .
Min 0.20
Max 99.00
Average 61.86

Figure 2. Percentage of scrutinees already evaluated

imposing excessive costs on the case where the closure is not
evaluated.

5. Scheme 1: semi-tagging
In this section we examine a straightforward scheme to avoid enter-
and-return sequences in closure evaluation. This scheme produces
code that does not enter closures that are already evaluated. The
basic idea is to test the type of the closure before entering it: if the
closure is a constructor, then we continue directly with the code to
examine the constructor, otherwise we enter the closure as normal
to evaluate it.

Version 1. The simplest modification to the code generator is to
add this test directly before the enter:

map_entry()
{

// Set up continuation as before:
Sp[-4] = R2
R1 = R3;
Sp[-8] = map_ret;
Sp = Sp - 8;
// New code follows:
// grab the info pointer from the closure
info = R1[0];
// grab the type field from the info table
type = info[-12];
// if it’s a constructor, jump to the
// continuation
if (type <= MAX_CONSTR_TYPE) jump map_ret;
jump info;

}

data { word32[] = {...} } // Info table for map_ret
map_ret()
{

// exactly as before:
info = R1[0];
tag = info[-8];
if (tag == 0) jump tag_0;
... code for (f x : map f xs’) ...

tag_0:
... code for [] ...

}

We read the info pointer, and then read the field of the info table that
contains the type of the closure (remember that the info table is laid

out backwards in memory directly before the info pointer, so this
offset is negative). The type of the closure can then be examined, to
determine whether it is a constructor. For various reasons several
different object types all represent constructors, but we arrange
that constructor types occupy the lowest-numbered values, so a
single comparison suffices (here MAX_CONSTR_TYPE is the highest-
valued constructor type). If the closure is a constructor, then we
jump directly to the continuation. The continuation code extracts
the tag from the constructor and performs comparisons to select
the appropriate branch code.
Version 2. In the event that the closure was a constructor, the above
scheme is slightly sub-optimal because we load the info pointer
twice. An alternative scheme is as follows:

map_entry()
{

Sp[-4] = R2
R1 = R3;
Sp[-8] = map_ret;
Sp = Sp - 8;
jump map_ret;

}

data { word32[] = {...} } // Info table for map_ret
map_ret()
{

info = R1[0];
type = info[-12]
if (type > MAX_CONSTR_TYPE) jump info;
tag = info[-8];
if (tag == 0) jump tag_0;
... code for (f x : map f xs’) ...

tag_0:
... code for [] ...

}

All the comparisons are done in the continuation. This means an
extra comparison in the event that we have to enter and return, but
the code size is overall slightly smaller. We found this version to be
marginally better.
Version 3. There is one further improvement that we could make:

map_entry()
{

Sp[-4] = R2
R1 = R3;
Sp[-8] = map_ret;
Sp = Sp - 8;
jump map_cont;

}

map_cont()
{

info = R1[0];
type = info[-12]
if (type > MAX_CONSTR_TYPE) jump info;
tag = info[-8];
if (tag == 0) jump tag_0;
... code for (f x : map f xs’) ...

tag_0:
... code for [] ...

}

data { word32[] = {...} } // Info table for map_ret
map_ret()

280

With semi-tagging (∆%)

Program Code size Runtime
anna +2.7 -5.3
cacheprof +1.7 -10.4
constraints +1.5 -11.6
fulsom +2.5 +4.9
integrate +1.6 -2.1
mandel +1.7 -17.9
simple +3.1 -9.8
sphere +2.2 0.18
typecheck +1.3 -18.1
wang +1.8 +9.3
(81 more)
Min +0.9 -33.7
Max +3.1 +9.3
Geometric Mean +1.5 -7.2

Figure 3. Semi-tagging performance (AMD Opteron, 64-bit)

With semi-tagging (∆%)

Program Code size Runtime
anna +3.9 -10.4
cacheprof +2.4 -9.7
constraints +2.1 -3.1
fulsom +3.6 +1.3
integrate +2.4 -13.0
mandel +2.5 -17.0
simple +4.8 -23.4
sphere +3.2 -15.0
typecheck +1.8 -17.6
wang +2.6 -4.9
(81 more)
Min +1.3 -37.2
Max +4.8 +5.8
Geometric Mean +2.2 -9.4

Figure 4. Semi-tagging performance (Intel P4, 32-bit)

{
jump map_cont;

}

Now map_entry can fall through directly to map_cont, because
map_cont has no info table. This requires a fall-through optimisa-
tion that our back-end does not currently implement, so we have
not tested this version. We expect it to be a marginal improve-
ment, since in total it eliminates one (direct) jump in the already-
evaluated case.
Implementing version 2 above required about 100 lines of modifi-
cations to the STG-to-C-- code generator inside GHC.

5.1 Results

In Figures 3 and 4 we show the effect of semi-tagging on code size
and run-time, on the AMD Opteron and Intel Xeon respectively.
We can see that while adding semi-tagging increases code size
slightly, it has a dramatic impact on performance: 7.2% faster on
the Opteron, and 9.4% faster on the Xeon.
We conjectured that the difference is due mainly to the higher cost
of branch mispredictions on the Xeon, namely 24 clock cycles on
the Xeon versus 10-12 on the Opteron (Fog 2006). To substantiate
this guess, we used the CPU counters to measure the total num-
ber of branches executed, and the number of mispredicted branches
during the execution of Haskell code (excluding the garbage collec-
tor). The results are shown in Figure 5.

Baseline With semi-tagging

Program Branch Branches Branch Branch
miss rate executed misses miss rate

(%) (∆%) (∆%) (%)
anna 25.45 +20.5 -46.6 11.30
cacheprof 13.21 +10.7 -50.4 5.90
constraints 17.68 +17.6 -36.5 9.51
fulsom 23.29 +25.3 -21.4 14.61
integrate 18.20 +14.9 -35.9 10.14
mandel 22.50 +10.4 -47.0 10.80
simple 29.00 +13.3 -55.3 11.45
sphere 22.26 +13.2 -48.5 10.12
typecheck 25.90 +20.9 -45.1 11.74
wang 19.20 +35.6 -34.8 9.23
(81 more)
Min 0.20 +0.0 -95.0 0.20
Max 34.53 +39.1 +3.4 24.31
Average 17.43 +14.8 -46.3 8.80

Figure 5. Branch mispredictions (AMD Opteron, 64-bit)

The first column shows the branch misprediction rate for the
baseline compiler; that is, what percentage of all branches are
mispredicted, excluding the garbage collector. The next column,
“Branches executed”, shows the percentage increase in the total
number of branches executed when moving from the baseline com-
piler to the semi-tagging compiler. As we would expect, semi-
tagging increases the number of branches by around 15%, because
of the extra conditional tests before entering a closure.

The next column “branch misses” shows the percentage increase in
the total number of mispredicted branches. The effect is dramatic:
even though there are more branches in total, the total number
of mispredictions in a program run is almost halved! The final
column shows the branch misprediction rate of the semi-tagging
compiler, which is also around half of the baseline value shown
in the first column. (Note: the “Average” figures for the branch
misprediction rates are arithmetic means, whereas those for the
percentage increase in branch instructions and mispredictions are,
of course, still geometric means.)

These results correlate well with the changes in performance that
we saw above. For example, we can perform a back-of-an-envelope
calculation for one of the example programs: cacheprof executed
an average of 193.7M fewer cycles in the mutator with semi-
tagging, and had an average of 17.7M fewer mispredicted branches.
A mispredicted branch costs 10-12 cycles on this architecture (Fog
2006), so the difference in mispredicted branches accounts for at
least 91% of the difference in cycles executed for this program. The
results are similar for other programs. These measurements show
that most of the speedup on the Opteron is due to the reduction
of mispredicted branches, and it is very likely that this is also the
case for the Xeon. Hence the increased speedup on the Xeon can
probably be attributed to the higher misprediction penalty.

5.2 Indirections

In the STG-machine, a suspended computation is represented by a
thunk, which is a combination of an info pointer and the free vari-
ables of the suspended computation. When the thunk is evaluated,
it overwrites itself with an indirection to the value, and returns the
value to the code that demanded it. Figure 6 gives a diagrammatic
explanation of the process.

Indirections have a subtle effect on semi-tagging: a thunk may have
been evaluated, but may still be represented by an indirection to the
actual value. When a case expression examines the closure, it may
find an indirection: in our simple semi-tagging scheme, the test

281

PayloadHeader

Code

thunk_234

Info
Table

PayloadHeader

IND

Value

Figure 6. Update of a thunk

Indirections/Cases (%)

Program 0.5Mb 32Mb
anna 24.1 47.1
cacheprof 5.0 9.0
constraints 22.3 24.4
fulsom 13.3 21.1
integrate 4.0 4.4
mandel 11.9 16.9
simple 8.5 9.4
sphere 18.1 23.5
typecheck 27.1 29.2
wang 13.6 23.3
(81 more)
Min 0.00 0.00
Max 37.80 74.40
Average 10.43 18.04

Figure 7. Indirections encountered for different young generation
sizes

for “is a constructor” will fail, and the case expression falls back
to entering the closure. The entry code for an indirection simply
returns the value it points to, but this sequence still incurs the enter-
return penalty.
Is it common that a case expression encounters an indirection? The
answer to this question depends on how often the garbage collector
runs, because the garbage collector eliminates indirections, short-
cutting them as part of its heap traversal. So the more often the
garbage collector runs, the fewer indirections will be encountered
during program execution.
We measured the number of times an indirection was encountered
by a case expression as a percentage of the total number of case ex-
pressions executed, for two garbage collector settings. In both cases
we used 2 generations, but the first set of results is with the default
setting of a 0.5Mb nursery (young generation), and the second set
is for a 32Mb nursery. The size of the nursery is more significant
than the overall size of the heap, because each minor garbage col-
lection will remove all the indirections in the nursery, so increasing
the size of the nursery will directly increase the length of time that
an indirection is visible. We know from previous experiments that

most thunks are updated soon after creation (Sansom and Peyton
Jones 1993), and so most indirections will be in the nursery.
The results, in Figure 7, show that as the nursery size increases
there is a definite increase in the number of indirections we en-
counter: on average 8% more when changing from the default heap
setting of an 0.5Mb nursery to a 32Mb nursery. Some programs
show a more dramatic difference: for example one of our micro-
benchmarks, wheel-sieve2 (not shown in the table), goes from
1.8% with a 0.5Mb nursery to 74% with a 32Mb nursery. For most
programs, the difference is much less.
In Section 4, when we counted the number of times a case expres-
sion encountered an evaluated closure, we did not count indirec-
tions in the class of evaluated closures. So combining the results,
we find that as we increase the nursery size from 0.5Mb to 32Mb,
the number of evaluated closures that are encountered by a case ex-
pression falls by 8%, from 62% (measured in Section 4) to 54%.
So although indirections seem to be highly significant in at least a
few programs, it is still safe to say that on the whole a majority of
case expressions directly scrutinise a constructor.
One could recover this lost 8% by instead treating an indirection
as an evaluated closure, and adding an extra alternative in the
case-analysis code; in the case of an indirection, we would simply
follow the indirection and start the case analysis again. This would
no doubt increase code size by a few percent and might give
a modest improvement in performance. We have not tried this
variant, although it would also be straightforward to make this a
compile-time selectable option.

6. Scheme 2: pointer-tagging
In the semi-tagging scheme, we determined the evaluatedness and
the tag of a closure by inspecting the closure’s info table. Next
we take this idea one step further, by encoding this information in
the pointer to the closure. The clear win from doing this is that
we avoid dereferencing the info pointer and polluting the cache
with the info table. If the closure has no free variables—think
of True, False, and [], for example—then we can even avoid
dereferencing the pointer at all.
How do we encode the type and tag in the pointer? We take ad-
vantage of the unused least-significant bits of a pointer: pointers to
closures are always aligned to the word size of the machine, so on
a 32-bit architecture the two least-significant bits of a pointer are
always zero, and on a 64-bit architecture there are three zero-bits.
We encode two kinds of information in these bits:

• Whether or not the pointer is to a constructor.
• For constructors, the tag of the constructor.

First some terminology: we call a datatype compact if the number
of constructors is three or fewer on a 32-bit platform, or seven or
fewer on a 64-bit platform. The tag of a compact datatype will fit
in the tag bits of a pointer.
For a compact datatype, the tag-bit encoding we use on a 32-bit
architecture is:

unevaluated evaluated constructor
or unknown tag 0 tag 1 tag 2

00 01 10 11

(extended in the obvious way for a 64-bit architecture). For a non-
compact datatype, the encoding is:

unevaluated or unknown evaluated
00 01

282

Family Distribution (%) Cumulative (%)
Size

1 42.5 42.5
2 52.4 94.9
3 1.2 96.1
4 0.5 96.6
5 1.7 98.3
6 0.9 99.2
7 0.0 99.2

> 7 0.8 100.0

Figure 8. Constructors encountered in a case expression, classified
by datatype family size

It is always safe to use zero for the tag bits, since that makes no
commitment about the closure type. As we shall see, we cannot
guarantee to tag every pointer to a constructor, so this approximate
representation is necessary. In contrast, though, a non-zero tag must
never lie, because we will compile code for a case expression that
relies on its veracity.
We can only encode tags up to three on a 32-bit architecture, which
leads to the following question: what fraction of case-analysis acts
on data types with three or fewer constructors? To find out, we
performed measurements across our benchmark suite of the per-
centage of case expressions executed that scrutinised datatypes of
various family sizes. The results are given in Figure 8. As we can
see from the table, if we can encode tags up to 3, then we cover
more than 95% of case expressions, and tags up to 7 gives us 99%.
These results are unsurprising: we know that datatypes like lists,
Bool, Int, and Char are very common, and these types all have
just one or two constructors. However, it is good to have solid data
to back up these intuitive claims. Note that even if the datatype has
more constructors than we can encode in the tag bits, we can still
encode evaluatedness in the tag bits, which results in a cheaper test
for evaluatedness than in the semi-tagging scheme.
We have implemented this dynamic pointer-tagging scheme in
GHC. The following sections describe the full details of the im-
plementation and give performance measurements.

6.1 Implementation

Compared to semi-tagging, pointer-tagging is a much more inva-
sive change: it breaks a pervasive assumption, namely that a clo-
sure pointer can be de-referenced, and hence requires that we iden-
tify every place in the runtime system where closure pointers are
de-referenced, and every place in the compiler that generates code
to do so.
There are four parts to the implementation:

• Initialising tag bits for constructor pointers
• Using the tag bits in a case expression
• Clearing tag bits when dereferencing closure pointers
• Propagating tag bits: the garbage collector

We deal with these separately.

6.1.1 Initialising tag bits for constructor pointers

Pointer-tagging of dynamic constructors Dynamic constructors
are allocated in the heap at run-time. With pointer-tagging, the
expression length [x]1 compiles to

1 [x] is Haskell’s notation for a singleton list containing x, i.e. x:[].

f_entry
{
... increment Hp and check for heap overflow ...
Hp[-8] = cons_info;
Hp[-4] = x;
Hp[0] = Nil_closure + 1;
R2 = Hp - 8 + 2;
jump length_info;

}

Hp is the heap-allocation pointer, held in a global register. It
points to the last occupied word of heap; the free space begins
at the next lower address. We construct a cons cell starting at
Hp - 8 containing two fields: x and Nil_closure respectively.
The Nil_closure symbol refers to []: since this is a nullary con-
structor we need only a single instance of it at runtime, so GHC
compiles the single instance of a nullary constructor statically into
the module that defines the type. When we refer to a nullary con-
structor, we must of course tag the pointer; hence Nil_closure+1.

Now, when passing the address of the newly constructed cons cell
to length, we should tag the pointer. This is done in the assignment
to R2: the value 2 is the tag we are adding (one plus the tag of cons,
which is one). Note how the tag assignment is merged with the heap
offset, so no extra code is generated: this is a common pattern, as it
turns out.

Pointer-tagging of static constructors A static constructor in-
stance is one whose field values are known statically at compile-
time. There is no code generated for these constructors, and they
are not allocated in the heap; instead the constructor is generated
at compile time and placed in the static data of the program. Refer-
ring to a static constructor is done by symbol name. For instance,
the expression length [’a’] is compiled into the following:

data lit1_closure {
word32[] = { char_info, 97 }

}

data lit2_closure {
word32[] = { cons_info, lit1_closure+1

, Nil_closure+1 }
}

f_entry
{
R2 = lit2_closure+2;
... adjust Sp ...
jump length_info;

}

There are two static constructor instances here: lit1_closure
represents the literal ’a’, which is a boxed value of type Char,
and lit2_closure is the value [’a’], a single cons cell with
lit1_closure as the head and [] as the tail. Just as in the dy-
namic case above, we ensure that the pointers to static constructors
are tagged, by simple arithmetic on their addresses: we add 1 to
the occurrence of lit1_closure and add 2 to the occurrence of
lit2_closure (cons has tag 1).

If the static constructor binding is in a separately-compiled mod-
ule, correctly tagging its references requires the compiler to prop-
agate information about the constructor binding from the defin-
ing module to the usage site. GHC does not currently propagate
this information between modules, so we are unable to tag ref-
erences to static constructors in other modules. If, for example,
lit2_closure was defined in a different module than f_entry,

283

we would set R2 to lit2_closure instead of lit_closure+2;
but doing so is perfectly fine because a tag of zero is always safe.

6.1.2 Using the tag bits in a case expression

A case expression enters the closure for an inspected variable only
if the tag bits are zero:

map_entry
{

...
Sp[-4] = R2
R1 = R3;
Sp[-8] = map_ret;
Sp = Sp - 8;

// if it’s a constructor, jump to the
// continuation
if (R1 & TAG_MASK != 0) jump map_ret;
jump R1[0];

}

The continuation code varies depending on the datatype size. If the
datatype is compact, then the code can test and branch using the tag
in the pointer:

data { word32[] = { ... } }
map_ret
{

tag = R1 & TAG_MASK;
if (tag == 1) jump nil_alt;
// else, tag == 2
// Code for (x:xs’) alternative
// Extract the fields and free vars
x = R1[4 - 2];
xs’ = R1[8 - 2];
f = Sp[4];
... code for (f x : map f xs’) ...

nil_alt:
R1 = Nil_closure + 1;
Sp = Sp + 8;
jump Sp[0];

}

This code makes use of an invariant about return continuations,
namely that the pointer returned in R1 is always tagged. It is not
difficult to ensure this invariant always holds: pointers to freshly-
built constructors are always tagged (Section 6.1.1), and when
returning an existing constructor we simply tag the pointer before
returning (the code after nil_alt is a good example).

When unpacking the fields of the constructor in a case alternative,
we must remember to account for the tag bits in the pointer. For
example, in the cons alternative above, we fetch x and xs’ using
offsets that take account of the tag bits now known to be in R1.
As in the case of allocation, this adjustment costs nothing — we
simply adjust the field offset.

It would be possible to apply the fall-through optimisation de-
scribed in Version 3 of Section 5, although currently we have not
implemented this.

For a non-compact datatype the case continuation looks like the
semi-tagging one. However the info table address must be extracted
with care because now the closure pointer is tagged. Remember that
non-compact datatype closures are tagged with one, so a simple
offset adjustment suffices:

data { word32[] = { ... } }
map_ret
{

info = R1[-1];
tag = info[-8];
... do branch selection using tag ...

}

6.1.3 Dereferencing closure pointers

Accessing the closure from a closure pointer requires clearing any
tag bits in the pointer; we also call this operation “untagging”. In
the runtime, this is done with a macro:

... ptr points to closure ...
value = UNTAG(ptr)[offset];

the macro UNTAG(ptr) clears the tag bits of the pointer using bit-
wise conjunction: ptr & ~TAG_MASK. There were relatively few
places where we had to add untagging in the runtime:

• the garbage collector,

• a macro ENTER() for evaluating arbitrary closures,

• the entry code for indirections,

• pre-compiled code for some common closure types,

• the external API for inspecting heap objects,

• the heap profiling subsystem,

• debugging and sanity checking code.

In the code generator, untagging of a pointer is necessary only in
two places: the code for a case expression, which we have already
covered, and when entering a variable in a tail-call position. For an
example of the latter case, consider the expression

case x of
(a,b) -> a

Here we need to generate code to tail-call a. The simplest scheme
is to untag and enter a. There are two ways in which this scheme
can be optimised:

• If the type of a tells us that it is a function, then we have no
untagging to do, but we still have to enter the closure. We say
more about tagging pointers to functions in Section 6.3.

• Instead of untagging and entering, we could test the tag bits, and
if the closure is evaluated then we could return it immediately,
and otherwise enter it as normal. This can be thought of as a
variant of the tagged case expression, where we are evaluating
a variable but don’t statically know the address of the continua-
tion. We tried this variant, and found it to result in a small code
size increase (0.3%) with no measurable performance benefit,
so we rejected this option in favour of the simpler untag and
enter sequence for now.

6.1.4 Propagating tag bits: the garbage collector

The garbage collector has a key role to play in the pointer-tagging
scheme. It is the garbage collector’s job to remove indirections
in the heap, and as part of doing so it turns an untagged pointer
(the pointer to the indirection) into a tagged pointer which points
directly to the constructor. The more often the GC runs, the fewer
indirections there will be (as we saw in Section 5.2) and the more
tagged pointers will be encountered.

284

Program Tagged/Evaluated (%)
anna 98.4
cacheprof 99.6
constraints 99.1
fulsom 93.2
integrate 76.6
mandel 80.3
simple 90.6
sphere 94.5
typecheck 100.0
wang 100.0
(81 more) . . .
Min 73.30
Max 100.00
Average 97.34

Figure 9. Percentage of evaluated scrutinees that were tagged

With semi-tagging (∆%)

Program Code size Runtime
anna +3.8 -17.3
cacheprof +2.6 -18.0
constraints +2.4 -14.4
fulsom +3.5 -3.1
integrate +2.6 -8.7
mandel +2.7 -24.8
simple +3.6 -22.6
sphere +3.0 0.14
typecheck +2.2 -23.8
wang +2.7 +2.1
(81 more)
Min +1.4 -37.3
Max +4.0 +10.6
Geometric Mean +2.4 -13.7

Figure 10. Pointer-tagging performance (AMD Opteron, 64-bit)

Is it possible that there can ever be an untagged pointer to a con-
structor with no intervening indirection? Whenever we create a
constructor in the heap, the code generator guarantees to only refer
to it using a tagged pointer, so it is never the case that a pointer
to a constructor on the heap can be untagged. However, this leaves
one way in which untagged pointers to constructors can arise: we
don’t guarantee to tag pointers to static constructors (see Sec-
tion 6.1.1). We have measured how often a case expression en-
counters a pointer to an (evaluated) constructor that isn’t tagged.
The results are given in Figure 9; on average, 97% of pointers to
constructors were properly tagged.

The garbage collector could add the tag bits to pointers to static
constructors, which would have the effect of making it even more
rare to encounter an untagged pointer to a constructor, but in the
version of the system we measured for this paper it currently
doesn’t.

Static constructors are most commonly encountered in the form
of dictionaries, which are part of the encoding of Haskell’s type-
class overloading, so programs that make heavy use of overloading
would be more likely to suffer from untagged pointers.

6.2 Results

Pointer-tagging is more efficient than the semi-tagging scheme.
From Figures 10 and 11 we can see that the runtimes have been
reduced by 13.7% and 12.8% on the AMD Opteron and Intel Xeon
respectively, in exchange for an increase in binary size of a little
over 2%.

With semi-tagging (∆%)

Program Code size Runtime
anna +4.2 -15.0
cacheprof +2.9 -14.9
constraints +2.6 -4.7
fulsom +3.9 -5.9
integrate +2.9 -16.7
mandel +2.9 -19.9
simple +4.4 -26.9
sphere +3.4 -22.8
typecheck +2.4 -31.4
wang +3.0 -11.1
(81 more)
Min +1.5 -44.4
Max +4.4 +11.4
Geometric Mean +2.6 -12.8

Figure 11. Pointer-tagging performance (Intel P4, 32-bit)

L1 D-cache L2 D-cache

Program accesses misses misses
anna -23.4 -13.3 -28.4
cacheprof -15.9 -5.8 -8.1
constraints -12.8 -4.8 -5.4
fulsom -8.9 -17.2 -53.3
integrate -7.7 -2.2 +18.6
mandel -8.4 -1.9 -29.4
simple -11.8 -3.9 -4.1
sphere -13.0 -19.5 -73.2
typecheck -20.4 -8.5 -30.8
wang -13.4 -2.0 -10.4
(81 more)
Min -31.5 -19.5 -73.2
Max +0.6 +0.5 +81.6
Geometric Mean -13.9 -4.5 -20.1

Figure 12. Cache behaviour for pointer-tagging vs. the baseline

Compared to semi-tagging, our pointer-tagging implementation is
winning by 5.5% on the AMD and 3.4% on the Intel, with code
size increased by less than 1%.

Pointer-tagging prevents roughly the same amount of enter-and-
return sequences that semi-tagging does. So we do not expect a
change in the number of mispredicted branches from tagging point-
ers. Our measurements confirm this, the rate of branch mispredic-
tions is similar to those obtained from the semi-tagging scheme.
For this reason we have omitted branch-prediction measurements.

The enhanced performance of pointer-tagging over semi-tagging
comes from reduced cache activity. In most case expressions
branch selection can be determined from the pointer tag alone.
This is in contrast with the semi-tagging situation, where the info
table is loaded into the cache for the sole purpose of extracting the
constructor tag. We can see how pointer-tagging affects the cache
behaviour of the program in Figure 12. Accesses to both levels of
cache and accesses to main memory all decrease, on average.

6.3 Should we tag pointers to functions?

Thus far our attention has focused on pointers to constructors,
but any functional language has another important class of val-
ues, namely functions. If we tag constructor-value pointers to indi-
cate their evaluatedness (and perhaps their tag), could we also tag
function-value pointers to indicate their evaluatedness (and perhaps
more besides)?

285

GHC already uses an eval/apply evaluation model for function ap-
plication (Marlow and Peyton Jones 2004), which behaves rather
like semi-tagging. When an unknown function is applied, the func-
tion and its arguments are passed to a pre-compiled code sequence
in the runtime system. This “generic apply” code sequence first
checks to see whether the function closure is evaluated. If not, it
evaluates the thunk. If so, it checks whether the arity of the func-
tion (held in its info table) is correct for making the call.

Little would be gained from encoding just the evaluatedness in the
function-value pointer. But if we could encode the arity of the func-
tion as well, then we could avoid ever accessing the info table,
which would improve the cache behaviour (c.f. Section 6.2). The
tag bits in a function pointer would therefore have the following
meanings: 0 means unevaluated or evaluated with unknown arity,
and 1–3 (or 1–7 on a 64-bit machine) indicates an evaluated func-
tion with the given arity. Calls to evaluated functions with the cor-
rect arity represent the majority (over 90%) of calls to unknown
functions, and over 99% of calls to unknown functions pass 3 or
fewer arguments (Marlow and Peyton Jones 2004), so we have
enough tag bits to cover the majority of cases.

We could go further. Rather than always making an out-of-line
call to the generic apply sequence for an unknown call, we could
compile an inline test of the tag bits: if the tag bits indicate an
evaluated function with the correct arity, then jump immediately to
the function, otherwise fall back to the generic apply. This would
avoid a jump in the common case that the call is to a function with
the correct arity, in exchange for a little extra code.

There might appear to be a difficulty in tagging pointers to static
function closures in separate modules, in the same way that we
had difficulty with tagging pointers to static constructors in other
modules (Section 6.1). However, GHC already passes information
about the arity of functions between compilation units to facilitate
making fast calls to statically-known functions, and we could use
this same information to correctly tag pointers to static function
closures2.

We have a preliminary implementation of the scheme described
above, and initial measurements indicate that it improves perfor-
mance by a modest 1-2% over pointer-tagging. We plan to further
investigate this scheme in future work.

7. Constructor returns
So far we have focused attention exclusively on entering the scruti-
nee of a case expression. But if the scrutinee is entered, it will take
a second indirect jump when its evaluation is complete, to return to
the case continuation. In this section we discuss two issues relating
to this latter control transfer.

7.1 Using call/return instructions

As we mentioned in Section 2, GHC generates code that manages
the Haskell stack entirely separately from the system-supported C
stack. As a result, a case expression must explicitly push a return
address, or continuation, onto the Haskell stack; and the “return”
takes the form of an indirect jump to this address. There is a lost op-
portunity here, because every processor has built-in CALL and RET
instructions that help the branch-prediction hardware make good
predictions: a RET instruction conveys much more information than
an arbitrary indirect jump. Nevertheless, for several tiresome rea-
sons, GHC cannot readily make use of these instructions:

2 Note that the type of a function doesn’t convey its arity: for example, a
function with arity 1 might return a function of arity 2, but its type would
suggest an arity of 3.

No vectored returns (∆%)

Code Run mutator L2
Program size time misses
anna -6.4 -12.1 -51.5
cacheprof -3.7 -2.9 -37.9
constraints -2.7 +8.9 +111.5
fulsom -2.9 -6.8 -51.6
integrate -2.7 -0.8 -8.4
mandel -2.6 -3.2 -82.8
simple -2.2 -1.6 -3.2
sphere -2.6 -9.2 -42.3
typecheck -2.7 -2.7 -57.4
wang -2.8 -13.0 -1.2
(81 more)
Min -6.4 -13.0 -89.0
Max -0.7 +8.9 +111.5
Geometric Mean -2.3 -1.5 -22.7

Figure 13. Turning off vectored returns (AMD Opteron)

• The Haskell stack is allocated in the heap. GHC generates code
to check for stack overflow, and relocates the stack if necessary.
In this way GHC can support zillions of little stacks (one per
thread), each of which may be only a few hundred bytes long.
However, operating systems typically take signals on the user
stack, and do no limit checking. It is often possible to arrange
that signals are executed on a separate stack, however.

• The code for a case continuation is normally preceded by an
info table that describes its stack frame layout. This arrange-
ment is convenient because the stack frame looks just like a
heap closure, which we described in Section 2. The garbage
collector can now use the info table to distinguish the point-
ers from non-pointers in the stack frame closure. This changes
if the scrutinee is evaluated using a CALL instruction: when the
called procedure is done, it RETurns to the instruction right after
the call. This means that the info table can no longer be placed
before a continuation. Thus the possible benefits of a CALL/RET
scheme must outweigh the performance penalty of abandoning
the current (efficient) info table layout in favour of some hash-
ing scheme.

A tentative solution would be to use RET for constructor returns,
but do JMP and PUSH rather than doing CALL. This turns out to
be unsatisfactory: RET prediction uses a buffer internal to the pro-
cessor, which is used to maintain return targets. CALL instructions
push return addresses into this buffer, but this is not the case for
JMP+PUSH. So this “solution” would still suffer from mispredicted
RET instructions.

In conclusion, while it is possible to use CALL/RET instructions,
it is not an easy change to make to GHC, and we we leave this
experiment for future work.

7.2 Vectored returns

Fifteen years ago, the original paper about the STG machine de-
scribed an attractive optimisation to the compilation of case ex-
pressions, called vectored returns (Peyton Jones 1992, Section
10.4). Consider a boolean case expression:

case x of
True -> e1
False -> e2

As we have described it so far, we push a return address and enter
x; the code at the return address tests the (tag of the) returned value,

286

to choose between e1 and e2. But suppose instead we pushed two
return addresses or, rather, a pointer to a vector of two return ad-
dresses. Now the constructor True could return directly to the first,
while the constructor False could return directly to the second.
The return still consists of a single indirect branch, but no test need
be performed on return, so there is a net saving of one conditional
branch.
GHC has embodied this idea for a decade. The “return address” on
the stack still points to an info table (so that the garbage collector
can walk the stack), and the vector simply forms part of the info
table. The choice between direct and vectored return is made on
a type-by-type basis. For data types with many constructors, the
vector table would be large and might contain many duplicate
entries, so GHC uses a threshold scheme: vectored returns were
used for data types with 8 constructors or fewer.
The picture changes somewhat with our tagging schemes. Now x
is tested before being entered, and if it is evaluated the appropriate
alternative is selected. In these cases the use of a vectored return
is irrelevant, so its benefits (if any) would be reduced. This obser-
vation provoked us to re-evaluate the effectiveness of the whole
vectored-return idea.
In principle, vectored returns still sound like a win: the total num-
ber of instructions executed should be reduced by vectored returns,
while the number of indirect branches should be unchanged. How-
ever, vectored returns impose several less obvious costs, on both
code size and run time:

Run time. Vectored returns are not cache-friendly. A vectored re-
turn makes a data access to the info table of a return continu-
ation. During normal execution (garbage collection aside), the
info table of a return continuation would never otherwise enter
the data cache. These vector-table accesses therefore increase
the data-cache load, and this effect turns out to be significant.
Figure 13 shows the results of our measurements of mutator-
only level-2 data cache miss rates for our benchmark programs.
Switching off vectored returns improves the miss-rate by 20%!

Code size. On 64-bit processors, each table entry is 8 bytes, and
the corresponding test-and-branch code is typically smaller than
the size of the vector. Even on a 32-bit machine this can some-
times be the case.

Code size. The info table for a return address has an optional field
used to store information about static references for the garbage
collector. In the absence of a vector table this field can often
be omitted, but if the vector table is present then this optional
field must always be present so that the vector table is in a
predictable location. This causes some extra code-size overhead
for vectored returns.

Code size, run time. If we want to generate position-independent
code, which we do, the vector has to contain offsets relative to
the vector table rather than direct pointers to the alternatives.
This increases the instruction count for a vectored return (cur-
rently 4 instructions on x86 processors, compared to one in-
struction for a direct return).

Complexity. Vectored returns significantly complicate some other
aspects of the compiler. In particular, certain stack frames (e.g.
the code for polymorphic seq) need to be able to handle any
return convention, vectored or otherwise. These standard stack
frames therefore need a fully-populated return vector in addi-
tion to the direct-return code.

When we made our measurements we found, to our surprise, that
even before adding semi-tagging vectored returns had a net neg-
ative impact on performance! (The previous measurements, made

some years ago, showed a net benefit of around 5%.) Figure 13
shows a comparison between the performance of GHC-compiled
programs with vectored returns for types with up to 8 construc-
tors (the default), and the same programs compiled with a fixed
direct-return convention. Turning off vectored returns both reduces
code size and improves performance marginally. These results are
for a 64-bit machine using 8-byte vector table entries. On a 32-bit
machine the code size reduction is -1.3% while the running time
difference is -1.7%.

Our conclusion is simple: vectored returns carry no net benefit,
and can safely be retired, with welcome savings in the complexity
budget of both compiler and runtime system.

All the other measurements in this paper are relative to the highest-
performing baseline available, namely the one with vectored re-
turns switched off. Thus, all the gains reported in this paper are
genuine gains due to tagging alone.

8. Related work

Many programming language implementations (SML/NJ, Ocaml,
Squeak) use tag bits to differentiate pointers from non-pointers.
The garbage collector uses the tags to find the pointers when it
is marking/copying the live heap. Although it uses the same low-
order-bits encoding, this technique is almost unrelated to ours. Our
tag bits never indicate a pointer/non-pointer distinction, nor do we
suffer from the loss of some bits of integer precision. Furthermore,
our pointer-tagging scheme describes something about the object
pointed to, even though the latter may change dynamically. That
is why the zero tag always means “unknown”; and it is why the
garbage collector cooperates to propagate tags from objects into
the pointers that reference them.

CMUCL uses a 3-bit tagging scheme to distinguish various types
of pointer (MacLachlan 2003). The tagging scheme is global (as
opposed to type-dependent like ours). Scheme 48 also uses a 2-
bit type tag on the pointer (Kelsey and Rees 1994). Neither of
these systems need to support lazy evaluation, so there is no need
for tagging closure pointers with laziness information. However
pointer tags could, for example, encode whether a cons or nil
object is being pointed-to, just like the dynamic pointer-tagging
scheme does. Maybe this encoding is not used because the available
tag-bits are already reserved for dynamic type information. The
lack of static type information leaves little room for CMUCL and
Scheme 48 to encode more information in the pointer tag.

A possible variant on pointer-tagging would be to divide memory
into segments where closures with the same constructor tag reside.
In this way high bits of pointers can be used as constructor tags, and
this frees up the lowest bits to encode other semantic information.
The Big Bag of Pages (BiBoP) (Steele 1977) gives this scheme
additional flexibility: the tag bits do not directly encode closure
information, but rather, they index into a table that provides it. Both
of these variants introduce complexities into the storage manager
and code generation however, because now constructors must be
allocated in different heaps, using different heap pointers.

The closest directly-related work is an unpublished paper by Ham-
mond (1993), which describes several tagging schemes and mea-
sures the effectiveness of each using hand-written code to simulate
the output of a compiler. The main focus of Hammond’s paper is
a scheme he calls “semi-tagging”3, in which the least-significant
bits of the info pointer in a closure are used to indicate evaluated
vs. unevaluated closures. This doesn’t correspond exactly to either
our semi-tagging or dynamic-pointer-tagging schemes, but there

3 We took the liberty of re-using the name

287

are reasons to believe that it would fall between the two, both in
terms of complexity and performance:

• It is likely to be slightly more efficient to check the tag bits
on the info pointer, as per Hammond’s semi-tagging, than to
inspect the info table as in our semi-tagging, since reading the
info table is an extra memory operation (albeit one which is
likely to be cached, because we only read the info tables of
constructors and there are relatively few of those).

• It is not likely to be as efficient as dynamic-pointer-tagging,
because loading the info pointer to check the tag bits may mean
an extra memory operation.

• Tagging the least-significant bits of the info pointer adds non-
localised complexity to the implementation, but perhaps not as
much as dynamic pointer tagging, because the garbage collector
would not need to propagate tag bits.

In the GRIN intermediate language (Boquist 1999) unevaluated
closures are encoded by constructors added by the compilation pro-
cess. Every thunk and function is represented by a constructor (with
arguments if encoding an applied function). The code for forcing
an unevaluated closure cannot just enter the closure because now
it has no code associated with it. Instead it matches the compiler-
introduced constructor and jumps to the thunk or function that is
represented by it. This approach is somewhat tag-ful because it in-
spects the closure content for evaluation, and like dynamic pointer-
tagging it avoids the indirect jump incurred by a tagless approach.

Nethercote and Mycroft (2003) were the first to do low level mea-
surements of GHC-compiled Haskell programs. They used the
CPU counters from the the AMD Athlon processor to collect cache
miss and branch prediction information. Their work states that
branch misprediction stalls account up to 32% of execution time.
Nethercote and Mycroft attributed these stalls to the indirect jumps
that implement laziness in compiled code, and they suggested tag-
ging pointers with an “evaluatedness” bit. Our work takes this idea
a step further: the tag not only indicates “evaluatedness” but also
caches information about the pointed-to closure, such as construc-
tor tags and function arities.

9. Conclusion

Our conclusion is that it is time to take “tagless” out of the Spine-
less Tagless G-Machine (STG-machine). Our performance figures
before and after the optimisations confirm that the uniform “enter-
to-evaluate” strategy is at the source of half of the branch mispre-
diction events.

To solve this problem, we have proposed two schemes that do
a more tag-ful evaluation of closures: semi-tagging and dynamic
pointer tagging. Dynamic pointer-tagging wins on pure perfor-
mance: a 13% performance improvement compared to semi-
tagging’s 9% on the 32-bit processor (14% / 7% on the 64-bit
processor). However, semi-tagging wins comprehensively if we
consider complexity: the changes to the compiler were small and
localised, whereas dynamic pointer-tagging changes the fundamen-
tal representation of pointers and hence requires non-local changes
to the compiler and runtime.

On balance we plan to adopt dynamic pointer-tagging in future
versions of GHC. Although the changes are non-local, they are
still relatively small: approximately 600 lines to the whole system,
which consists of roughly 150,000 lines.

Acknowledgements
The second author did part of this work during an internship at Mi-
crosoft Research Cambridge in late 2007. Thanks are due to three
anonymous ICFP 2007 referees and Mike Gunter for comments and
suggestions, to Anoop Iyer for his clarifications on branch predic-
tion, and to John van Schie for his modified version of Valgrind for
experiments.

References
Urban Boquist. Code Optimisation Techniques for Lazy Functional Lan-

guages. PhD thesis, Chalmers University of Technology, April 1999.
URL http://www.cs.chalmers.se/∼boquist/phd/phd.ps.

Agner Fog. The microarchitecture of Intel and AMD CPUs: An
optimization guide for assembly programmers and compiler mak-
ers. online manual, 2006. http://www.agner.org/optimize/
microarchitecture.pdf.

Kevin Hammond. The spineless tagless G-machine — NOT. unpublished,
1993. URL citeseer.ist.psu.edu/hammond93spineless.html.

Richard A. Kelsey and Jonathan A. Rees. A tractable scheme
implementation. Lisp and Symbolic Computation, 7(4):315–335,
1994. URL http://repository.readscheme.org/ftp/papers/
vlisp-lasc/scheme48.ps.gz.

Robert A. MacLachlan. Design of CMU Common Lisp. online
manual, 2003. http://common-lisp.net/project/cmucl/doc/
CMUCL-design.pdf.

Simon Marlow and Simon Peyton Jones. Making a fast curry: Push/enter
vs. eval/apply for higher-order languages. In ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP’04), pages 4–15,
Snowbird, Utah, September 2004. ACM.

Nicholas Nethercote and Alan Mycroft. Redux: A dynamic dataflow tracer.
Electr. Notes Theor. Comput. Sci., 89(2), 2003.

Will D. Partain. The nofib benchmark suite of Haskell programs. In John
Launchbury and Patrick M. Sansom, editors, Functional Programming,
Glasgow 1992, Workshops in Computing, pages 195–202. Springer Ver-
lag, 1992.

Simon Peyton Jones, Norman Ramsey, and Fermin Reig. C--: a portable as-
sembly language that supports garbage collection. In Gopalan Nadathur,
editor, International Conference on Principles and Practice of Declara-
tive Programming, number 1702 in Lecture Notes in Computer Science,
pages 1–28, Berlin, September 1999. Springer.

Simon L. Peyton Jones. Implementing lazy functional languages on stock
hardware: The spineless tagless G-machine. Journal of Functional
Programming, 2(2):127–202, April 1992.

Patrick M. Sansom and Simon L. Peyton Jones. Generational garbage
collection for haskell. In Functional Programming Languages and
Computer Architecture, pages 106–116, 1993. URL citeseer.ist.
psu.edu/sansom93generational.html.

Guy Lewis Steele. Data representation in PDP-10 MACLISP. Technical
Report AI Lab Memo AIM-420, MIT AI Lab, 1977.

288

