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Abstract: Kinesis is a novel data placement model for dis-
tributed storage systems. It exemplifies three design principles:
structure (division of servers into a few failure-isolated
segments), freedom of choice (freedom to allocate the
best servers to store and retrieve data based on current re-
source availability), and scattered distribution (in-
dependent, pseudo-random spread of replicas in the system).
These design principles enable storage systems to achieve bal-
anced utilization of storage and network resources in the pres-
ence of incremental system expansions, failures of single and
shared components, and skewed distributions of data size and
popularity. In turn, this ability leads to significantly reduced re-
source provisioning costs, good user-perceived response times,
and fast, parallelized recovery from independent and correlated
failures.

This paper validates Kinesis through theoretical analysis,
simulations, and experiments on a prototype implementation.
Evaluations driven by real-world traces show that Kinesis can
significantly out-perform the widely-used Chain strategy for
placing replicas; Kinesis saves resource requirements by up to
25%, improves end-to-end delay by up to 40%, and recovers
from failures orders of magnitude times faster than Chain in our
evaluations.

1 Introduction
The design of distributed storage systems involves trade-
offs between three qualities: (i) performance (serve the
workload responsively); (ii) availability and reliability
(serve workload continuously without losing data); (iii)
scalability (handle increases in workload). Achieving
these goals requires provisioning the system with ade-
quate storage space and network bandwidth, tolerating
failures without disruption of service, and incrementally
adding new storage servers when workload exceeds cur-
rent capacity.

A key factor in the design of storage system is data
placement. Even though basic replication of data items
takes care of simple failure scenarios, in addition to im-
proving performance and scalability, naı̈ve placement of
data and replicas on the storage servers might lead to sub-
optimal system behavior: for instance, some part of the
system might become a bottleneck while other parts are
under-utilized due to imbalance in resource usage limit-
ing the overall throughput of the system; a failure of a
shared component, such as network switch or power line,
might lead to unavailability of all replicas of some data
items; or, addition of new servers might trigger excessive
data migration leading to poor responsiveness.
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This paper proposes Kinesis, a data placement model
for local-area storage systems. The key feature of Kine-
sis is its simplicity—so simple, we describe it entirely in
the introduction. Yet, it is powerful enough to make a
substantial difference to the performance, reliability, and
scalability of a storage system.

Kinesis relies on the following key design principles:
1. Structure: Kinesis partitions the storage servers into k
disjoint segments of approximately equal sizes. Servers
whose failures might be correlated (e.g., those on the
same rack, on the same network switch or on the same
power supply) are assigned to the same segments to min-
imize inter-segment correlated failure. Each segment has
an independent hash function that maps identifiers for
data items to servers in the segment. The hash function
adjusts dynamically to accommodate changes in the set
of servers due to failures or additions of servers. For each
data item, the k hash functions yield k servers, or k hash
locations, one in each segment.
2. Freedom: Kinesis balances the use of network
and storage resources through a strategy known as the
multiple-choice paradigm [1]. For a replication factor
r desired by the storage system, Kinesis chooses k to
be more than 2r, obtaining a critical freedom in replica
placement; it can store replicas of an object on any r of
the k hash locations. A similar freedom exists for a read
operation as any one of r hash locations storing the repli-
cas can handle it. Kinesis uses this freedom (1 out of r for
read and r out or k for writes) to choose the servers with
the lightest load or the highest spare storage capacity to
keep resources as balanced as possible.
3. Scattered Distribution: The upshot of the above strat-
egy is that replicas of data items are distributed in a
psuedorandom manner. For instance, other replicas of
data items on a particular server are located on different
servers with high probability and often even on different
segments. This scattered distribution minimizes the im-
pact of failures and provides opportunities for fast, paral-
lelized recovery in the event of a failure.

These three principles provide the following advan-
tages to Kinesis-driven storage systems.
High Performance: Balanced use of resources enables
storage systems to sustain larger workloads than less-
balanced systems. It provides substantial cost savings by
reduces the need for over-provisioning while reducing de-
lays caused by imbalance-triggered bottlenecks.
Availability and Reliability: Replication ensures data
availability despite failures, while physical isolation of



segments mitigates the impact of correlated, shared-
component failures. Moreover, dispersed, randomly-
distributed replica layout aids in parallel recovery with
uniformly spread-out load for re-creating replicas.
Scalability: Finally, the hash-based data placement and
lookups eliminate any need to maintain a consistent
global mapping, while providing efficient, disruption-
free system expansions. Furthermore, resource balancing
based on the multiple-choice paradigm minimizes data
transfer overheads during expansions.

This paper validates these strengths of Kinesis through
theoretical analysis, simulations, and experiments using
a prototype implementation. Theoretical analysis shows
that the multi-choice paradigm of resource balancing is
sound in the presence of replication, heterogeneity, and
incremental expansions. Simulations, based on a 10-
year Plan-9 file system trace [18], a 6-month log of
MSN Video production servers, and an synthetic block-
level workload, show that Kinesis reduces the number of
servers to be provisioned substantially (up to 25%), cuts
the recovery time through parallel recovery, and reduces
client-perceived delays (up to 40%), when compared to a
commonly-used Chain data-placement strategy [8, 19, 5],
where replicas are placed on adjacent, correlated servers.
Experiments on a prototype implementation further con-
firm the superior performance of Kinesis.

The key contribution of the paper is the elegant Ki-
nesis model for replica placement in distributed storage
systems. Even though this paper demonstrates the use-
fulness of this model on a simplified distributed storage
system (our prototype), it is evidently that our model can
benefit a wide variety of existing and proposed systems
as well.

2 Related Work
Surprisingly, there appears to be no distributed storage
system with a Kinesis-like replica placement strategy. In
this section, we outline current data and replica place-
ment strategies, which provide many, although not all,
benefits of Kinesis.
Global-Mapping: Many distributed storage systems
maintain a global mapping for locating data items and
replicas often replicated on several or all servers or
provided by a replicated state-machine service such as
Paxos. GFS [6] is a recent example, where a single (repli-
cated) master maps data chunks to servers. GFS takes ad-
vantage of the freedom to place replicas on any server in
the system and achieves a pseudo-random replica distri-
bution which provides tolerance from correlated failures,
balanced resource utilization and fast, parallel failure re-
covery.

Global mapping offers maximum opportunity for per-
fect resource balancing and correlation-free data place-
ment. However, this flexibility comes at a high cost for

making global decisions and consistently maintaining the
map on multiple servers. Kinesis shows that we can
harness all these benefits even with limited freedom of
choice.
Hashing: Hash-based schemes for data placement elim-
inate the cost of maintaining global maps by provid-
ing a deterministic mapping between data and servers.
For example, Archipelago [9] uses hashing on the di-
rectory path for data placement to increase availability.
Peer-to-peer storage systems (such as [19], CFS [5],
and OceanStore [11]) based on Distributed Hash Tables
(DHTs) also use hashing for placing and locating objects;
these systems use multi-hop routing to locate the objects
as they operate over WANs and are fully decentralized.

There are two key issues in hashing-based schemes:
(1) how to dynamically adjust the hash function in face
of server failures and server additions, and (2) how to
achieve load and storage balance.

Hashing schemes that require minimal data relocation
during server failures and expansions include Consistent
Hashing [13], Extendable Hashing [9], and Linear Hash-
ing [10]. The peer-to-peer storage systems above use con-
sistent hashing while Archipelago uses extendable hash-
ing. Linear hashing is an alternative that is well-suited
for a LAN environment, where servers are added into
the space in a controlled, predetermined fashion (Sec-
tion 3.1.1. Moreover, linear hashing has inherently less
imbalance in the way it allocates the key space between
servers compared to consistent hashing. We use linear
hashing while evaluating Kinesis in this paper. How-
ever, the design principles are equally applicable for other
hashing schemes are expected to provide similar benefits.

An important concern with hashing is that it provides
poor balance in resource utilization. Its imbalance typi-
cally corresponds to a single-choice paradigm (see Sec-
tion 4) and increases with the number of data items. One
well-known technique for load balance servers is pro-
posed in [5, 7], where each server emulates log n virtual
servers by holding log n small segments. Resource bal-
ance is then achieved when highly loaded servers pass
virtual servers to lightly loaded ones. However, this ap-
proach tends to induce correlated failures (as multiple vir-
tual servers map to one physical machine, and the map-
ping is not exposed to the application) and requires addi-
tional maintenance overhead.

Byers et al. [3] analyze the use of the multi-choice
paradigm for storage balancing for DHTs but do not ad-
dress storage system issues such as replication, failure re-
covery, and system expansions.
Chaining: A commonly-used replica placement scheme,
which we call chain placement, first chooses a primary
server through any data placement scheme and then
places replicas on servers adjacent to the primary. Peer-
to-Peer storage systems, such as PAST [19] and CFS [5],
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Figure 1: Kinesis Data Placement Model: Kinesis divides the
servers into k segments, employs independent hash functions to
map an object to a unique server in each segment, and replicates
the object in r servers chosen from the k mapped servers based
on resource availability.

as well as LAN stroage systems, such as Chained declus-
tering [8], Petal [12], and Boxwood [15] use chain place-
ment. Much of this paper discusses the relative merits of
Kinesis over the Chain strategy. Simulations and experi-
ments presented in this paper clearly quantify the advan-
tages of Kinesis over Chaining.
Scattering: While chaining distributes replicas in a cor-
related manner, a recently proposed distributed file sys-
tem called Ceph [24] uses a psuedorandom replica place-
ment strategy. This strategy called CRUSH [25] maps
a data item to a set of servers on which the replicas are
placed in a random yet deterministic manner taking as
input cluster organization and server capacities. While
Crush provides similar advantages as Kinesis, namely
hash-based data placement and tolerance to correlated,
shared component failures, it lacks the freedom in plac-
ing replicas. Consequently, resource utilization is likely
poorly-balanced (similar to single-choice placement dis-
cussed in Section 4), and requires data relocation to im-
prove balance in the presence of dynamic changes in
server load or spare capacity.

3 Kinesis Overview
We consider systems consisting of a (large) number of
back-end servers, each with one or more CPUs, local
memory, and locally attached disks for storing data. We
refer to each logical data unit as an object; objects might
be of variable sizes. There are also one or more front-
ends that take client requests and distribute the requests
to the back-end servers. Both the servers and the front-
ends reside in the same administrative domain, connected
through one or multiple high-speed network switches in a
local area network. Clients of the system can read, create
and update objects.

3.1 Hash-Based Organization
Kinesis partitions servers into k disjoint segments of ap-
proximately the same size, as illustrated in Figure 1.
Servers whose failures might be correlated are placed

in the same segment when possible, meaning that most
single-component failures impact only a single segment.

Within each segment, Kinesis employs a hash func-
tion that maps each object to a unique server in the seg-
ment; hash functions for different segments are indepen-
dent. Hash-based data placement eliminates the expense
for maintaining large mapping tables by obtaining poten-
tial locations of an object through efficient and determin-
istic computations. The k servers, one in each segment,
to which an object is mapped are referred to as the hash
locations for the object.

For each object, Kinesis creates r < k replicas and
places them on r of its k hash locations. The r locations
are chosen to minimize resource imbalance following the
multiple-choice paradigm, as described in Section 3.2.
Because there are k > r hash locations to choose from,
the scheme offers freedom. Due to the use of independent
hash functions across segments, replicas are distributed
in a scattered manner: replicas of objects that belong to
the same server on one segment may be stored on differ-
ent servers in another segment or on completely different
segments altogether, as shown in Figure 1.

3.1.1 Linear Hashing
A hash function for a segment needs to accommodate the
addition of new servers so that some objects are mapped
to those servers. As previously discussed, we can use any
dynamic hashing scheme, such as linear hashing, extend-
able hashing, or consistent hashing. These schemes use
a hash function to map objects to a key space and assign
portions of the key space to servers. For example, in Fig-
ure 1, objects are hashed to a b-bit key space and mapped
to the closest server to their left in the key space.

We use the well-known linear hashing scheme because
it is deterministic, has low key-space imbalance (bounded
by a factor of 2 in the absence of failures), and requires
minimal reassignment of objects when servers are added
or removed. In contrast, the popular consistent-hashing
scheme has a higher imbalance (factor O(log n) for n
servers in key-space allocation).

We describe our precise implementation for concrete-
ness. In linear hashing, a primary, fixed-base hash func-
tion h first maps an object d to a unique location in a
b-bit key space [0, 2b], larger than the maximum number
of nodes expected in the system. A secondary hash func-
tion he then maps this key to one of the n nodes in the
segment as follows:

he(d) :=





h(d) mod 2l+1 if h(d) mod 2l+1 < n

h(d) mod 2l otherwise

Here, l = blog2(n)c.
Intuitively, linear hashing positions new servers deter-

ministically on the key space. Starting with a state with
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Figure 2: Key-Space Distribution in Linear Hashing

2b−1 servers, it positions the (2b−1 + i)th server to split
the key space assigned to server i into two equal portions.
This splitting continues until there are 2b servers and then
restarts at the next level with 2b servers.

Figure 2 illustrates linear hashing: the first line shows
the addition of servers 0 and 1, where server 1 splits the
key space of server 0; the second line shows the further
addition of servers 2 and 3, where server 2 splits the key
space for server 0, and server 3 splits the key space for
server 1; the key space is even when there are 4 servers.
The last line shows the addition of servers 4 and 5, where
server 4 splits the key space for server 0 and server 5
splits that of server 1. With 6 servers, the key space of
the un-split servers, namely servers 2 and 3 are twice as
large as the others.

Linear hashing can be extended to handle server fail-
ures through a simple strategy: map an object to the clos-
est non-faulty server to its left. For example, if server 2
fails, all objects mapped to 2 will now be mapped to 4.
Note that such adjustment could lead to excessive hash-
space imbalance. Because failed servers are often re-
paired or replaced in a data center, and Kinesis has spare
hash locations to store extra replicas before the replace-
ment, hash-space imbalance is not a major issue for Ki-
nesis. Moreover, Kinesis’ resource balancing algorithms
handle any inherent hash-space imbalance.

3.2 Resource-Balanced Request Processing
Kinesis attempts to achieve both storage balance, which
is concerned with the balanced use of storage space on
servers, and load balance, which is concerned with the
balanced use of other transient resources, such as network
bandwidth, disk bandwidth, CPU, and memory, that are
utilized when processing client requests.

Storage balance and load balance are crucial to reduce
the overall cost for provisioning a distributed storage sys-
tem. If the system has high utilization but poor balance,
then some part of the system will become an unnecessary
bottleneck and require over-provisioning to remove such
bottlenecks. Imbalance in the use of resources may arise
due to a number of reasons: inherent imbalance in the key
space, high variability in object sizes, and skewed distri-
bution of request rate for popular and unpopular objects
all contribute to high imbalance in the resource utiliza-
tion.
3.2.1 Read Requests:
Reads affect only load balance, and a storage system
using the Kinesis model for replica placement can use

the straightforward approach of picking the least-loaded
server from the r replicas storing the requested object.

Even though this is a simple load balancing strategy
commonly used in many systems, the dispersed, pseudo-
random distribution of replicas in Kinesis provides subtle
advantages over other correlated replica placement strate-
gies. In Kinesis, the probability that all replicas of two
objects are mapped to the same set of nodes is low; con-
sequently, even if two highly popular objects happen to
be stored on the same node, other replicas are likely to be
distributed on different nodes, leading to increased op-
portunities for balancing load.

Server-side caching may influence the performance of
read requests under certain circumstances. If the disk
bandwidth is lower than the network bandwidth, then
server-side caching is an effective technique to improve
performance. In the presence of caching, a uniform dis-
tribution of read requests to many servers may lead to
poorer utilization of the cache as the same object may
get cached at different nodes and lead to the waste of
memory. A locality-aware request distribution strategy,
such as LARD [17] or D-SPTF [14], may be more suit-
able to such systems. However, we do not investigate the
effect of caching on load balance as using state-of-the-
art disks or combining a sufficient number of disks can
usually provide disk bandwidth that is comparable to the
network bandwidth on each server.

3.3 Write Requests
Write requests include creating new objects and updat-
ing existing objects. When a client issues a request to
create an object, Kinesis is free to choose r of the k pos-
sible hash locations. Unlike reads, in which only one re-
source requires balancing, writes require two resources
to be balanced: storage and load. We advocate a com-
bined approach called Kinesis S+L, which balances load
in the short term and storage in the long term by using the
following algorithm: choose up to r servers with lowest
storage utilization from among those servers with empty
I/O queues; if any more servers are required, select those
with the shortest I/O queues. It is intuitively clear that
Kinesis S+L will keep the servers load-balanced at times
of heavy load, and permit storage balance to be regained
during periods of low load. Section 6.2.3 confirms this in-
tuition empirically and examines naı̈ve strategies that bal-
ance only one of these two resources: a strategy termed
Kinesis S chooses the r servers with lowest current stor-
age utilization, whereas Kinesis L chooses the r servers
with shortest I/O queues.

Updates raise the issue of consistency in addition to re-
source balance. Maintaining consistency while perform-
ing updates has been comprehensively studied elsewhere
and is not a major theme of this work. We simply mention
two simple strategies that could be employed. In the first
strategy, version numbers are associated with objects; an
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update creates a new version for the object while deleting
any old one. A server overwrites its current version only
when it receives one with a higher version number; in-
cluding the client id can ensure that version numbers are
unique. Polling k−r+1 hash locations is sufficient to en-
counter a server that processed the last completed update
because there are only k hash locations. An appropriate
read/write register semantics can thus be provided.

Alternatively, the application uses the Kinesis-enabled
storage system as a block store and employs copy-on-
write to maintain multiple versions. Updates are thus
transformed to creations of new blocks. The application
is assumed to maintain metadata that keeps track of the
relationship between different versions of data and the as-
sociated blocks.

3.4 Failure Recovery
When a server fails, new replicas need to be created for
lost replicas in order to reduce the probability of data
loss. Note that Kinesis minimizes the impact of corre-
lated failures as replicas are distributed on different seg-
ments. Thus, the replicas of an object are unlikely to all
become unavailable due to typical causes of correlated
failures, such as the failure of a rack’s power supply or
network switch.

Restoring the replicas on the servers taking over the
key space assigned to failed ones is likely to introduce
key-space imbalance and overload those servers. Instead,
we restore the replicas on the as-yet-unused hash loca-
tions; re-creating replicas at spare hash locations pre-
serves the invariant that each replica of a data item is
placed at one of its k hash locations, thereby eliminating
the need for any bookkeeping and for consistent meta-
data updates.

Due to the pseudo-random nature of the hash func-
tions, as well as their independence, any two data items
on a failed server are likely to have their remaining repli-
cas and their unused hash locations spread across differ-
ent servers of the other segments. (Recall that the other
hash locations are by definition in other segments.) This
leads to fast parallel recovery that involves many differ-
ent pairs of servers, which has been shown effective in
reducing recovery time [6, 22].

Recreating a replica involves copying data from a
source server that has a replica to a destination server
on which a new replica is to be created. This process
consumes storage space on the destination server, while
imposing load on both the source and the destination
servers. Freedom of choice can be exercised for load bal-
ance and storage balance during failure recovery: when a
replica fails, a suitable source server can be picked from
r − 1 remaining replicas and a destination server from
k − r unused hash locations.

3.5 Incremental Expansion
New machines may be added to the system in order to
increase its capacity. Kinesis adds new servers to the seg-
ments (logically) in a round-robin fashion so that the sizes
of segments remain approximately the same.

Linear hashing accommodates the newly added servers
by having them take over half of the key spaces of some
existing servers. Objects mapped to the re-assigned key
spaces must now be copied to the new servers in order to
maintain the invariant that an object is stored only on its
hash locations. Such movement can be carried out in a
lazy fashion by introducing location pointers to the old
location at the new location. A data item can be moved
when requested. Cold data items do not have to move
at all unless the original server gets close to its capacity.
Note that location pointers do not necessarily hamper the
availability of the data when servers storing the pointers
are unavailable: because of our use of linear hashing, the
targets of the pointers are deterministic and easily com-
putable. Therefore, a front-end can always try the servers
that could be pointed to and locate the data items if they
are indeed stored there.

Incremental expansion might also lead to imbalance in
resource utilization. For instance, a storage imbalance
is created the moment new servers are added to a seg-
ment. Moreover, the presence of fewer objects as well
as newer object that might be more popular just because
they are newer may lead to load imbalance. Next sec-
tion discusses scenarios under which this imbalance can
be corrected eventually.

4 Theoretical Underpinning
Data placement in distributed storage systems is closely
related to the classic balls-and-bins problem. The balls-
and-bins problem involves sequentially placing m balls
into n bins. In a storage system, servers correspond to the
“bins”; objects are “balls” for storage balancing, whereas
for load balancing, read/write requests are “balls”.

In this section, we describe the well-known theoretical
bounds for the weight imbalance between the bins; that is,
the difference between the maximum weight of any bin
and their average weight, extend the bounds to Kinesis,
and discuss their practical implications.

4.1 Balanced Allocations
For the single-choice case, where all balls are of uni-
form weight and each ball is placed into a bin picked
uniformly at random, the weight imbalance is bounded
by

√
m ln n/n [2]. Azar et al. analyzed the weight im-

balance for the the k-choice scheme (a.k.a. the multiple-
choice paradigm) with n balls (m = n): for each ball,
this scheme chooses k ≥ 2 bins independently and uni-
formly at random (with replacement) and places the ball
in the least full of the k bins at the time of placement
breaking ties randomly. They proved that the weight im-
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balance is bounded by ln ln n/ ln k+O(1) with probabil-
ity 1 − o(1/n). Berenbrink et al. [2] further generalizes
this result for m À n balls.

The key advantage of the multi-choice paradigm is that
the weight imbalance is independent of the number of
balls m in the system unlike the single-choice case, where
the imbalance increases with m. Berenbrink et al. [2] also
show that the multi-choice paradigm corrects any existing
weight imbalance significantly faster than a single-choice
strategy. Wieder [26] extends the result to the case where
bins are not sampled uniformly and have heterogeneous
capacity. He shows that the imbalance caused by the het-
erogeneity of the bins is alleviated by increasing the num-
ber of choices. Talwar and Wieder [21] further extend the
result to the case where balls are weighted with weights
coming from a distribution with finite variance.

Resource balancing in Kinesis differs from the above
balls-and-bins models in several ways:
Segmentation: Kinesis servers are divided into k equal-
sized segments and a target server is chosen from each
segment independently. Vöcking [23] confirms that the
above bounds hold for this case.
Replication: Kinesis employs r-fold replication, and,
hence, picks r out of k servers during writes. Most of
the results above can be easily extended to include repli-
cation.
Deletions: The schemes outlined so far did not con-
sider the case where balls may be removed from the
bins. However, objects in Kinesis may get deleted dur-
ing updates. Moreover, read and write requests consume
network bandwidth only temporarily and disappear from
the system once competed. These scenarios correspond
to a balls-and-bins problem with deletions. Fortunately,
the analytical bounds for balls-and-bins continue to hold
even during deletions for m = n [23].

4.2 Incremental Expansion
Incremental addition of new servers to the system could
introduce both key-space imbalance and storage imbal-
ance.

4.2.1 Storage Balance
A key concern during incremental expansion is whether
or not the storage imbalance created during the expan-
sion is overcome during further insertions of objects. In
this section, we analyze the conditions under which the
storage imbalance can be overcome.

Consider a fully-balanced Kinesis system with kn
servers, where each of the k segments contains n servers,
and each server stores m unit-sized objects. Assume that
initially, every server is responsible for an equal portion
of the key space. Let expansions happen at a rate α, that
is, an expansion adds αn (0 < α ≤ 1) new servers to
each segment. Then, each new server “takes over” half of
the key space of an existing one, amounting to a transfer

k, r RL (α = 1/n) RL (α = 1) RL (Max)

4, 3 0.66 1 1.05 (α = 0.81)
6, 3 1 1 1.27 (α = 0.44)
7, 3 1.16 1 1.4 (α = 0.34)
10, 3 1.66 1 1.84 (α = 0.18)

Table 1: Imbalance (RL) in the expected ratio of the number of
new replicas received at less-utilized server to the system wide
average during incremental expansion. α is the fraction of new
servers added to the system during an expansion.

of roughly half of the objects from an existing server to
the new one.

The system is now imbalanced in two respects. Let L
be the set of new servers and the servers they split (hence
|L| = 2kαn), and H be the set of remaining (1 − α)kn
servers. Then:
1. Each server in L holds roughly m/2 items while each

server in H holds m items.
2. The key space for a server in L is half of that for H .

Consequently, the hash function samples a server in
L with probability 1/2n but a server in H with prob-
ability 1/n.

Consider a resource balance scheme for writes that cre-
ates r replicas on servers with the least storage utiliza-
tion. Then, in a recently expanded system with kn(1+α)
servers, the expected number of replicas created on each
server is E = r/(kn(1+α)). We introduce RL as a mea-
sure of how evenly new replicas are distributed between
less-full servers in L and more-full servers in H and de-
fine RL = EL/E, where EL is the expected number of
replicas on a server in L.

When RL = 1, all servers get the same number of new
replicas on expectation. However, when RL < 1, servers
in L receive fewer replicas than servers in H; that is, the
bias towards under-utilized servers does not overweigh
the low sampling probability, and the servers in L will
never catch up the servers in H in storage consumption.
Whereas, when RL > 1, servers in L get more replicas
than servers in R on average and will eventually balance
their storage utilization as new objects are inserted.

Table 1 summarizes the values of RL for interesting
cases. When α = 1 (i.e., all servers are split), RL = 1.
In contrast, when α = 1/n (i.e., only one server is added
to each segment), RL ≈ k

2r since the probability of a
server in L being sampled is about 1/2n. In general, the
value of RL is a concave function of α and is maximized
between these two extreme cases.

The above implies that split servers can always catch
up with the un-split servers as long as k ≥ 2r. Other-
wise, the new servers may permanently lag behind the old
servers in storage consumption. Note that a replica place-
ment scheme with a single choice scheme belongs to the
latter case and incurs the risk of high resource imbalance
as a result of expansions. For Kinesis, we recommend a
choice of k ≥ 2r based on the above analysis.
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4.2.2 Load Balance
In contrast to storage balance, the key-space imbalance
introduced by incremental expansion has a modest im-
pact on load balance: For write requests, even if the r
locations are chosen based on their storage consumption,
the load balance is bounded by RL, derived previously.
For read requests, it is possible that new objects are more
popular than old objects, and this popularity difference
leads to a higher load on servers with more new objects.
However, as shown in Table 1, the unevenness in the dis-
tribution of new objects is small for suitable choices of
k and r. This small imbalance is not an issue since the
bounds for balls-and-bins hold under non-uniform distri-
butions as mentioned earlier.

5 Prototype implementation
We implemented a prototype distributed storage system
in order to evaluate the Kinesis replica placement algo-
rithm. However, it should be emphasized that we view
Kinesis as a module that could be plugged into many ex-
isting or future distributed storage systems. Our proto-
type was used to evaluate this module—it is by no means
a fully-featured large-scale distribute storage system.

The Kinesis prototype consists of storage servers that
provide a basic service for storing and retrieving objects
and front ends that manage placement of replicas, handle
user requests, and balance resource utilization. Our im-
plementation supports Kinesis(k, r) for different values
of k and r and provides a Read and Write interface for
mutable, variable-sized objects.

The prototype implements linear hashing as described
in Section 3.1 using a 160-bit SHA-1 hash function. It
generates k independent keys for an object by appending
the object name with integers from 1 to k. An alternative,
more efficient way to compute independent keys is to use
k disjoint regions of a single hash value. For example,
we can divide the 160-bit SHA-1 hash value into 10 seg-
ments and allocate 16 bits in the hash to each segment;
this approach can support 10 segments with a maximum
of 216 servers in each.

5.1 Storage Servers
A storage server manages objects locally on a single ma-
chine and provides a remote interface for basic opera-
tions. The operations supported include Append to cre-
ate a new object or append content to an already existing
object, Read to read portions of content from an object,
Exists to check the existence of an object, Size to pro-
vide the total storage consumed, and Load to provide the
current network load in terms of the number of outstand-
ing Append and Read requests. Storage servers perform
Append and Read operations only in fixed-sized blocks;
thus, a read or write request from a client may involve
several Read and Append operations between the server
and the front end. In addition, a storage server maintains

a list of objects it stores in-memory.
Storage servers also perform failure recovery. When a

storage server fails, other servers create new replicas of
the lost objects. Each object has a unique primary server
responsible for its recovery. The primary server of an ob-
ject is the first non-faulty server obtained by applying the
hash functions in a fixed order. The prototype does not
currently implement a failure detector. Instead, a failure
is simulated by the front end by marking some storage
server as faulty, never performing any operation on this
storage server, and notifying other servers of the failure
after a fixed failure-detection interval.

5.2 Front Ends
Front ends handle read and write requests from the
clients. They redirect requests to the storage servers cho-
sen based on the preferred resource balancing policy. For
read operations, a front end first queries the k possible lo-
cations to determine the replica holders. Since our system
is targeted at high-speed, LAN environments, the round
trip time to check whether a server has an object is typi-
cally negligible (less than a millisecond). It is possible to
cache the fetched results for a short period of time to im-
prove efficiency. However, caching leads to consistency
problems during write operations. If a read request does
not complete due to a server failure, the request is redi-
rected to a different replica-holding server.

The write operations include creations of new objects
as well as updates. While in-place updates are suitable
for fixed-sized objects, updates to variable-sized objects
may aggravate storage imbalance. So, our implementa-
tion creates a new version of the object during each up-
date and replicates it independently. When a front end
receives a write request, it queries the k potential loca-
tions of the object to determine the current version num-
ber and creates r replicas with a higher version number.
Collisions in version numbers in the presence of multiple
control servers is avoided by using the identifier of the
front end to break ties. If desired, older versions of ob-
jects may be deleted from the system in the background.

Our implementation efficiently handles several front
ends at the same time. Front ends operate independently
and do not have to coordinate with other front ends. They
do not store persistent state but learn current replica loca-
tions and resource usage by directly querying the storage
servers. Thus, front-end failures do not require expensive
recovery mechanisms.

Front ends communicate with storage servers through
a remote procedure call (RPC). At startup, a front end ini-
tiates connections with each storage server for perform-
ing RPCs. Our system devotes one connection for faster
operations such as Exists, Size, and Load, and multiple
connections for the disk operations Append and Read
so that object transfers can proceed in parallel. Addi-
tionally, each storage server makes two RPC connections

7



Workload Count Max Mean Median
Block 10M 10MB 10MB 10MB
MSN 30,656 160.8MB 7.97MB 5.53MB
Plan 9 1.9M 2GB 93.4KB 3215B

Table 2: Workload Object-Size Characteristics.

(one each for fast and slow operations) with every other
storage server for failure recovery.

6 Evaluation
We compare Kinesis parameterized by k segments and r
replicas, Kinesis(k, r), with a commonly-used replica
placement scheme we characterize as the Chain scheme.
Chain uses a single hash function to chose a primary
location for an object and places r replicas on servers
obtained through a deterministic function of the pri-
mary. Chain represents the variants of the single-choice
placement strategy commonly used in Chained Declus-
tering [8], Petal [12], PAST [19], CFS [5], and Box-
wood [15]. Note that Chain is highly correlated and does
not provide freedom of choice for distributing write re-
quests. However, it does provide choice for distributing
read requests (1 out of r), and we take advantage of this
choice for balancing network load during reads.

We implemented the Chain(r) scheme using a single
hash function h (SHA1) with linear hashing. Given a data
item d, with n servers in the system, d will be placed on
the servers in {(h(d) + i) mod n | 0 ≤ i < r}. Intu-
itively, Chain(r) places the data item based on a single
hash function, with replicas on the following r− 1 server
locations in a circular key space.

6.1 Workloads
We evaluate Kinesis using the three different workload
traces summarized in Table 2. The block trace consists
of 10 million objects of the same size (10MB).1 This is a
synthetic workload of a block storage system. We assign
unique numbers as identifiers to the objects and use them
as hash keys.

The MSN trace is based on a 6-month access log from
the MSN Video production servers from mid February of
2006; this trace contains a record for each client request
to the video files on the servers. The trace contains 30,656
video files with a total size of 2.33TB. Further statistics
are shown in Table 2. The URLs for video files serve as
hash keys.

The Plan 9 trace is based on the bootes Plan 9 file
server history used in Venti [18]. From the provided
block information, we reconstruct the file system trace
consisting of file creation and modification events with
size information. The trace contains about 2,757,441
events with 1,943,372 unique files. Based on the final
file sizes after the last modifications, the trace has a total

1We chose 10M because it is close to the average in the MSN Trace.
We found the evaluation results insensitive to block size.

of about 173GB. Further statistics are shown in Table 2.
File identifiers are used as hash keys.

6.2 Simulations
Our simulations compare Kinesis(k, r) with Chain(r)
in terms of storage balancing, load balancing, and failure
recovery. The following sections show how balanced re-
source utilization affects the provisioning requirements to
meet client workload, end-to-end performance, and avail-
ability of the system.
6.2.1 Storage Balancing
We first evaluate the amount of resources needed to meet
the storage requirements of the application. Note that
storage imbalance in the system implies that we may need
more capacity than the actual storage requirements of an
application. We define the metric over-provisioning per-
centage β to express the fraction of additional storage ca-
pacity needed to meet application demand.

We measure the over-provisioning percentage in sim-
ulations as follows: let ρ be the threshold fraction of
the total system capacity that triggers incremental expan-
sion; that is, a new server is added whenever the total
amount of storage currently utilized exceeds ρ. We de-
fine ρmax as the largest ρ-value that is permissible be-
fore some server exceeds its individual capacity at some
time during a given workload. We can then compute the
over-provisioning percentage β as 1/ρmax−1. The better
balanced the storage, the lower the β and the less server
over-provisioning is required.

We use the block trace for this experiment, start with
100 servers with capacity 64 GB each. We only show
the results for adding 10 servers at a time, as we found
that varying the number of servers added during each ex-
pansion does not change the quality of the results. We
determine β experimentally by varying the values of ρ at
which incremental expansion is triggered.

Figure 3 shows the values for β for Kinesis(k, 3) with
5 ≤ k ≤ 10 and for Chain(3). Note that β = 0 means
that storage is perfectly balanced in the system and no ad-
ditional storage capacity is required to meet application
demand. Figure 3 shows that Kinesis comes much closer
to this optimal value of 0 compared to Chain, the differ-
ence for k = 7 is by 23%, and for k = 10 by 32%. This
means that for about every 150 servers used by Chain(3),
Kinesis(10, 3) may require only 120 servers, a 25% sav-
ing. Of course, in practice, these absolute numbers may
depend on the properties of the application workload;
nevertheless, the over-provisioning results presented here
indicate that Kinesis can substantially reduce the provi-
sioning cost in practice.

Figure 3 also shows that β decreases for Kinesis
when k increases; increased freedom of choice leads
to better storage balance and reduced over-provisioning.
Based on this observation, in the rest of the paper, we use
Kinesis(7, 3) as the default setting for Kinesis.
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Figure 3: Kinesis(k, 3) vs. Chain(3): Over-Provisioning
Percentage: K(k) corresponds to Kinesis(k, 3) and Chain
to Chain(3). Kinesis requires substantially less additional stor-
age capacity than Chain to handle the same workload.

The reduced over-provisioning is the result of better
storage balance for Kinesis. To verify that Kinesis pro-
vides better storage balance across different traces, we
simulate the process of adding objects in each of the
three traces into a fixed set of 32 servers. (Using a
power of 2 is favorable to Chain(3), since it will not
suffer from hash-space imbalance. In contrast, because
Kinesis(7, 3) uses 7 segments, hash-space imbalance
does appear.) Figure 4 shows the storage imbalance for
all three traces, measured by the difference between the
maximum number of bytes on any server and the average,
as files are added into the system or modified. Only the
Plan 9 trace contains file modification events; for such an
event, the new version is inserted with the same key and
the old version deleted.

The results for all traces indicate clearly better storage
balance for Kinesis(7, 3). The different size distribu-
tions are mainly responsible for the different behavior for
the three traces. The closer it is to the uniform distribu-
tion, the better the storage balance for all schemes. In
particular, the spikes in the figure for the Plan 9 trace are
due to some exceedingly large files in the trace. We tried
different values of k and found that a larger k is better,
but the differences are small.

6.2.2 Load Balancing
Second, we investigate whether superior load balancing
leads to the tangible benefit of reduced provisioning re-
quirements, given a fixed performance target in terms of
client-observed delay.

To simulate request processing, we use the following
model. Each server provides p pipes, each with band-
width B. That is, a server can process up to p concurrent
client requests. Requests will be queued when all pipes
are in use. A request to read an object of size s is assumed
to take s/B time units to complete. Each request is sent
to exactly one of the servers that stores a replica of the
requested object; the particular server selected is the first
one to have a pipe available, with ties broken arbitrarily.

Note that the bandwidth provided by a single server to

a client remains B even if only a single request is pro-
cessed. This is reasonable because we assume that the
bottleneck is on the client’s network—certainly a realis-
tic assumption for consumer clients on a DSL line, and
probably also reasonable for corporate clients. We also
ignore caching—as explained in Section 3.2, caching has
negligible effect on performance for the workloads we
consider.

The experiment assumes that each server has 2 Gbits
per second of outgoing bandwidth available, clients have
5 Mbit per second of incoming bandwidth, and there-
fore, servers have p = 410 pipes each of bandwidth
B = 0.63 MB per second.

The load balancing simulation examines the load im-
posed by read requests in the MSN Video trace. The sim-
ulation assumes that all the MSN Video files in our trace
have first been inserted into the system, in a fixed order,
using either the Kinesis(7, 3) or Chain(3) schemes. We
then simulate all read requests from 30 consecutive days
of the MSN Video trace. The relative timing of requests
is taken directly from the trace, but the absolute rate at
which requests arrive is a tunable parameter of the exper-
iment. This enables us to increase the load on the system
until it is reasonably saturated.2 The results given below
are for a request rate that averages just under 3 GB per
second. Note that if read requests were spread constantly
in time and served in a perfectly balanced fashion, only
12 servers would be required to keep up with this load
(assuming 2 Gbits per second of outgoing bandwidth on
each server, as explained above). In practice, requests
are very bursty and are skewed towards a small number
of popular files, so many more than 12 servers would be
needed.

We measure the “90th percentile queuing delay” of
read requests in the workload. The queuing delay of a
request is the time it spends waiting in a queue before it
begins to be serviced. The queuing delay is a more use-
ful metric than the total delay since it excludes the time
taken to actually transfer the file, which even a lightly-
loaded system would incur. Because our trace is strongly
skewed towards a small number of popular objects, re-
quests for the popular objects inevitably incur some queu-
ing delay regardless of how well-balanced this system
is. Therefore, a robust measure of the queuing delay—in
this case, the 90th percentile—is more useful than a non-
robust measure (such as the average or maximum), for
comparing the performance of Kinesis with a less well-
balanced approach such as Chain. Clearly, if it is desired
to eliminate queuing delay, then the system should create
additional replicas of popular objects. In fact, it is easy
for Kinesis to do this, but it would take us too far afield to
investigate the creation of additional replicas here and we

2Obviously, schemes tend to perform the same when the system is
lightly loaded or completely overloaded.
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Figure 4: Storage Imbalance: Kinesis(k, 3) vs. Chain(3)
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Figure 5: Kinesis(7, 3) vs. Chain(3): 90th percentile queu-
ing delay for read requests on MSN Video trace, as the num-
ber of servers is varied with average read request rate fixed at
2.9 GB per second.

instead settle for a like-for-like comparison of the 90th
percentile queuing delay between standard Kinesis and
Chain.

Figure 5 shows the simulation results, comparing the
90th percentile queuing delay of Kinesis(7, 3) with
Chain(3) for the workload described above, as the num-
ber of servers in each system is varied. Obviously, in-
creasing the number of servers in a system provides
more resources and thus decreases the delays. But
from a provisioning point of view, the key question
is: how many servers are required in order to achieve
a given level of performance? It is clear from Fig-
ure 5 that Chain(3) requires many more servers than
Kinesis(7, 3) to achieve the same performance. For ex-
ample, to achieve a 90th percentile queuing delay of zero,
Kinesis(7, 3) requires 120 servers, whereas Chain(3)
requires over 400 servers—an additional provisioning re-
quirement (and presumably cost) of over 230% to achieve
this particular goal.

Figure 6 shows a similar scalability result, this time,
fixing the number of servers at 128 and varying the read
request rate. Kinesis(7, 3) can sustain a request rate of
nearly 3 GB per second before its 90th percentile queuing
delay becomes positive, whereas Chain(3) withstands
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Figure 6: Kinesis(7, 3) vs. Chain(3): 90th percentile queu-
ing delay for read requests on MSN Video trace, as average read
request rate is varied with a number of servers fixed at 128.

only about 2.5 GB/s. Thus, according to this metric, Ki-
nesis can serve a load about 20% higher than Chain.

6.2.3 Resource Balancing during Writes
This section evaluates the performance of Kinesis’ re-
source balancing policy in the presence of write loads.
We compare the three replica-location strategies de-
scribed in Section 3.2: Kinesis S+L, which balances
load when the load is heavy and storage otherwise;
Kinesis S, which balances storage only; and Kinesis
L, which balances load only. We also compare with
Chain, which has no freedom of choice for write oper-
ations, and therefore balances neither storage nor load
during writes.

Since we did not have a real-world workload with write
operations, we simulated writes by converting some per-
centages of read operations in the MSN Video trace into
writes. This preserves the overall object request distri-
bution, while allowing us to study the effect of varying
update-to-read ratios. We treat writes to an item already
present in the system as updates and handle it by deleting
the old replicas and inserting fresh ones at independently
chosen locations.

We present simulations for one day of the MSN
Video trace on a 14-node, comparing Kinesis(7,3) with
Chain(3). Figure 7 shows the extent of load imbalance
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Figure 8: Storage Imbalance vs. Time: Kinesis S+L com-
pensates for temporary decreases in storage balance when client
activity is low.

in different schemes as the update-to-read ratio is var-
ied. The effect of load imbalance is once again plotted
in terms of queuing delay (i.e., the delay incurred while
the request is queued up at the network.) As expected, in-
creased update activity results in worse load balance for
Chain and Kinesis S because neither scheme takes into
account network load during writes, while Kinesis S+L
performs as well as Kinesis L. This is not surprising
since Kinesis S+L gives clear priority for network load
over storage. Note that load balance improves for both
Kinesis S+L and Kinesis L as update activity is in-
creased because updates place load on more nodes (due
to replication) than reads.

Figure 8 shows the impact on storage balance as the
percentage by which maximum storage consumption ex-
ceeds the average; the update-to-read ratio is set to 100%.
It also plots the total load generated by update activity on
a separate Y-axis. As expected, storage balance wors-
ens in Kinesis S+L as more update load is imposed on
the system. However, the storage balance improves sub-
stantially once the peak update activity is past and comes
close to the earlier levels. This result backs up our intu-
ition that short-term imbalances in storage caused by giv-

ing higher priority to network load balance can be com-
pensated during lower levels of activity.

Overall, S+L is a reasonable scheme for simultane-
ously balancing both storage and network resources dur-
ing writes.

6.2.4 Failure Recovery
Finally, we investigate the performance of failure re-
covery. In the following simulations, we compare
Kinesis(7, 3) with Chain(3). For Kinesis(7, 3), when
a replica fails, there are two remaining replicas that could
serve as the source of data transfer and four unused hash
locations as the location for holding a new replica. We
experiment with two strategies: the storage-balancing re-
covery strategy Kinesis SR and the load-balancing re-
covery strategy Kinesis LR. In the storage-balancing
strategy, we fix the source to be the primary of the object
to replicate and, for Kinesis, pick the destination that has
the most spare capacity. Note that for Chain(3), there
is a single choice for the destination due to the chain
structure. For Kinesis, the primary is defined as the non-
faulty server with the lowest identifer holding a replica;
for Chain, the primary is the first non-faulty server start-
ing from the single hash location for the object. In the
load-balancing recovery strategy, both the source and the
destination are picked greedily as the ones with lower cur-
rent recovery loads as the decisions are made one by one
on all the objects stored on the failed servers. The load-
balancing recovery strategy might require a central entity
to pick the source and destination servers, whereas the
storage-balancing recovery strategy can more easily be
implemented in a distributed fashion.

For any given recovery instance, we compute the de-
gree of parallelism π in the recovery process as fol-
lows. For each server s involved in the recovery pro-
cess, compute the number of bytes bs transferred due
to recovery. Now define the degree of parallelism π =
(
∑

s bs)/ maxs(bs); that is, the ratio of all recovery bytes
to the number of bytes transferred by the most-burdened
recovery server. A large value of π implies a rapid, highly
parallel recovery; for example, if π = 50, the recovery
process was equivalent to a perfectly-balanced recovery
on 50 servers.

For Kinesis(k, r), when a server fails, the number
of servers that could be involved is the total number of
servers in the other segments, which is about n(k− 1)/k
for a total number n of servers. For Chain(r), that num-
ber is fixed at 2r − 1. Those are upper bounds for π.

We use the block trace with varying numbers of servers
since it has a large number of objects and allows us to
scale up the simulation with a large number of servers.
Other traces offer similar behavior, but with slightly
lower π values due to variations in sizes. In each trial,
we look at the data transfer needed for recovery if the
first server fails after every addition of 100,000 objects.
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Figure 9: Kinesis(7, 3) vs. Chain(3): Degree of Parallelism
with Varying Numbers of Servers.

Server Kinesis(7, 3) Chain(3) Kinesis(7, 3) Chain(3)
1 11.9 10.7 F F
2 11.4 10.7 13.0 14.2
3 11.7 10.2 13.1 14.1
4 11.9 10.6 13.1 13.9
5 11.5 10.3 13.1 10.3
6 11.9 10.8 13.1 10.8
7 11.6 14.0 13.1 14.0
8 12.4 17.8 12.4 17.8
9 12.5 17.4 12.0 17.4
10 12.9 14.3 13.1 14.3
11 13.4 10.9 13.4 10.9
12 12.7 10.7 13.1 10.7
13 12.3 10.4 13.1 10.4
14 11.7 10.6 13.1 10.6

Table 3: Storage utilization in GB at each server before and af-
ter failure recovery: Kinesis(7, 3) achieves significantly better
storage balance compared to Chain(3).

Figure 9 shows the minimum degree of parallelism π
for Kinesis SR, Kinesis LR, and Chain as we increase
the number of servers; for Chain we show the result only
for the load-balancing recovery strategy because the other
strategy yields slightly worse results. The figure shows
that Kinesis has substantially higher degree of parallelism
compared to Chain. Not surprisingly, Kinesis LR per-
forms substantially better than Kinesis SR.

6.3 Experiments
We measured the performance of Kinesis and Chain on
a cluster of 15 nodes (14 storage servers and one front
end) connected by a Gigabit Ethernet switch. We set the
block size for Append and Read to 1 MB and set the
number of connections for slow RPC operations to one.
For the above configuration we experimentally found that
the disks in the servers provide a comparable through-
put to the network interface at the front end. This means
that the front end gets saturated before any of the stor-
age servers. Therefore, we suppressed data transfer from
storage servers to the front end during reads in order to
saturate the disks at the storage servers. Note that this
suppression does not affect the experimental comparison
between Kinesis and Chain.

We performed the experiments using the MSN Video
trace described earlier. We used a six-hour portion of
this trace with 201, 693 requests for 5038 distinct ob-
jects. The total size of the content stored was about
170 GB, including the replicas, and the total amount of
content fetched during the six-hour portion of the trace
was 2.165 TB. The request rate varied greatly over time;
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Figure 10: Network-Load Imbalance vs. Time: Kinesis(7, 3)
balances network load significantly better than Chain(3) during
high request loads.
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Figure 11: Latency vs. Time: Kinesis(7, 3)’s better load
balance leads to lower latencies compared to Chain(3).

we compressed the trace to three hours in order to create
sufficient saturation. We created all the objects at the start
of the experiment and collected performance statistics in
two-minute intervals.

6.3.1 Load Balance
We first describe the performance of Kinesis(7, 3)
and Chain(3) when all servers are healthy. Figure 10
shows the extent of load balance in Kinesis(7, 3) and
Chain(3). Network load shown here is based on the num-
ber of requests queued up at a server. The figure also plots
the overall request load handled by the system. Note that
the instantaneous network load at a server can be much
higher than the request rate because previously-issued re-
quests might still be queued up. The graphs also have
sudden spikes due to burstiness in the trace and the tran-
sient nature of network load.

Figure 10 shows that while both schemes achieve good
balance of network load when the request rate in the sys-
tem is low (in the first hour for instance), Kinesis(7, 3)
clearly provides better load balance at higher request
rates. Moreover, this improvement in load balance trans-
lates to better latencies as shown in Figure 11. Similar
to Figure 10, the latency incurred by Kinesis(7, 3) and
Chain(3) are comparable during periods of low client
activity. However, Kinesis(7, 3) incurs significantly
lower latency during periods of increased client activ-
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ity; Kinesis(7, 3) measured an average latency of 1.73
seconds compared to 3.00 seconds for Chain(3). Over-
all, these figures indicate a strong correlation between
network-load imbalance and client-perceived latencies; a
balanced system, such as Kinesis, can provide better per-
formance at a higher load.

6.3.2 Failure Recovery
We compare failure recovery in Kinesis and Chain by us-
ing the first hour of the trace, where both schemes in-
cur comparable latency in the absence of failures (see
Figure 11). We made server 1 fail 15 minutes into the
trace and started failure recovery 15 minutes after the fail-
ure. We use the storage-balancing recovery strategy (i.e.,
Kinesis SR.)

Table 3 summarizes storage utilization before and after
recovery. First of all, note that in Kinesis(7, 3), storage
consumption is almost uniformly balanced at all servers
to begin with while the storage consumption is inherently
unbalanced in Chain(3). Again with freedom-of-choice,
Kinesis maintains storage balance during failure recov-
ery. As shown in Table 3, all servers in the system except
Server 8 (which belongs to the same segment as the failed
server) and Server 11 (which does not receive new repli-
cas due to its high storage utilization) receive new repli-
cas during failure recovery leading to a balanced storage
system. In contrast, the rigid replica placement rules in
Chain means that only the adjacent Servers 2, 3, and 4
perform recovery resulting in poor storage balance.

Table 4 shows the overall performance of the failure re-
covery process in Kinesis(7, 3) and Chain(3). Kinesis
incurs a substantially lower recovery time of 17 minutes
compared to 44 minutes for Chain due to the high degree
of parallelism, 6 for Kinesis compared to 2 for Chain.
The high degree of parallelism, measured as the ratio of
the total recovery traffic to the maximum recovery load
on a single storage server, indicates that the recovery load
was more evenly spread between the servers.

The recovery process did not increase the client-
perceived latency by a significant amount for both Ki-
nesis and Chain.

6.4 Summary
The simulations and experimental results show that the
Kinesis replica placement algorithm is a promising build-
ing block for high performance, scalable, and reliable dis-
tributed storage systems. The excellent storage and load
balance due to Kinesis lead to lower provisioning require-
ments for meeting application demands, as well as better
client-perceived latency, compared to a less balanced sys-
tem. Kinesis preserves good resource balance even in the
presence of system expansions and server failures. Fi-
nally, a high degree of parallelism during failure recovery
improves the availability of the system.

Recovery Recovery Degree of
Time Nodes Parallelism

Kinesis(7, 3) 17 min 12 6.0
Chain(3) 44 min 5 2.0

Table 4: Failure Recovery: Kinesis(7, 3) recovers from fail-
ures faster and with more uniformly distributed recovery load
compared to Chain(3).

7 Discussion
This section discusses the key issues that arise in a prac-
tical application of Kinesis.

7.1 Choice of k and r
The choice of k and r has a big influence on the behavior
of Kinesis. In practice, r is chosen based on the reliabil-
ity requirement for the data. A larger r offers better fault
tolerance and increases the number of choices for balanc-
ing read load although with higher overhead. We think
that r = 3 is a reasonable tradeoff.

The gap between k and r decides the level of freedom
in Kinesis—larger the gap, more the freedom. This trans-
lates into better storage balance and better write load bal-
ance. Our analysis shows that a sufficiently large gap
(≥ r + 1) facilitates servers to catch up after incremen-
tal expansion at the expense of slightly higher write load
imbalance. A larger gap also offers more choices of loca-
tions on which new replicas can be created when servers
fail, which helps to balance the load on servers for recon-
structing the lost replicas.

However, a larger gap (i.e. a larger k with a fixed r) in-
curs higher cost for finding the object as k hash locations
may need to be probed. We find the setting of k = 2r +1
(e.g. Kinesis(7, 3)) offers a good tradeoff based on our
theoretical analysis and simulations.

7.2 Choice of Objects
What constitutes an object is application-dependent. Ap-
plications can choose to store logical units (e.g., video
files in the MSN trace) as objects. Alternatively, logical
data items can be split or merged together to create an
appropriate object for Kinesis. Logical units tend to be
of variable lengths, which is a significant cause of stor-
age imbalance. While Talwar and Wieder [21] guaran-
tee that the system would be well-balanced on average,
exact bounds are beyond our theoretical analysis. In the
case where a logical unit is split into multiple fixed-length
blocks, access to a logical unit might benefit from paral-
lelism similar to that of disk striping, but requires coordi-
nation and assembly.

Bigger objects have less overhead per I/O operation
since an object is often the unit of an I/O operation. It is
desirable that the size is not too large: each server should
be able to accommodate enough objects to facilitate par-
allel recovery: the number of objects on a failed server
is an upper bound on the degree of parallelism during re-
construction of replicas. An object also needs a unique
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identifier. It could be the full path for a file or some arti-
ficially generated identifiers.

7.3 Coping with Heterogeneity
Heterogeneity among machines in a large scale cluster
is often unavoidable over time. Our scheme is expected
to accommodate such variations well because the differ-
ences in disk capacities or in other resources can be re-
duced to the bins-and-balls problem with non-uniform
sampling probabilities for bins: for example, a server
with twice the capacity can be regarded as two servers,
each with half of the sampling probability. The multi-
choice paradigm copes with such cases reasonably well,
as described in Section 4.

7.4 Data Migration
Moving data between their hash locations after initial
placement can provide additional benefits. Pagh and
Rodler [16] explored this idea in the context of hash ta-
bles. It was shown by Sanders et al. [20] and Czumaj et
al. [4] that near-perfect allocation can be achieved. Our
experiments (not reported in this paper) confirmed this
result. The amount of data movement required is large,
but prudent movement could improve storage balancing
significantly without introducing prohibitive overhead.

Objects can also be moved for load balancing if pop-
ular objects happen to reside on the same set of servers.
We did not find the need for such movement in our ex-
periments. Exceedingly-popular objects can be further
replicated, not for reliability, but for load balancing. Due
to dramatic popularity changes, an appropriate adaptive
scheme must be developed for deciding when to create or
destroy such replicas.

8 Conclusions
Kinesis is a simple, practical data and replica placement
model that provides substantial cost savings due to re-
duced over-provisioning requirements, improved user-
perceived performance, and fast, parallelized recovery
from failures of a single or shared component. The ef-
fectiveness of Kinesis derives from a replica placement
strategy that is structured (through the use of hash func-
tions), flexible (through freedom of choices), and scat-
tered (through pseudo-randomness). It results in superior
balance of storage and load during normal operation, af-
ter incremental expansions, and during failures and re-
covery. The balance achieved by Kinesis, predicted by
theoretical results, is confirmed here by simulations and
experiments.

Given the simplicity of Kinesis, it is rather surpris-
ing that designers of distributed storage systems have not
proposed Kinesis-like replica placement strategies in the
past. Nevertheless, as far as we are aware, Kinesis is the
first proposal of this kind. It appears to be a powerful
theme that could be incorporated in the design of many
existing and future distributed storage systems.
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