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ABSTRACT
Significant opportunities for power optimization exist at applica-
tion design stage and are not yet fully exploited by system and ap-
plication designers. We describe the challenges developers face in
optimizing software for energy efficiency by exploiting application-
level knowledge. To address these challenges, we propose the de-
velopment of automated tools that profile the energy usage of vari-
ous resource components used by an application and guide the de-
sign choices accordingly. We use a preliminary version of a tool
we have developed to demonstrate how automated energy profiling
helps a developer choose between alternative designs in the energy-
performance trade-off space.

1. INTRODUCTION
Energy optimization in software design is gaining importance

due to increases in the recurring energy utility bill as well as the
high cost of power provisioning and backup infrastructure, along
with growing citizen concerns about the carbon footprint of com-
puting [14, 5, 6]. There is a significant need and potential for en-
ergy optimization as large parts of the IT infrastructure operate at a
low average utilization and the idle power consumption of a com-
puter is typically 50-60% of peak power. Energy optimization is
also important for mobile or wireless devices due to limited battery
life.

There are at least three levels at which energy optimizations
are being made. The first is at the computer architecture level.
Techniques have been proposed to reduce processor energy usage
through multi-core processors [15], designing energy proportional
hardware [1], and increasing the number of performance and sleep
states [22]. Benchmarking techniques to quantify the energy costs
of different computer architectures have been proposed [29]. A
second level of optimizations is at the system layer, either at a sin-
gle server or across multiple servers, through energy efficient use
of the underlying hardware. In our own work, we developed load
management techniques across servers to reduce the energy of one
large-scale Internet service by 30% without a significant perfor-
mance hit [3]. Other techniques include multi-server power co-
ordination [24], hard disk spin-down [21], synchronization aware
multithreading [23], and compiler driven optimizations [30, 26].

A third level of optimizations is at the application layer, which
is attractive for several reasons. First, this layer has the most infor-
mation on the actual user impact of performance and energy trade-
offs, enabling more aggressive performance sacrifice in unimpor-
tant areas compared to lower layer techniques. For instance, an
application may throttle processor frequency to the minimum value
required to satisfy user perceptible delay behavior [16]. Second,
application specific optimizations can be made at this layer such
as changing the algorithm used [28], accuracy of computation (eg.

changing from double precision to single), or quality of service pro-
vided [10]. Third, energy usage at the application layer may be
made dynamic [8]. For instance, an application hosted in a data
center may decide to turn off certain low utility features if the en-
ergy budget is being exceeded, and an application on a mobile de-
vice may reduce its display quality [11] when battery is low. This
is different from system layer techniques that may have to throttle
the throughput resulting in users being denied service.

While many application specific energy optimizations have been
researched, there is a lack of generic tools that a developer may use
at design time. Application specific optimizations require signif-
icant development effort and are often only applicable to specific
scenarios. We propose to address this problem by providing au-
tomated tools for fine-grained application energy measurements at
design time. The aim is to provide the developer with much needed
visibility into an application’s energy usage. The measurements
will allow an application developer to easily compare and choose
among various design options that require only simple changes in
the source code such as choosing among different library function
calls, declaring variables using alternative data structures or preci-
sion, changing the storage access patterns, or others that are already
available as part of the development environment but are hard to
select for the particular application under development. Detailed
energy visibility also enables the selection of appropriate knobs for
performance tuning which can then be used at run time to dynami-
cally change energy usage for varying workload and energy avail-
ability.

The contributions of this paper are twofold. The work addresses
the research challenges in enabling generic application layer energy
optimization, and describes the tools that are needed for application
design-time energy profiling and performance scaling. We show
that many of the building blocks required to build such tools are
already available and discuss the research issues to be addressed
in order to integrate these components into reusable measurement
capabilities.

We conducted experiments using a preliminary version of the
proposed measurement tools to demonstrate an example of power-
aware application design: choosing among two different library
routines for the same functionality. The design choice does not
change the number of lines of code needed, but can impact the en-
ergy usage. Both library routines already exist as part of an avail-
able development tool set and our objective is not to design a spe-
cific alternate routine with optimized energy consumption.

The goal of the paper is to propose the development of auto-
mated fine-grained energy profiling tools as an important research
area in addressing the significant potential for application layer en-
ergy optimization. These tools should be integrated with compilers
and integrated development environments to provide visibility into



the energy impact of application design choices. Such tools could
lead to a significant reduction in the energy cost of the global IT
infrastructures with a relatively small additional effort in design.

2. APPLICATION ENERGY USAGE
Let us first consider the various components of energy consump-

tion for an application. Suppose the energy consumed by the com-
puting infrastructure for executing an application is EApp which
may depend on the performance required for the application, and
also on the specific system resources used by the application.

Part of EApp is spent on running the application software and
underlying system software. Let EActive denote this part. Another
portion of the energy, denoted EWait, is spent in wait states, when
a subsystem is powered up but the application is using another sub-
system. Ideally, unused subsystems should enter a low power sleep
state. However, entering a sleep state and resuming from it has a
non-zero overhead, making it impractical to enter sleep states for
small periods of inactivity. Some subsystems may not have easy to
use low power sleep modes and the idling cost is paid even if the
subsystem is not used at all by the application. The rest, denoted
EIdle, is consumed by the computing equipment in idle state, when
not doing any work for any application. However, this idle energy
may depend on the application mix hosted by a system since with a
certain mix, the system may be able to enter sleep states while with
another mix, the idle periods may be too small to enter sleep states.

Another energy component of interest in operating a computing
infrastructure is the energy spent on cooling the computer equip-
ment. This is the energy spent on transferring out the energy EApp

that is dissipated as heat inside a server or data center. The ex-
act amount of energy spent depends on several factors, including
server chassis design, location within data center, and efficiency
of the cooling system design. However, a simple assumption that
can be made at design time is that reducing EApp will help reduce
cooling energy as well.

Thus, the key challenge in quantifying EApp is that given a
computer system configuration, we need to obtain a detailed under-
standing of EActive, EWait, and EIdle for each application, where
the wait state and idle state energies are attributed to the responsi-
ble applications correctly. Obtaining the total energy consumed by
an application is not enough to characterize these metrics individ-
ually. Further, optimizing the application design will require some
insight into how the energy used is spread across various system
resources such as the CPU, disk, memory, or a network interface,
as well across various semantic activities within the application.
Hence, a detailed energy breakdown by each resource and activity
is needed. This detailed breakdown must be provided for each indi-
vidual application under test rather than the system as a whole since
the system may be running other applications in parallel, and both
the system resources and certain OS services will be shared across
applications. Generating appropriate representative workloads at
profile time is also necessary to address the above challenge.

3. DESIGN TIME PROFILING AT WORK
Various design choices in the application may affect the power

used in complex ways and detailed visibility into energy usage
is needed to develop generic and transparent energy optimization
techniques at the application layer.

We propose fine grained application energy profiling as a useful
tool that enables application developers to make energy efficient
design choices. Alternative methods may exist to achieve the same
functionality, such as by using a different library routine, and the
developer can use detailed profiling to determine the best choice.

The developer may have access to a power management technique
to improve the energy usage of one resource but since it may affect
the energy usage of other resources, accurate profiling is required
to determine the overall energy usage changes. The developer may
have new ideas to optimize energy by designing a new algorithm or
data structure. The profiling tools will help understand the quan-
titative advantage of the new idea. The developer may also know
which aspects of the application performance are flexible and the
profiling tools may be used to determine where the energy savings
are the maximum.

Before discussing the various challenges in building such fine
grained power measurement tools, we show an example to demon-
strate how this proposed measurement capability enables applica-
tion layer energy optimization at design time.

Consider an application that processes a file containing several
data items. There are two choices of the file read-write routines
available to the developer to access the secondary storage: one
that compresses the stored data and one that does not. Both al-
ternatives are available in existing development tools, through the
FileStream() and GZipStream() classes, part of the .Net
Framework’s System.IO and System.IO.Compression class libraries
respectively, and the application developer wishes to determine the
best choice. In this simple example, we assume we have available
a data file representative of real data files that the application will
process after deployment. Partial source code used for the two al-
ternatives is shown below:

Alternative 1: Without Compression

f = new FileStream("/var/records.mds");
f.Open("rw");
/* Workload: read/edit data items */
f.Close();

Alternative 2: With Compression

f = new GZipStream("/var/records.zds");
f.Open("rw");
/* Workload: read/edit data items */
f.Close();

Both options are equally easy to code for the developer since
both library routines exist and the choice of the routine does not
change the application processing logic in any way. However, they
internally use different amount of processing and result in different
resource usage: compression will reduce IO load but may increase
CPU load. The actual costs depend on the data processed. For par-
ticular application domains such as video streaming, compression
may be well-known to be useful due to constraints on the bottle-
neck resource, but in general, the deign choice is not obvious for
a given application. Energy profiling may be applied to guide this
choice.

3.1 Prototype Tool
We composed an illustrative version of the proposed profiling

tool for the measurements in this examplle. A block diagram of
our tool is shown in Figure 1.
The tool consists of three major components:
1. Workload Manager. This component initiates the event tracing
and runs the application code with a fixed data workload. Each time
any change is made to the application code, the workload manager
may invoke the measurement process and initiate the event tracing
for it. The workload manager uses the Event Tracing for Windows
(ETW) [19] kernel level tracing system for generating events corre-
sponding to operating system operations, including CPU use, disk
I/O and page faults, heap range creation, and context switches.
2. Event Logger. This component logs the events generated by
ETW to a log file. It uses Windows Xperf [20] for logging.



Figure 1: Application Energy Measurement Tool

3. Energy Profiler. This is the component that parses event traces
to associate resource usage with the application of interest and out-
puts the energy usage of the application across various system re-
sources. The design of this component involves several challenges,
discussed in section 4. In our illustrative version, we parse the event
information to count the resource usage and convert this to energy
data using the power specifications of the resources used. The sys-
tem events contain significant detailed information such as event
timestamps, process ID’s, thread ID’s, and files being used. We use
events corresponding to CPU usage and disk activity for the pro-
cesses corresponding to the application. System disk activity that
corresponds to the files used by the test application are also counted
as part of the application’s resource use, since this activity occurs
only to support that particular application. This version of our tool
does not provide the energy usage of DRAM or network resources.

3.2 Experimental Data
For the example application considered above, the tool outputs

the following data. Figure 2 shows the CPU usage history over
the execution time duration for both alternatives. Figures 3(a) and
3(b) show the disk activity, integrated over one second intervals.
The figures shows that the CPU usage increases dramatically when
compression is used. This may be seen by the developer using
existing tools such as top in Unix and the Task Manager in
Windows. Also, the disk usage is reduced significantly with com-
pression.

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21

C
P

U
 (

%
)

Time(s)

Alt 1

Alt 2

Figure 2: CPU loads for the two alternatives.

The energy numbers obtained by our tool for both alternatives
are shown in Table 1. The data shows that using the compressed
file stream in fact saves energy and improves the performance (total
time to process the offered workload). Here fActive represents the
CPU percentage time spent on running the application, ECPU rep-
resents the energy used by the CPU, and T is the time spent running
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(a) Alternative 1.
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Figure 3: Disk Load.

the application workload. In our experiment, ECPU , is computed
by adding the idle and active mode energy consumptions:

ECPU = {PActive ∗ fActive + PIdle ∗ (1− fActive)} ∗ T

where PActive is the power consumption of the CPU in active mode
and PIdle is the power consumption in idle mode. The above
formula assumes that all time not spent on servicing the applica-
tion is idle time. This is an approximation, as the CPU spends
some extra time on system layer tasks. In our measurements, the
CPU percentage for such activities was small. In actual practice,
that energy would be amortized over multiple applications running
on the CPU and hence is not included here. A similar formula
was used for computing the energy consumed in the disk as well.
The data file being processed by the application contained a set of
event logs collected by our tool, and compressed from 1.183GB to
71.99MB when used with GzipStream(). The machine used
was a Lenovo Thinkpad T61p, with an Intel Core 2 Duo proces-
sor with two 2.2GHz cores and a Hitachi 7200rpm disk drive. The
workload consisted of reading each data item, editing a few random
bytes in each item, and writing it back.

Table 1: Total and Breakdown of Energy Usage.
Cost Uncompressed IO Compressed IO

Total Time, T (s) 22.358 14.935
CPU: fActive (%) 4.37 44.25

ECPU (J) 409.12 377.56
Disk Active (s) 19.218 0.965
Disk Energy (J) 92.96 25.29
Total Energy (J) 502.08 402.85

If such detailed visibility into energy costs is available to the
developer at design time with each design change or additional fea-
ture added to the application, then it becomes easier to optimize
the energy footprint of the application. At times this visibility may
also help improve performance, such as in the above example, or
trade-off performance for cost savings.



4. PROFILING TECHNIQUES AND
CHALLENGES

Existing power profiling strategies such as [29, 25] quantify the
total energy used by an application, with varying throughput. These
techniques focus on architecture and system layer optimizations
rather than on the application. Such aggregate power profile in-
formation is not sufficient for designers to take full advantage of
application layer optimizations since this information does not nec-
essarily reveal exactly how the energy usage is split across different
parts of the application or among different resources used by the
application. Also, the opportunity for trading-off application per-
formance for cost savings in energy is not directly exposed through
such techniques. Profiling at the application layer is typically lim-
ited to manual methods that evaluate specific design modifications
proposed in a given problem context. Hence, new research chal-
lenges remain in the design of automated fine grained power pro-
filing tools.

There are several ways to measure energy usage. A first ap-
proach is to estimate it purely based on analytical models. The-
oretical analysis of an algorithm’s execution complexity can be re-
lated to the approximate energy usage using the processor, memory,
and storage power models [13, 12]. While this approach is very
useful for making early stage design decisions, it quickly becomes
intractable when the effect of various system layer optimizations,
memory hierarchies, IO buffering, and the use of low power states
is to be modeled. Also, such an approach is not straightforward to
automate, limiting its use in practice.

A second approach is to use power models for simulating the
application execution instead of analytical estimation. Hardware
power models obtained off-line were used in [27] to simulate the
application energy usage. The application was instrumented to
record the power state transitions of various resources such as the
processor and network interface, and the recorded traces were post-
processed to estimate the energy usage. Such a technique suffices
when a single application is running on the system, but when each
system resource is being used by multiple applications, we need
finer grained measurements to associate the energy consumed with
corresponding applications.

A third approach, also the one discussed in this paper, is to mea-
sure the application energy by executing it. This has the potential to
provide most accurate information. One alternative to enable such
measurement is to instrument each resource in hardware to mea-
sure energy usage, such as in [17] where hardware instrumentation
was used in an embedded platform to enable monitoring the energy
used by each application or hardware resource. This approach is
very useful but has high cost overheads. Most existing comput-
ing equipment does not have fine granularity power measurement
hardware instrumentation and adding such instrumentation is not
cheap. Current power measurement capabilities that exist, such as
those exposed through the Advanced Configuration and Power In-
terface (ACPI)1 or server motherboard/chassis instrumentation be-
ing standardized through Intelligent Platform Management Inter-
face (IPMI)2, are very coarse grained. They provide total energy
consumption or chassis level sensing rather than for each individ-
ual resource, and also at a very low sampling rate compared to the
operating system context switches, limiting the use of such instru-
mentation to measure the power usage for each thread or process
individually on any resource.

The key research challenge that remains is the development of
energy profiling tools that can yield such fine grained measure-

1http://www.acpi.info/
2http://www.intel.com/design/servers/ipmi/index.htm

ments. In our illustrative tool we followed the approach of kernel
supported resource counting and associating that with energy us-
age. This approach is promising because it leverages existing sys-
tem capabilities but has the potential to yield fairly accurate mea-
surements. Several challenges remain in fully realizing its potential
but many useful building blocks already exist that make the prob-
lem tractable. Kernel instrumentation, such as one used in our il-
lustrative tool, already exists in most modern operating systems, al-
lowing easy tracking of resource usage for individual applications.
These measurements are not directly related to power usage but
techniques to solve this problem are under development. In [4], en-
ergy models for various resources were measured off-line and the
resource usage of a given workload was tracked at run time. The re-
source usage was converted to energy consumption using the previ-
ously obtained off-line power models. Exploring this approach fur-
ther may be helpful for obtaining fine grained measurement where
the resource usage is tracked at individual process or thread level
and the associated energy consumption is computed for each ap-
plication by resource. In [9], a complete system model that allows
estimating an application and operating system’s energy usage on
a given platform was developed. Techniques to associate hardware
resource counters with system energy usage were also developed
in [2]. Combining such techniques with appropriate analytical and
simulation based estimates to make up for lack of fine grained mea-
surement infrastructures, becomes an interesting research problem.

Tools also exist for tracking a program’s time spent on various
methods and resources, using software instrumentation, such as
Microsoft-CLR Profiler [18], and gprof [7]. However, these require
programmer effort in instrumenting the application, and automat-
ing this step would be crucial to make the energy profiling tools
operate transparently at application design time.

In summary, the key challenges for initial exploration may be
summarized as:
Track EActive, EWait and EIdle: Track exact resource usage and
associate it with the power consumption, visualized per resource.
Automated event tracing and parsing will be required. The tech-
niques must minimize the hardware instrumentation required for
profiling.
Attribute EWait, EIdle correctly: The idle energy cost and the
energy spent in wait states depends on the application mix. For in-
stance, introduction of a new application may cause the system to
spend more time in idle state instead of sleep state. Each resource,
and even software services in the system may be shared across mul-
tiple applications. This makes it non-trivial to attribute the wait and
idle energy costs to relevant applications and activities within ap-
plications.
Provide Workloads: Provide techniques to generate workloads
used during design time profiling. Standard benchmarks may not
cover a specific application’s usage scenario, and hence specific
workloads may be needed. In some scenarios, these may be easy
to obtain (eg., a yellow pages query application would know its
dataset and typical queries in advance) while in others, non-trivial
effort may be needed. Techniques to automatically generate a range
of workloads that stress different aspects of the application and
methods that minimize developer input for this task, are required.
Support remote profiling: In many cases, applications developed
on a workstation are meant to run on very different hardware con-
figurations, such as a blade server or a mobile device. The energy
footprint could vary greatly between the target device and devel-
oper’s machine. Tools that enable the developer to profile the ap-
plication on remote hardware will help obtain accurate profile data
for the target hardware.



5. DISCUSSION AND CONCLUSIONS
The profiling tools and challenges discussed above not only en-

able easier design time energy optimizations but also open the doors
to other energy management possibilities.

Energy-Performance Trade-Offs: Understanding the energy
usage of an application can be thought of as quantifying the in-
terdependence between three quantities: workload, performance,
and energy. This relationship can be very complex for a given ap-
plication as each application expends energy in multiple resources
in a networked computer system. Both the total load on each re-
source and the pattern with which the load is applied to the re-
source affect the ability of the resource to enter sleep states. The
performance scaling options, sleep states, and transition overheads
are not identical for each resource. Further, the resources used
could spread across multiple network nodes. The effect of changing
power modes of the individual components may affect the perfor-
mance differently for each application. For instance, an applica-
tions needing continuous but variable workload may benefit most
from processor frequency scaling and DRAM bank shut-downs,
while others with intermittent load may benefit from disk spin-
speed reduction or wireless network interface duty cycling. The
performance metric itself is multidimensional and consists of var-
ious parameters including execution latency, throughput, graphic
interface resolution, refresh frequency, etc. The fine-grained appli-
cation energy measurement techniques discussed above provide a
useful set of tools for characterizing the energy-performance rela-
tionship for an application.

Developers can use the proposed tools to infer the savings and
overhead due to a specific optimization. The tools can also be used
for energy-performance tuning during application operation to ad-
just performance knobs.

Hardware Variations: We discussed the design time profiling
tools assuming the target hardware is available, either locally or re-
motely, to perform the measurements. This may not be possible
in many situations, such as when the application is to be run on
many heterogeneous devices, with vastly different configurations.
The automatic conversion of profiles on one system to another is a
challenging task. Combining simulation and model based estima-
tion effectively with available profiling, appropriately converting
performance and timing information, and modeling the effect of
varying power management capabilities, yields several interesting
research problems.

Cross Layer Interaction: In certain scenarios, it is desirable
to consider cross-layer techniques, so that lower layers can be in-
formed by the decisions at the upper layer for achieving a more
global optimum. An interesting characteristics in this interaction
is the differences in time scales: the lower layer time scale is typ-
ically the shortest, involving hardware power state throttling while
the application level has the longest time scale. A research problem
to address is the abstraction of control knobs that a higher layer can
exploit.

We believe that addressing the challenges discussed in this pa-
per is interesting and useful because automated fine grained energy
measurements will facilitate the move from pure performance op-
timizations to energy-performance aware designs.
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