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ABSTRACT

This paper extends language identification (LID) techniques
to a large scale accent classification task: 23-way classifica-
tion of foreign-accented English. We find that a purely acous-
tic approach based on a combination of heteroscedastic linear
discriminant analysis (HLDA) and maximum mutual infor-
mation (MMI) training is very effective. In contrast to LID
tasks, methods based on parallel language models prove much
less effective. We focus on the Oregon Graduate Institute
Foreign-Accented English dataset, and obtain a detection rate
of 32%, which to our knowledge is the best reported result for
23-way accent classification.

Index Terms— Accent classifier, GMM, MMI, Gaussian
tokenization, language identification.

1. INTRODUCTION

Accent classification is the task of automatically detecting the
accent of a foreign speaker from a spoken utterance. In this
research, we target accent classification in foreign-accented
English with the aim of embedding such a classifier within
Voice-Rate, an experimental dialogue system [1]. The Voice-
Rate system provides product ratings over cell-phones to con-
sumers via a toll-free number, and accent classification would
enhance it by providing the necessary information to perform
consumer profile adaptation and eventually targeted advertis-
ing based on consumer demographics.

There has been little past research in the area of accent
classification. In particular, most of the previous work in
the field involves only two- to four-way classification. Desh-
pande and colleagues used the second and third formants and
Gaussian Mixture Models (GMMs) to achieve a detection rate
of 86% on American versus Indian American accent classifi-
cation [2]. Gray and Hansen used pitch and formant con-
tours and voice onset time and Stochastic Trajectory Models
(STMs) to distinguish between American, Chinese, and Turk-
ish accents [3]. They achieved detection rates of 90.4% and
52.1% on read and spontaneous speech respectively. In [4],
STMs were evaluated against GMMs and HMMs on 4-way

accent classification, where the accents considered were Chi-
nese, Thai, Turkish, and American. The classification rates
obtained were 40.1% with GMMs, 41.3% with HMMs, and
41.9% with STMs. To the authors’ knowledge, there has only
been one previous work [5] that evaluates accent classification
on the same dataset used in this research. This previous work,
which has not been formally published, reports detection rates
of 73% and 58.9% for German versus Spanish classification
using GMMs and naı̈ve Bayes classification respectively. Fur-
ther detection rates of 36.2%, 17.7%, and 13.2% are reported
for 4-, 13-, and 23-way naı̈ve Bayes accent classification.

Whereas accent detection is relatively unresearched, there
has been a very significant amount of previous work in lan-
guage identification (LID) [6, 7, 8, 9, 10, 11], and the main
contribution of this paper is the extension of these methods
to accent detection. Previous work on LID falls into one of
three categories. In the first, language classification is per-
formed using acoustic scores typically obtained using GMMs
or phone recognizers [6, 7, 8, 9, 10]. In the second, the LID
classification score is derived from a language model (LM),
which captures the statistics of either phones generated by
a phone recognizer or gaussian tokens corresponding to the
gaussians with the highest likelihood in each time frame [6,
7, 8, 10]. Finally, in the third category, languages are mod-
eled using vectors of phone statistics and are detected using
text classification techniques [11].

In the rest of this paper, the corpus and the baseline are
described in Sections 2 and 3 respectively. MMI training is
evaluated in Section 4, and Gaussian Tokenization in Section
5. Section 6 concludes with a summary.

2. DATA

The corpus used in this research is the CSLU Foreign-Accented
English (FAE) dataset [12]. The corpus consists of 4925 tele-
phone-quality utterances spoken by native speakers of 23 lan-
guages. In no event is English a speaker’s native language.
Most of the utterances are 20 seconds in length, and none are
phonetically transcribed. The Train, Development, and Test
sets were created by randomly sampling and splitting the orig-
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Fig. 1. The accent detection rate of the baseline as a function
of GMM order, with HLDA. The detection rate is evaluated
on the Development set.

inal corpus into a (70%,15%,15%) configuration. The 23 ac-
cents recorded in the CSLU FAE corpus are Arabic, Brazilian,
Portuguese, Cantonese, Czech, Farsi, French, German, Hindi,
Hungarian, Indonesian, Italian, Japanese, Korean, Mandarin,
Malay, Polish, Iberian, Portuguese, Russian, Swedish, Span-
ish, Swahili, Tamil, and Vietnamese.

3. THE BASELINE

For the baseline, a GMM is built for each of the 23 accents.
A 52-dimensional acoustic observation is obtained from a 13-
dimensional plp-based vector concatenated with its first, sec-
ond, and third derivatives. Mean and variance normalization
is performed on the acoustic feature vector prior to training
the GMMs. The GMMs are initialized using k-means and
trained with the EM algorithm. Accent classification is per-
formed by selecting the model with the highest log-posterior.
Uniform priors over the accents were used. In an initial set
of experiements, we observed that uniform and non-uniform
accent priors yielded identical detection rates.

Dimensionality reduction is also investigated with the fea-
ture dimension decreased from 52 to 39 using heteroscedastic
linear discriminant analysis (HLDA) [13]. Figure 1 plots the
detection rate of the baseline accent classifier, before andaf-
ter applying HLDA, as a function of the GMM order which
varies from 64 to 2048. We remark that (1) the baseline sys-
tem benefits from HLDA for GMM orders larger than 256,
(2) the classifier detection rate exhibits initial improvement
as the GMM order is increased, peaks at 1024, and then de-
teriorates due to overtraining, and (3) our best detection rate
for the baseline is 25.3% after applying HLDA (22.4% before
HLDA).

4. MMI TRAINING

In the previous section, we described the baseline trained with
the Maximum Likelihood (ML) criterion, which optimizes the
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Fig. 2. The detection rate (left) and the MMI objective func-
tion (right) on the Train set as a function of MMI iterations
for GMM orders 128, 256, and 512.
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Fig. 3. Detection rate on the Development set as a function of
MMI iterations for GMM orders 128, 256, and 512.

log-likelihood of the training data. In this section, we investi-
gate discriminative training with the Maximum Mutual Infor-
mation (MMI) criterion [14, 15], which, when the language
model is fixed, optimizes the log-posterior of the correct la-
bels in the training data. Our implementation follows that of
[16], using a constant value forE.

4.1. MMI Results

In this section, we report results for MMI training, and, in
particular, we look at the effects of the number of MMI iter-
ations, the GMM order, as well as the value ofE, the global
constant used in the computation ofD.

MMI iterations and GMM order: The MMI training algo-
rithm is initialized with an ML-trained accent classifier de-
scribed in Section 3, and ten MMI update iterations are per-
formed. GMMs of orders 128, 256, and 512 are investigated.
First, we depict the performance of the GMM-based accent
classifiers on the Train set as a function of MMI iterations.
Results are reported in Figure 2 for all three GMM orders and
for E = 5, and performance is evaluated both in terms of
overall detection rate as well as MMI objective function. The
results on the Train set exhibit the expected behavior where
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Fig. 4. Detection rate (left) and the MMI objective function
(right) on the Train set as a function of MMI iterations for
GMM of order 256 andE = 1, 5.
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Fig. 5. Detection rate on the Development set as a function of
MMI iterations for GMM of order 256 andE = 1, 5.

both detection rate and objective function improve steadily
and then level off as more MMI iterations are performed.

Next, the overall detection rate of the accent classifier is
reported on the Development set withE = 5 in Figure 3.
The detection rates for orders 128 and 256 increase steadily
with MMI iterations, however those for 512 indicate that the
models are overtrained. For this reason MMI training is not
performed for orders beyond 512. Following ten MMI itera-
tions for order 256, a detection rate of 27% has been achieved.

MMI iterations and E: While Figure 2 shows steady im-
provement across iterations, we have found that for this par-
ticular task, the algorithm is quite sensitive to howE is set.
Figure 4 illustrates the detection rate and objective function
evaluated on the Train set for GMM order 256 andE = 1, 5.
The results are consistent with the findings in [16], where the
largerE, the largerD tends to be, and the more stable yet
slower the MMI training becomes. The effect ofE is eval-
uated on the Development set in Figure 5. Interestingly, the
results forE = 1, though exhibiting a less steady ascent than
E = 5, give a higher detection rate of 28.2% (27% forE = 5)
after ten MMI iterations.

The performance of the accent classifier following ten MMI

iterations is illustrated in Figure 6. Finally, the performance
of the MMI-trained accent classifier is evaluated on the Test
set itself, and a detection rate of 32% is obtained with GMM
order 256 andE = 1.
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Fig. 6. Accent detection rate evaluated on the Development
set, as a function of GMM order for the baseline GMM model,
improved with HLDA, and MMI cummulatively.

5. GAUSSIAN TOKENIZATION

In this section, we briefly describe the Gaussian Tokeniza-
tion (GT) approach that has been previously proposed for
LID, and refer the reader to [6, 7] for more detail. In this
research, a gaussian tokenizer is a GMM that generates a se-
quence of indices for an utterance, where each index corre-
sponds to the mixture component with the highest likelihood
in a time frame. The index sequences are then used to train
index language models (LM) for each accent. In accent in-
dependent (AI) tokenization, a single set of gaussians is used
across all accents, while in accent dependent (AD) tokeniza-
tion, an accent specific GMM is used instead. The motivation
behind this approach is that a tokenizer would generate se-
quences that exhibit different patterns for each accent, and
that the statistics of these patterns could then be capturedus-
ing an LM. Figure 7 illustrates the training setup using an
accent-dependent GT. During decoding, illustrated in Figure
8, an utterance is presented to each AD GT, and each index
sequence is fed to the corresponding AD LM. The LM which
gives the lowest perplexity is selected.

Our experiments investigate both accent-dependent (AD)
and independent (AI) GTs, where in the former case, 23 GMMs
are trained with accent-specific data, and in the latter a single
GMM is trained with all the data. We implement index LMs
asn-grams of orders 2 to 5. The same data (Train set) is used
to train the Gaussians and generate the index sequences. The
results shown in Table 1 indicate that the AD approach some-
what outperforms the AI approach, but that overall, Gaussian
Tokenization does not have the same success with accent clas-
sification as with LID. We note, however, that this is with ML
trained LMs, and the results might improve significantly with
discriminative LM training.
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Fig. 8. Illustration of the decoding setup using an accent-
dependent Gaussian Tokenizer.

LM scores obtained with the MMI-trained GT are inter-
polated with our best acoustic scores, improving the detection
rate from 28.2% (c.f. Section 4.1) to 28.8% on the Develop-
ment set, and from 32% to 32.7% on the Test set.

6. SUMMARY AND DISCUSSION

In this research, several approaches to accent classification
have been presented and evaluated on the 23 accents in the
CSLU FAE corpus. The results for the various methods are
summarized in Table 2 for the Development and Test sets.

We find that acoustic-only methods are quite effective for
accent classification, and that in contrast to typical LID sys-
tems, we see little improvement from incorporating language
models scores based on subword symbol sequences.
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