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ABSTRACT 
 
A new statistical confidence measure, Template Constrained 
Posterior (TCP), is proposed for verifying phone transcriptions of 
speech databases. Different from generalized posterior probability 
(GPP), TCP is computed by considering string hypotheses that 
bear a focused unit, e.g., phone with partially matched left and 
right contexts. Parameters used for TCP include context window 
length, partial matching ratio, KLD threshold for selecting 
confusable phones, and verification threshold. They are determined 
by minimizing verification errors in a development set. Evaluated 
on a test set which contains 52.1% sentence errors and 0.62% 
phone errors, TCP achieves 92% and 88% error hit rate in rejected 
sentences, when the corresponding acceptance ratios are set at 90% 
and 80%, respectively. 
 

Index Terms—template constrained posterior, TCP, 
confidence measure 
 

1. INTRODUCTION 
 
Human-computer voice interaction via text-to-speech and speech 
recognition has been an intensive subject of research for many 
years.  One significant issue in this field is that nearly all work 
must rely upon a well-annotated speech database.  For example, 
text-to-speech synthesis relies upon the accuracy of annotated 
phonetic labels and corresponding contexts for selecting good 
acoustic units from a pre-recorded database.  However, such a 
database must be thoroughly examined before it may be relied 
upon, in order to catch reading or pronunciation errors, 
transcription errors, incomplete pronunciation lists, and similar 
issues.  Because of the importance and wide application of this 
issue, automated detection of error is highly desirable.  Confidence 
is a useful measure for verifying speech transcription by assessing 
the reliability of a focused unit, such as a word, syllable, or phone. 

A number of approaches for measuring confidence of speech 
transcriptions have been investigated [1-6].  They can be roughly 
classified into three major categories: 1)  Feature based approaches 
that attempt to assess confidence based on selected features, such 
as word duration, part of speech, or word graph density, using 
trained classifiers; 2) Explicit model based approaches that use a 
candidate class model with competing models, and a likelihood 
ratio test; 3) Posterior probability approaches that attempt to 
estimate the posterior probability of a recognized entity, given all 
acoustic observations. 

In this study we propose a new confidence measure, Template 
Constrained Posterior (TCP), for verifying transcription errors.  
The In the phone transcription verification, a template is 

constructed to compute phone level TCP, which considers not only 
the focused phone, but also the partially matched contexts before 
and after the focused phone. The template can be flexibly tailored 
to provide various granularities, from a finely defined context to 
loosely defined contexts. It effectively limits the hypothesis set 
used in calculating the posterior probability for a selected focus 
unit. Tests on an English TTS corpus show that TCP can 
effectively detect the erroneous sentences with 1~2 subtle phone 
errors, with 92% error hit rate when 10% sentences are rejected.  

The rest of the paper is organized as follows. Section 2 
introduces generalized posterior probability. Section 3 presents the 
new Template Constrained Posterior (TCP). Section 4 shows how 
to verify phone transcription using TCP and gives the experimental 
results. Section 5 draws the conclusions. 
 

2. GENERALIZED POSTERIOR PROBABILITY 
 
Generalized posterior probability (GPP) [1,2] is often used in 
speech transcription analysis as a confidence measure for verifying 
hypothesized entities at phone, syllable, or word levels.  For a 
selected focus unit, e.g., a word, the acoustic probability and the 
linguistic probability of that word are compared against the total 
set of possible hypotheses to generate a ratio.  The higher the 
calculated GPP, the more probable that the focus unit was correctly 
transcribed.  Eq. 1, below, defines this relationship. 
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Let R represent the search space, which includes all possible 

string hypotheses for a given sequence of acoustic observations 
x1

T. In practice, the search space R is usually reduced to a pruned 
space, for example a word graph. H, a subset of R, contains all 
string hypotheses that include/cover the focused word “w” by a 
given time range between starting and ending points. The posterior 
probability of “w” can be obtained by Equation 1, i.e., the sum of 
the probabilities of string hypotheses in H divided by the sum of 
probabilities of string hypotheses in R.  Therefore, finding the right 
hypothesis subset H of R is a critical step in computing the 
posterior probability P(w| x1

T) for verification. Eq. 2, below, 
provides an example equation for calculating generalized word 
posterior probability [2]. 
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GPP has several shortcomings.  Firstly, as the graph, or search 
space, becomes richer, the probability of a competing unit 
increases.  Secondly, selection of the correct hypothesis subset H is 
dependent upon the provided time frame; if the start or end time is 
inaccurate, e.g., due to deletion, substitution, or addition error in 
the neighborhood, the probability of the focused unit within the 
given time frame can be substantially altered. 
 

3. TEMPLATE CONSTRAINED POSTERIOR 
 

Through the use of templates, this study seeks to avoid the 
shortcomings of GPP.  Use of templates allows a "sifting" of 
hypotheses; only those hypotheses which match both the focus unit 
and specified contexts are included in the search space, which 
leads to higher calculated probability results for the focus unit, and 
greater confidence.  Moreover, since the templates are flexibly 
constructed, TCP can either be reduced to the traditional GPP, 
which considers only the focus unit, or be built upon a template of 
complex topology, where specific context for the focus word is 
defined. 

It should be emphasized that for discussion convenience, this 
paper uses phone as the focus unit. However, the proposed method 
is also applicable to unit at other levels, such as syllable, word, 
phrase, sentence, etc. 

 
3.1. Template and its variation 
 
We denote a Template by a triple [T; R; s, t]. Template T is a 
pattern composed of hypothesized units and metacharacters that 
can support regular expression syntax; R stands for the partial 
match ratio and ranges between 0 and 100%. This means the 
relevant path needn’t 100% match the template. Partial match of 
R% against the template is acceptable. [s, t] defines the time frame 
constraint on the template.  

As shown in Figure 1, Basic template T1 depicts the simplest 
type of template, ABCDE, where C is the focus unit, and AB and 
DE are the left and right context, respectively.  Template T2, 
A*CDE, includes a wild-card, *, to indicate that the template does 
not care what appears in that particular position: A*CDE matches 
AACDE, AFCDE, or ACDE.  Template T3, ABC E, includes a 
blank, , to indicate a null in this position.  Template T4, ABC?E, 
includes a question mark, ?, to indicate that the word which 
appears in this position has not been identified yet.   

 
A EDCB

A EDC*

K ECB

A ECB ?

T1 Basic template

T2    With Don’t care  *

T3 With blank

T4 With question mark ?  

 A
E

D
C

B

?

*KT5 Compound template

 
 Figure 1: Illustration of templates. 

 
These basic templates can be combined to construct a 

compound template, such as template T5 depicted in Figure 1.  

With reference to compound template T5, a matching string 
hypothesis may include either A or K in the 1st position, include B 
or any element at the 2nd position, includes C at the center position, 
and so on. Depending upon the specified minimal matching 
constraint and whether some or all of these elements can be 
partially matched, the search space generated from compound 
template T5 may be substantially larger than that generated from a 
basic template. 

 
3.2. Exemplary template for a focused phone 
 
Eq. 3 gives a template example for a focused phone, which can be 
visualized in Figure 2, where pk is the focused phone, 

k L k k Lp p p  is the phone string covering the 2L context phones 
before and after pk. ip represents the confusable phone of pi (k-

L i k+L). With the help of regular expression, i ip p  matches 

either ip or any confusable phones ip . R is the partial match ratio 
among the 2L context phones. [s, t] defines the  time frame 
constraint of the template, i.e., s is the start time of pk-L and t is the 
end time of pk+L. The correct hypotheses set H for [T ; R; s,t], as 
defined in Eq. 1, is obtained by finding every string hypothesis that 
contains a subpath that R% partially matches the template and also 
overlaps the specified time interval [s, t]. 
 

1 1 1 1T k L k L k k k k k k L k Lp p p p p p p p p  (3) 
 

Pk-1Pk-2Pk-3 Pk+3Pk+2Pk+1Pk

Pk-1Pk-2 Pk+3Pk+2Pk+1
~ ~ ~ ~Pk-3

~ ~

 
Figure 2: Illustration of template for the focused phone pk. 

 
In this study, the confusability between two phones is assessed 

by the Kullback-Leibler Divergence (KLD), which is a measure of 
the dissimilarity between two probabilistic models [8]. Given a 
threshold TKLD, for two different phones, pi and pj, if 

( ( ) || ( ))i j KLDKLD p p T , pi is one of the confusable phones of pj, 
and vice versa. For example, when TKLD is set as 100, no 
confusable phone pair exists. When set as 300, “ih” has 3 
confusable phones: “eh”, “uh”, and “ax”. When TKLD is set further 
larger, more confusable phones will appear. 
 
3.3. Method of calculating TCP 
 

Context Template
Generation

Calculate
Posterior
Probability

Determine
Hypotheses Set

focused unit,
e.g., phone
or word

TCP of the
focused unit

 
 

Figure 3: A flowchart of calculating TCP.. 
 
Figure 3 depicts the flowchart of calculating template constrained 
posterior (TCP). Firstly, a focus unit is selected, which may be a 
phone, a syllable, a word, a sentence, or some other desirable part 
of speech, depending on the application.  Secondly, a context 
template, [T; R; s, t], is generated for the focus unit. Thirdly, by 
matching against the template, an appropriate hypothesis set H([T; 
R; s, t]) is determined. Depending on how stringent the template 
constraints are, the hypothesis set under examination may be 
greatly narrowed, over traditional GPP approaches. The Template 
Constrained Posterior (TCP) of [T; R; s, t] is the generalized 
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posterior probability summed on all the string hypotheses in H([T; 
R; s, t]), as in Eq. 4. 
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where x1
T is the whole sequence of acoustic observations,  and 

 are the exponential weights for the acoustic and language model 
likelihoods, respectively. In calculating TCP, the reduced search 
space, the time relaxation registration, and the weighted acoustic 
and language model likelihood are handled similarly as in GPP [2]. 
The difference between the TCP and GPP is the determination of 
the string hypotheses set, which corresponds to the term under the 
sigma summation notation. 

The posterior probability calculated can be utilized to identify 
potential errors between the audio recording and the transcription. 
 
3.4. Advantages of TCP 
 
The TCP approach examines both the focused unit and the context 
to the left and right of the focused unit.  In this way, TCP better 
discriminates competing phones, because a string hypothesis with 
competing phones is less likely to match both the (partial) context 
and the actual (focus) phone. Therefore, hypotheses containing the 
competing phone will be less likely to be included in the TCP 
calculation, a significant advantage over the traditional GPP 
approaches [6].   

Furthermore, the TCP approach provides additional robustness 
against incorrect time boundaries [6]. In the standard GPP 
approach, the focus unit is expected to appear within a narrow 
timeframe. TCP however supports a broader timeframe in the 
calculation, in order to examine the context. Thus, the TCP 
approach is more robust against incorrect time boundaries, which 
may be caused by insertion, deletion, or substitution errors. 

Essentially, the proposed template constrained approach uses 
templates to limit the hypothesis set during the posterior 
probability calculation for a selected focus unit.  These templates 
may be tailored to provide a fine degree of granularity, from 
specifically defined context to loosely defined contexts. 
 

4. VERIFYING PHONE TRANSCRIPTION BY TCP 
 
4.1. System flowchart 
 

Acoustic
Model

ASR Decoder

Language
Model

TCP Calculation >=Threshold?

Phone
Graph

Yes

No
Reject

Accept

Input Waves

Initial Phone Transcription

 
Figure 4: A flowchart of verifying phone transcription by TCP. 

 
Phone level TCP is used as the confidence measure to identify 
potential phone errors in transcriptions. Figure 4 depicts the 
flowchart of verifying phone transcription using TCP. Firstly, with 
acoustic model and language model, ASR phone decoder generates 
phone graph for a spoken input. By regarding each phone in the 
initial phone transcription as a focused phone, its context template 
is generated (as described in Section 3.2) and its TCP is calculated. 

The calculated TCP scores are compared with a threshold, which is 
optimized upon a development set. A phone will be accepted if its 
TCP is higher than the threshold. Otherwise, the phone will be 
rejected. For practical use, the verification decision is made at 
sentence level.  A sentence will be rejected if it contains one or 
multiple phone errors. 

 
4.2. Experimental setup 
 
We evaluate the proposed method on an American English TTS 
database, recorded by a female native speaker. It consists of nearly 
20,000 utterances and has a rich coverage of different phonetic 
contexts. Four transcribers manually verified 1,234 sentences and 
pinpointed the phone errors or the disagreements between the 
audio recordings and the original transcriptions. The verified 
transcription serves as correct reference in later phone verification 
experiments. The phone errors are classified into two different 
types, major error and minor error. Minor error refers to the errors 
between confusable phone pairs, which are difficult to differentiate 
even for an experienced annotator. The minor errors include 
confusions between /ih/- /iy/, /uw/-/uh/, /ax/-/ah/, and etc. Major 
phone errors, on the other hand, are more serious and they can 
impair the synthesized voice quality appreciably. Among the 1,234 
sentences, more than half of the sentences contain either major or 
minor errors. In average, every erroneous sentence contains 1.6 
phone errors.  

We split these 1,234 sentences into two, development and test, 
sets, each consisting of 617 sentences. All erroneous sentences are 
evenly distributed into the development and test sets, as shown in 
Table 1. The acoustic model is adopted from Microsoft Speech 
API, which is a gender-dependent, tri-phone HMM model trained 
by thousands of hours of speech data. A phone tri-gram model is 
served as the language model. For each spoken utterance, a dense 
phone graph is generated by a Viterbi decoder with a wide-beam. 
The phone graph density (GD), the graph error rate (GER), and 
phone error rates (PER) of the development set and test set are 
listed in Table 2. 
 

Table 1: Initial transcription for Development set and Test set. 

Data Set #Sentence 
#Error 

Sentence 
(Minor) 

#Error 
Sentence 
(Major) 

#phone 
error 

(Minor) 

#phone 
error 

(Major) 
Development 617 142 183 202 335 

Test 617 105 220 161 367 
 

Table 2: Phone graph for Development set and Test set. 
Data Set Phone Error 

Rate (PER%) 
Graph Error 

Rate (GER%) 
Graph Density 
(Edges/phone) 

Development 77.78 97.19 531 
Test 78.03 97.07 518 

 
Acceptance ratio is defined as the ratio of accepted sentences 

to total sentences. Error hit rate in rejected sentence is the ratio of 
the hit erroneous sentence to all the rejected sentences. We assess 
the TCP verification performance by looking at the relation 
between acceptance ratio and error hit rate in rejected sentences. 

 
4.3. Configuration optimization on the development set 
 
To minimize phone verification errors on the development set, we 
searched exhaustively for the optimal configuration settings of the 
template generation and the TCP verification threshold, T. In 
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template generation, context window length (2L+1), partial match 
ratio (R) and the KLD threshold (TKLD) are the three parameters to 
be determined. Verification under different (2L+1, R, TKLD, T) 
combinations has been tested on the development set, with the 
verification results plotted in Figure 5. Each point corresponds to 
the TCP performance under a unique configuration setting. The 
envelop line is of particular interests, which can be regards as the 
best performance of this method. We can see that, when the 
acceptance rate is 92%, 97% of the rejected sentences contain 
errors (refer to the envelop line of the red curves), and 90% of the 
rejected sentences contain major errors (refer to the envelop line of 
the green curves). When the acceptance ratio is 80%, nearly 80% 
of the rejected sentences contain errors, and about 60% of them 
contain major errors. The configuration settings along the envelop 
line, which can be regarded as the optimal configurations under 
different acceptance ratio, is then used in the following 
experiments on the test set.  

 
Figure 5: TCP performance on the development set. 

 
Figure 6: TCP performance on the test set. 

4.4. TCP performance on the test set 
 
With the obtained optimal configurations, we test the TCP 
performance on the test set. As shown in Figure 6, when the 
acceptance ratio is 90%, 92% of the rejected sentences contain 
errors, where 72% of them contain major errors. When the 

acceptance ratio is 80%, 88% of the rejected sentence contains 
errors, where 63% of them contain major errors. This result shows 
that phone level TCP is effective for detecting potential phone 
errors. The results also show that major errors can be detected 
more easily than the minor ones. The reason is that TCP is 
computed based on a phone graph, a byproduct of ASR decoding. 
Due to the inadequate discrimination of acoustic HMM, the 
models cannot adequately differentiate certain phonemes, similarly 
for TCP. This method can dramatically reduce manual work by 
directing human effort to the verification of the unconfident 
sentences. 
 

5. CONCLUSIONS 
 
A new confidence measure, TCP, is proposed for verifying 
transcription errors. Different from the standard GPP, the TCP 
approach examines both the focused unit and the context to the left 
and right of the focused unit. The concept of template is also 
proposed to limit the hypothesis set used in calculating the 
posterior probability for a selected focus unit.  These templates 
may be flexibly tailored to provide various granularities, from a 
finely defined context to loosely defined contexts. We tested this 
method for detecting the potential errors in phone transcription, 
which is based on a template for a focused phone. The optimal 
configuration of TCP, in term of context window length, optimal 
partial match ratio, optimal KLD threshold, and decision threshold, 
is also studied in the paper. Evaluated on a corpus used by an 
English TTS system, which contains 32.6% sentence errors and 
0.62% phone errors, TCP achieves error hit rate in rejected 
sentences of 92% and 88% respectively when the acceptance ratio 
is 90% and 80%.  Future research will focus on applying TCP to 
speech recognition systems.  
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