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ABSTRACT 

Existing video search engines have not taken the advantages of video content analysis and semantic understanding. Video search in 

academia uses semantic annotation to approach content-based indexing. We argue this is a promising direction to enable real content-based 

video search. However, due to the complexity of both video data and semantic concepts, existing techniques on automatic video annotation 

are still not able to handle large-scale video set and large-scale concept set, in terms of both annotation accuracy and computation cost.  To 

address this problem, in this paper, we propose a scalable framework for annotation-based video search, as well as a novel approach to 

enable large-scale semantic concept annotation, that is, online multi-label active learning. This framework is scalable to both the video 

sample dimension and concept label dimension. Large-scale unlabeled video samples are assumed to arrive consecutively in batches with 

an initial pre-labeled training set, based on which a preliminary multi-label classifier is built. For each arrived batch, a multi-label active 

learning engine is applied, which automatically selects and manually annotates a set of unlabeled sample-label pairs.  And then an online 

learner updates the original classifier by taking the newly labeled sample-label pairs into consideration.  This process repeats until all data 

are arrived.  During the process, new labels, even without any pre-labeled training samples, can be incorporated into the process anytime.  

Experiments on TRECVID dataset demonstrate the effectiveness and efficiency of the proposed framework. 
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1. INTRODUCTION 

We will propose a novel semantic annotation scheme to enable content-based video search, which is scalable to large-scale video samples 

as well as large-scale semantic concepts. 

Existing video search engines are all based on indexing “direct text” with few support from video content understanding. That is, 

surrounding text (the text in a webpage that may be related to the video), video descriptions (the textual description of the target video, 

including title, author, content description, tags, comments, etc.), recognized speech, and video metadata (such as format, bitrates, frame 

size, etc) are used to index videos. The advantage of this design is that, we can directly use text-based indexing and ranking technologies to 

do video search.  The disadvantage is that this “direct text” frequently is far from the real content of the video. 

Video search in academia, mainly under TRECVID dataset [26-32, 35], moves one-step ahead, which takes content analysis, especially 

semantic concept annotation, into consideration. Machine learning techniques are applied to convert visual information into textual 

description to realize content-based video search.  We argue this is a promising direction to enable real content-based video search. 

However, due to the complexity of both video data and semantic concepts, existing techniques on automatic video annotation are suffering 

the difficulties in dealing with large-scale video set and large-scale concept set, in terms of both annotation accuracy and computation cost.  

Generally, to overcome these difficulties, huge training datasets and high computation powers are required, but they are difficult, if not 

impossible, to be obtained in many real-world large-scale problems. 

To address this difficulty, in this paper, we propose a scalable framework (in terms of both video samples and concept labels) for 

annotation-based video search and a novel online multi-label active learning approach to enable large-scale semantic concept annotation. 

In this framework, large-scale unlabeled video samples are assumed to arrive consecutively in batches with an initial pre-labeled training 

set as the first batch, based on which an initial multi-label classifier is built. For each arrived batch, an online multi-label active learning 

engine is applied to efficiently update the classifier which maximizes its performance on all currently-available data. This process repeats 

until all data are arrived and resumes when a new data batch is available, during which new concept labels are allowed to be introduced 

into the online multi-label active learning framework at any batch, even though these labels have no any pre-labeled training samples. 

The core approach, online multi-label active learning (Online MLAL), has three major modules, multi-label active learning, online multi-

label learning and new label learning from zero-knowledge. 

Active learning is well-known for its efficiency in saving labeling cost by exploiting the redundancy in samples. The multi-label active 

learning strategy in this paper exploits the redundancy both in samples and semantic labels to further reduce the labor cost of labeling. The 

primary difference between multi-label active learning and typical active learning is that, we will iteratively ask people to confirm the 

labels of a selected set of sample-label pairs instead of samples (with all labels by default) to minimize an estimated classification error. 

Online learning is designed to reduce the computational cost in multi-label active learning.  Generally, model retraining is required when 

new sample-label pairs are obtained, which is computation-intensive. The computation cost increases remarkably with the increase of 
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labeled sample-label pairs.  On the contrary, online multi-label learning is able to incrementally update the multi-label classifier by 

adapting the original classifier to the newly labeled data, which significantly saves computation cost.  Different from existing online 

learning approaches, the one proposed in this paper exploits the correlations among multiple labels to improve the performance of the 

classifier. 

New label learning is to make the proposed framework scalable to new semantic labels.  Existing semantic annotation schemes are only 

applicable for a closed concept set, which is not practical for real-world video search engines. The aforementioned online learner can be 

naturally extended to handling new labels, even though these new labels have no any pre-labeled training data.  The annotation 

performance of the new labels will be gradually improved through the iterative active learning process. 

1.1 Related Work 
We will review related work along three threads, including multi-label learning, active learning and online learning. 

1.1.1 Multi-Label Learning for Video Annotation 
A large semantic concept corpus is desired to enable effective semantic annotation based multimedia search. Therefore, multimedia 

annotation is actually a multi-label classification problem. Research on multi-label video annotation evolved through three paradigms [3]: 

individual concept annotation, context-based conceptual fusion (CBCF) [20] annotation, and integrated multi-label annotation.  A detailed 

review of these three paradigms can be found in our previous work [3].  

The proposed multi-label active learning approach in this paper is based on a similar idea to the third paradigm of multi-label annotation 

scheme, which also exploits the correlations or redundancy among different labels.  Instead of using a SVM-like algorithm in [3], which is 

difficult to handle large-scale data, we use an online learner in the proposed approach to handle the problems of high computation cost as 

well as “label incompletion”. It is to be detailed in Section 3 and 4. 

1.1.2 Active Learning for Video Annotation 
Active learning is one of the widely-used approaches in image and video classification, as it can significantly reduce human cost in labeling 

training samples [5-7]. Specifically, active learning approaches iteratively annotate a set of elaborately selected samples so that the 

expected generalization error is minimized in each step. As a result, the total number of training samples that need to be labeled in active 

learning is smaller than that in non-active learning approaches. It is clear that one of the core problems of active learning approaches is the 

sample selection strategy. In the past decade, a number of active learning approaches were developed by using different sample selection 

strategies [8, 9, 2, 5]. Most of these approaches focus on the binary classification scenario. However, in many real-world applications [10, 

11, 3], a sample is usually associated with multiple labels rather than a single one. Under such a multi-label setting, each sample will be 

annotated as “positive” or “negative” for each and every label. As a result, active learning with multi-labeled samples is much more 

challenging than that with binary-labeled ones, especially when the number of labels is large. 

A direct way to tackle active learning under multi-label setting is to translate it into a set of binary problems, i.e., each category/label is 

independently handled by a binary active learning algorithm. For example, in [10, 12, 33, 34] three research groups have proposed or 

evaluated such binary-based active learning algorithms for multi-label classification problem. However, this type of approaches does not 

take into account the inherent relationships among multiple labels. 

The proposed multi-label active learning (MLAL) instead iteratively selects sample-label pairs to minimize the expected classification error. 

Specifically, in each iteration, the annotators are only required to annotate/confirm selected labels of selected samples while the remaining 

unlabeled part will be inferred according to the label correlations. An intuitive explanation of this strategy is that there exist both sample 

and label redundancies for multi-labeled samples.  

1.1.3 Online Learning 
The main purpose of online learning is to save computation cost by incrementally updating classifiers in which new training samples are 

taken into account, instead training the classifier again from the beginning on the combined training set.  For example, [16] proposes an 

incremental online algorithm to update the SVM model by training it with the previous support vectors and the newly arrived 

samples.  Gauwenberghs et al. [17] present not only an incremental SVM but also a decremental one.  Recently, Yang et al. [18] proposes a 

cross-domain online algorithm based on SVM to adapt it to a set of cross-domain dataset with a different distribution.  All these algorithms 

are designed for single labeled samples.  To the best of our knowledge, we are the first to develop a multi-label online algorithm by 

considering the correlations between different labels.  Moreover, this new online algorithm also allows introducing new labels without any 

pre-labeled training data. 

2. A NOVEL DESIGN OF CONTENT-BASED VIDEO SEARCH  
As aforementioned, existing video search engines have not taken the advantages of video content analysis, and the video search approaches 

in academia uses video annotation but existing annotation scheme is not scalable to the size of video set and concept set.  The proposed 

new design of content-based video search system is also based on semantic annotation, but the difficulty on scaling up is addressed by 

actively leveraging users’ interactions during the learning process, which is realized through the proposed online multi-label active learning 

algorithm.  

Figure 1 shows the work flow of how the entire video dataset is annotated with online active learning. We assume the size of this dataset is 

keeping increasing, simulating the increase of the video database in a real video search engine due to the continuous video crawling.  And 
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we also assume the dataset is increasing batch by batch, denoted by B0, B1, …, and BN. For simplicity, we also use the same batch symbol to 

denote the set of sample-label pairs in the corresponding batch (a batch with n samples and m semantic concepts will have m×n sample-

label pairs), and we assume B0 is the initial pre-labeled training set. We denote the initial classifier built on B0 as P0, Then the learning 

procedure of the online multi-label active learning approach can be summarized as follows. 

(1) Active Learning on (B0+B1). Based on the knowledge in classifier P 0, an iterative multi-label active learning process is applied on B1. 

In each round, a certain number of sample-label pairs are selected to be annotated manually, and a new classifier will be built through 

an online learner based on current classifier and the newly labeled data.  We denote all the selected sample-label pairs in this multiple-

round active learning process as L1 (a subset of B1), and the final new classifier is P 1, which is gradually built by the online learner 

based on P 0 and L1.     

(2) From the iteration t = 2 to N, Active Learning on (B0+B1+…+ Bt). Based on the knowledge in classifier P 
 

t-1 , the active learning 

process is applied on the set of all available unlabeled sample-pairs (B0+B1+…+ Bt)\(L1+…+ Lt-1).   We denote all the selected sample-

label pairs in this multiple-round active learning process as Lt, and the final new classifier is P t, which is built by the online learner 

based on P t-1 and Lt step-by-step.     

(3) Learning New Labels. During any step in (2), the multi-label classifier can be extended to handle new labels (which can be obtained 

from query log analysis, for example, from the list of query terms that are most-frequently used), and with the arrival of next data 

batch, the new sample-label pair set will cover the new labels, and they will be selected by the sample-label pair selection engine in 

the active learning prodedure. The correlations between the new labels and existing labels will be gradually exploited with the 

increase of labeled sample-label pairs. 

 

 

Figure 1. The Process of Online MLAL. 

 

 

Figure 2. New Design of Annotation-Based Video Search. 
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With the support of the above online MLAL process, Figure 2 shows a new design of annotation-based video search system.  The main 

difference between this design and existing systems is that we have two groups of people involved in the annotation process, that is, 

dedicated data labelers and grassroots users who may also contribute to data labeling.  All the labeling requests in the above active 

annotation process will be delivered to these two types of labelers. We argue it is rational for a video search engine to have a certain 

number of dedicated data labelers, though grassroots labelers only is also workable for the video search system.   

To attract average Internet users to label given data, the following scenarios can be applied. 

(1) Game.  Designing attractive games and during playing game the players will be asked to confirm labels of video clips with a friendly 

interface.  A good example is the ESP game [1], but it has no support from learning algorithms. 

(2) Pay. Pay by the number of labeled sample-label pairs. The pay can be real currency or virtual ones which can be used to buy online 

products/content. A good example is to use MTurk [38]. 

(3) reCAPTCHA. CAPTCHA is a type of challenge-response test used to determine that the response is not generated by a computer.  A 

typical CAPTCHA can be generating an image with distorted text which is supposed that it can only be recognized by human beings 

[24].  Recently some researchers have implemented methods by which some of the effort and time spent by people who are 

responding to CAPTCHA challenges can be regarded as a distributed work system. This system, called reCAPTCHA, includes 

“solved” and “unrecognized” elements (such as images of text which were not successfully recognized via OCR) in each challenge. 

The respondent thus answers both elements and roughly half of his or her effort validates the challenge while the other half is 

collected as useful information [25].  This idea can also be applied to do image and video labeling. 

The design of the above incentive programs to attractive grassroots users to label data is out of the scope of this paper.  And, if sufficient 

grassroots join the process, one sample-label pair can be confirmed by multiple users, which is able to reduce noises (grassroots labeling 

generally has lower quality compared with dedicated labelers). Moreover, how to improve and evaluate the labeling quality for both 

dedicated labelers and grassroots labelers, as well as anti-spam, are also important research topics, which are also out of the scope of this 

paper. Some attempts can be found in [40].  Another point that is worth to mention is that, although this paper takes video search as the 

underlying application, this active learning based strategy is applicable for improving image search and even text search relevance.  

3. MULTI-LABEL ACTIVE LEARNING 
The research work on multi-label active learning has been published in our previous work [14], but for completion of this proposed system, 

we will briefly introduce the basic idea and the algorithm workflow. 

Different from the typical binary active learning formulation that selects the most “informative” samples for manual labeling, we jointly 

select both the samples and labels simultaneously. The underlying assumption is that different labels of a certain sample have different 

contributions to minimizing the expected classification error of the to-be-trained classifier. And annotating a well-selected portion of labels 

may provide sufficient information for learning the classifier.  

In essence, the multi-label classifiers do have uncertainty along different labels as well as different samples. Traditional active learning 

algorithms can be seen as a one-dimension active selection approach, which only reduces the sample uncertainty. In contrast, multi-label 

active learning is a two-dimensional active learning strategy, which selects the most “informative” sample-label pairs to reduce the 

uncertainty along the dimensionalities of both samples and labels. More specifically, along label dimension all of the labels correlatively 

interact. Therefore, once partial labels are annotated, the left unlabeled concepts can then be inferred based on label correlations.  

This approach significantly saves the labor cost for data labeling compared with fully annotating all labels. Thus, it is far more efficient 

when the number of labels is huge. For instance, an image may be associated with thousands and hundreds of concepts. That means a full 

annotation strategy will pay large labor costs for only one image. On the contrary, multi-label active learning only manually annotates the 

most informative labels. 

It is worth noting that during multi-label active learning process, some samples may be lack of some labels since only a partial of labels are 

annotated. This is different from traditional active learning algorithm. The missing labels for a certain sample can be seen as hidden 

variables and the corresponding classifier with such incomplete labeling can be trained by the standard Expectation-Maximum (EM) [19] 

algorithm accordingly.  

Before we move further, we first define some notations. For each sample x, it has m labels yi(1 ≤ i ≤ m) and each of them indicates 

whether its corresponding semantic concept occurs. As stated before, in each active learning iteration, some of these labels have already 

been annotated while others not. Let U(x) ={i |(x, yi) is unlabeled sample-label pair.} denote the set of indices of unlabeled part and L(x) 

={i |(x, yi) is labeled sample-label pair.} denote the labeled part. Note that L(x) can be an empty set Ø, which indicates that no label has 

been annotated for x. Let P(y|x) be the conditional distribution over samples, where y = {0, 1}m is the complete label vector and P(x) be 

the marginal sample distribution. 

We are concerned with pool-based active learning, i.e., a large pool P is available to the learner sampled from P(x) and the proposed 

active learning algorithm then elaborately selects a set of sample-label pairs from this pool to minimize the expected classification error. 

We first write the expected Bayesian classification error over all samples in P before selecting a sample-label pair (xs,ys) 

     
( )

1
( ) ( | , )

| |

b

L xx P
y 


 P

P
y x                                                                              (4) 

http://en.wikipedia.org/wiki/Challenge-response_authentication
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We can use the above classification error on the pool to estimate the expected error over the full distribution P(x), 

i.e.,
( ) ( ) ( )( | , ) ( ) ( | , )P L LE y P y d  x x xy x x y x x , because the pool not only provides a finite set of samples but also an estimation of P(x). 

After selecting the pair (xs, ys), the expected Bayesian classification error over the pool P is 
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                                                           (5) 

Therefore, the reduction of the expected Bayesian classification after selecting (xs, ys) over  the  whole  pool P is 

                ( ) ( ) ( )b a    P P P                                                                                        (6) 

Thus our goal is to select a best (x*
s , y

*
s ) to maximize the above expected error reduction. That is, 
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Applying Lemma 1 and Theorem 1 in [14], we have 
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where 
( )( ; | , )

si s L x sMI y y y x  is the mutual  information between  the random variables yi and ys given the known  label xs. Consequently, by 

minimizing the obtained error bound in Eqn. (8), we can select the sample-label pair for annotation as 
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As this multi-label active learning strategy exploits the redundancy along sample dimension and label dimension simultaneously, we also 

name it Two-Dimensional Active Learning (MLAL).  On the contrary, conventional single label active learning approaches are called One-

Dimensional Active Learning (SLAL). More details and analysis of this sample-label pair selection strategy can be found in reference [14]. 

4. ONLINE MULTI-LABEL LEARNING 
Once new sample-label pairs are selected according to the multi-label active learning strategy, the statistical model for multi-labeled images 

needs to be updated accordingly. However, as stated in Section I, the conventional offline algorithms retrain a new model on the 

historically-collected training set plus the new samples.  It will become intractable when hundreds of thousands of samples are accumulated 

into the training set over time. Therefore, an efficient online algorithm is desired to adapt the old model to the new samples without 

retraining. In this section we introduce such an online learner which has been detailed in our previous work [36].  Intuitively, such an 

online classification algorithm should satisfy the following requirements: 

(1) It preserves the old knowledge that has already existed in the old model. This knowledge captures the rich historical information about 

the previously-acquired training samples. 

(2) It reveals the information contained in the newly-arrived multi-labeled samples. In contract to the traditional binary based algorithm 

(e.g., one-against-rest SVM), the label correlations are modeled by this online learner. 

In this section, we will propose such an online learning algorithm that satisfies the above two requirements. We begin our discussion with 

the definition of some notations and the online setting. Under the online setting, we are given an existing old multi-label classification 

model P 

τ(y|x), which is trained from the historically-acquired images. Then a set of newly-labeled images and their corresponding ground 

truth n

iii yx 1},{ 
is obtained in each active learning iteration. Our goal is to learn a new model Pτ+1(y|x) based on the existing model P 

τ(y|x) 

and new samples n

iii yx 1},{ 
.In contrast to the retraining-based learning algorithm, the online learner does not utilize the historical training 

set but only the old model and new coming samples. Actually, the online learner assumes the information about the historical training 
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samples has been preserved in the old model P 

τ(y|x), because this model is learned from historical training samples. Thus with a small 

number of new training samples, the online learner trains a new model much more efficiently. 

As aforementioned, this new model P 

τ+1(y|x) should satisfy the two requirements: preserving the existing knowledge in   P 

τ(y|x) while 

revealing the information in new samples n

iii yx 1},{ 
. These two requirements can be satisfied by formulating the following probabilistic 

variational problem, where Kullback-Leibler Divergence (KLD) [13] is applied to measure the degree of the new model preserving the 

existing knowledge contained in the old one, under a set of multi-label constraints revealing the information contained in the new samples: 

1

1 1ˆ ( | ) arg min ( ( | ) || ( | ))KL
P
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where 1( ( | ) || ( | ))KL P
D P P 


y x y x is the KLD between the new model P 

τ+1(y|x) and the old one P 

τ(y|x) over the sample frequency  
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1
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ii
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m
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
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1{ }n

i ix (δ(·) is the indicator function).  It is worth noting that joint model 

distribution 1 1( , ) ( | ) ( )P P P   x y y x x , i.e.,   we only care about the conditional distribution  P 

τ+1(y|x) and thus use the sample frequency 

)(
~

xP  on the training samples to approximate the true sample distribution  P 

τ+1(y|x). d is the dimension of the feature vector x and xi 

represents its i-th element.  

Constraints (12) - (14) constrain the new model to comply with the statistics on the new samples. It is similar to the conventional offline 

model used in the previous work [14] [4]. 
i ~ ),0( 2

N , 
il ~ ),0( 2

N  and 
il ~ ),0( 2

N  are the estimation errors following the Gaussian 

distribution which serve to smooth Pτ+1(y|x) to improve the model’s generalization ability. These estimation error distributions can be 

caused by the noises in the training samples. As suggested in [15] [4], they assume the joint probability of estimation errors should be 

reasonably large, and thus we can add Eqn. (16) as a constraint of Eqn. (11).  

As aforementioned, when learning the new model we need to balance between the existing knowledge and the new information. Actually, 

the Gaussian error estimations in (12) (13) (14) serve to provide such a trading-off scheme. When the variances of Gaussian errors ηi, θij 

and 
il  are larger, the new model Pτ+1(y|x) will be biased to be the existing model Pτ(y|x) since the multi-label constraints become more 

relaxed with relatively large noises ηi, θij and 
il   in the new training sample set. On the contrary, the small variances will make P τ +1(y|x) 

bias on the new information in 
n

iii yx 1},{ 
. Extremely, the removal of these error estimations will lead to a new model that completely 

complies with the new information. 

From the above formulations, by formulating their dual problem according to Karush-Kuhn-Tucker (KKT) conditions, the solution of P 

τ+1(y|x) can be found as  

1

1

1
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( )

TP P
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 






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                                                       (18) 

where b,R,W are Lagrangian multipliers,  in which b =[b1, b2, · · · , bm]
T is a m × 1 colum vector, R = [Rij ]m×m is a strict upper matrix 

with Rij = 0 for i ≥ j, W = [Wij ]m×d is a m×d matrix, and 

1( ) ( | )exp{ ( )}T

y
Z P    x y x y b Ry Wx                                                            (19) 

is the partition function.  The derivation of the above results is missed here due to limited space and the detailed derivation can be found in 

[36]. 

The parameters b, R, W can be solved by the following dual problem: 
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where ||·||2 and ||·||F are norm-2 and Frobenius norm respectively. Here, 222
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serves as regularization term, and 

, ,b R W   are the trading-off parameters which balance between the old knowledge in the model P 

τ(y|x) and the information in the new 

samples.  The larger they are, the more old knowledge is preserved in the new model.  
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Given the above derivatives, we can use the efficient gradient descent methods (such as L-BFGS [19]) to maximize (21). 

Note that we do not assume any specific probabilistic form of the old model P 

τ(y|x), so any statistical model can be used as P 

τ(y|x). 

However, for simplicity, we can assume P 

τ(y|x) has the following form 

1
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where ( ) exp{ ( )}T
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We can find P 

τ+1(y|x) has the same probabilistic form like Pτ(y|x).Therefore, such an online adaption can then be iterated in the same 

manner in each active learning iteration. 

As mentioned in Section 3, to handle the problem of label incompletion caused by the sample-label pair selection strategy in the multi-label 

active learning algorithm, an EM-algorithm is applied where the missing labels for a certain sample are taken as hidden variables. This 

algorithm is very similar to the EM procedure adopted in [14]. 

5. NEW LABEL LEARNING 
The online learner presented in Section 4 can be naturally extended to handling new labels. Suppose we have m original labels, then 

parameters b τ of the current classifier is an m-dimensional vector, R τ is an m×m matrix, and W τ is an m×d matrix. With the introduction of 

a new label, the parameter b τ,  Rτ and Wτ will be changed to (m+1)-dimension vector, (m+1)×(m+1) matrix and (m+1)×d matrix, 

respectively, in which all the newly introduced entries of the vector/matrixes are set to zero.  Then we use Eqn. (23) to move to the next 

data batch. 

After introducing a new label as above, in the next active learning iteration with a new data batch, according to the last row of Eqn. (9), 

there is actually no any information about the label at initial stage.  That is to say, the marginal distribution P(ym+1|x) for the new  (m+1)-th 

label is uniformly distributed. Therefore, the sample selection strategy tends to select the new label with nearly random samples at initial 

steps.  If prior knowledge about the correlations between the new label and existing labels is introduced, the selected sample-label pairs 

will be more efficient.  This is one of our future work items. 

A disadvantage of this solution is that the performance of the new label at the beginning most likely will not be good enough.  The reason 

is the corresponding new labels have very limited number of training data.  A solution to this problem is to add a separate single label 
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active learning or initial training set construction technique (such as the approach in [21]) to get a certain number of samples labeled in 

terms of this new label.  And then, we continue the regular online active multi-label learning process. 

6. EXPERIMENTS 
As TRECVID video data is the only publicly-available medium-scale benchmark dataset, and we also use it as the primary dataset to test 

the proposed algorithm.  Though the scale of this dataset is still limited compared with the scale of the data on the Internet, we will show 

the potential of the proposed scheme in saving labeling cost and computation cost.  Another reason that we choose TRECVID dataset, as 

well as another even smaller benchmark dataset for some experiments, is that the offline learning algorithms (which we will compare the 

online learn with) requires very high computation power – which is intractable with limited computation resource within limited time. 

We will first conduct experiments on a small benchmark dataset to compare the performances and computation costs between online and 

offline learning algorithms.  We will find the online learner can retain a comparable performance compared with the offline learner while 

its efficiency is much more competitive than offline learner. 

6.1 Online Learner and Offline Learner 
We will first compare the labeling accuracy and the computation cost between the proposed online learner in Section 4 and the traditional 

offline learner previously proposed in [4].  These two algorithms are both applied to multi-label classification problem by exploiting the 

correlations between the different labels.  The experiments are conducted on a multi-labeled Scene dataset previously used in [11].  This 

dataset contains 2,407 natural images belonging to one or more of six natural scene categories including beach, sunset, fall foliage, field, 

mountain, and urban.  Each sample in this set can be assigned one or more than one label at the same time.  For the features used in this 

experiment, an image is first converted into CIE Luv color space and then the first and second color moments (mean and variance) are 

extracted over a 7×7 grid on the image. The end result is a 49×2×3 = 294 dimension feature vector [11]. 

In the experiments, both algorithms are initially given 300 samples as training set and 100 training samples will be added sequentially at 

each round.  This round will be iterated 10 times and we compare their computation costs and the labeling accuracies on the remaining 

samples, as shown in Table 1. Here we use F1 score to compare the classification accuracies.  In statistics, the F1 score measures a test's 

accuracy and has been widely used in information retrieval.  It can be computed as F1=2rp/(r+p) where p and r are precision and recall 

respectively.  We can see that the online learner has a comparable performance with the offline learner.  At the same time, we can find in 

Figure 3 that the computation cost of online learner is much lower than the offline learner.  With the same number of new samples in each 

round, the computation cost of online learner stays stably while that of the offline learner grows rapidly when the increase of the total 

number of the training samples.   

 

Figure 3: Comparision of computation costs between online and offline learners in each round. 

6.2 Online MLAL on TRECVID Dataset  
In this section, we evaluate the proposed online multi-label active learning algorithm on the widely-used TRECVID dataset.  This version 

of TRECVID set we used is the development set used in TRECVID 2006 competition [26].  The reason we use it as the evaluation dataset 

is it contains the complete annotation on all the 39 concepts while the other versions (such as TRECVID 2006 test set) only have been 

partially annotated.  With the fully-annotated labeling, we can compare the performances between different algorithms.  This set contains 

61,901 shots segmented from collections of international broadcasting news in Arabic, English and Chinese.  These video shots are 

processed to extract block-wise color moment features from order 1 to order 3 in Lab color space.  Many previous research efforts support 

that these color moment features have the best performance over the other features on TRECVID dataset [23].   
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Table 1: Comparison of F1 Score between online and offline learners on Scene dataset. 

# of labeled samples in total Online Learner Offline Learner 

300 0.4059 0.4049 

400 0.4098 0.4095 

500 0.4642 0.4649 

600 0.4534 0.4539 

700 0.4850 0.4854 

800 0.4973 0.4975 

900 0.5246 0.5251 

1000 0.5556 0.5546 

1100 0.5786 0.5787 

1200 0.5612 0.5615 

 

6.2.1 Experiment Setup 
To test the proposed active learning schemes in Section 2 for content-based video search, we conduct two experiments.  The first 

experiment is designed to evaluate the multi-label active learning algorithm when new sample-label pairs are selected by the two-

dimensional active learning strategy introduced in Section 3.  We compare such the multi-label active learning strategy with the previously 

proposed single-label strategy in [10] which requests to annotate all the labels of the selected samples.  We denote the multi-label strategy 

by MLAL and the single-label strategy by SLAL, respectively. We also conduct experiment on using randomly select sample-label pairs, 

denoted by RND, with the proposed online learner as underlying classifier. On the other hand, we also conduct the second experiment 

when new labels are involved into the online learning system. We will see how the performance is improved on these new labels in the 

online active learning system. 

In both experiments, an initial training set is constructed by the first 10,000 samples with all their 39 complete labels.  Based on this initial 

training set, a classifier P0 is trained.  Then at each round, MLAL selects and annotates 39,000 sample-label pairs and then incorporated 

into the training set to train a new classifier. In contrast, SLAL also selects 39,000 sample-label pairs but these pairs come from the 1000 

samples together with all their 39 labels.  That is to say, SLAL selects and annotates 1000 samples with all labels. Similarly, these samples 

and their annotation are also incorporated into the training set to train the new classifier.  Such a round will be repeated step-by-step. 

For the active learning system with new labels, we do the same experiments but only use 37 labels at the first step, where two concepts, 

“Building” and “Explosion_Fire”, are excluded. That is, the initial training set will consist of 10,000 samples with only 37 concepts.  These 

two excluded concepts will be involved into the active learning system at the second round.  Note that “Building” is strongly correlated 

with many concepts in the initial training set, such as “Urban”, “Road”, “Outdoor” and “Court”. Similarly, “Explosion_Fire” is also related 

to “Military”, “Natural-Disaster” and “Car”.  We expect the two concepts can be improved by their correlation with these related concepts.  

These correlations are learned in a data-driven manner compared to prior knowledge from WordNet or Google Distance [37]. 

 

Figure 4: Performance comparison of MLAL, SLAL and RND in terms of mean average precision. 
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(a) People-Marching 

 

(b) Maps 

Figure 5:  Performance comparison of MLAL, SLAL and RND on two concepts: (a) People-Marching; (b) Maps. 

 

6.2.2 Experiment I – Active Learning with Online Learner 

In this subsection, we report the results of the first experiment which compares different sample-label pair selection strategies, that is, 

MLAL, SLAL and RND.  Figure 4 illustrates the overall performance on all the 39 concepts in terms of mean average precision (MAP).  

Among all the 10 iterations, MLAL has the best performance compared with SLAL and RND.  We also compare the performances of 

MLAL with online and offline learner as the underlying classifiers in Table 2.  We can find the online learner also obtains a competitive 

results compared to the offline learner. Moreover, on some concepts, MLAL has insignificantly improvement compared to SLAL.  For 

example, Figure 5 illustrates the comparison between MLAL and SLAL on two concepts “People-Marching” and “Maps”.  From this 

illustration, we can find MLAL outperforms SLAL significantly on these two concepts.  This is probably due to that the label correlations 

of these labels with other labels are informative. For example, “People-Marching” can be well induced by its correlation with 

“Walking_Running”, “Person”, “Crowd”, “Face” and so on.  The same reason is applied to “Maps” which is correlated to “Charts”, 

“Computer_TV-Screen”, etc.   

Another advantage of the proposed MLAL algorithm is its efficiency.  SLAL uses the SVM as its underlying classifier.  So in each round, 

the SVM must be retrained on the whole training set.  For example, in the first iteration, it takes about half and an hour to train the SVM 

on 10,000 samples.  When more samples are involved into the training set, we must spend more and more time on retraining the SVM on 

the quickly dilated training set.  In our experiment, we spend nearly 6 hours to retrain the SVM in the last round.  In contrast, we only need 

invest once to train a starting online model for MLAL on the initial training set.  In this experiment, it takes about 3.5 hours to obtain the 

initial online model.  But after that, in each round, this model can be efficiently updated in a few minutes at each round, and this time cost 

does not increase with the increase of the size of the overall training set.  The saving of computation cost is huge especially when more and 

more samples are labeled. 
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Table 2: Comparison of MAP between online and offline learners on TRECVID dataset. 

Iteration Number Online Learner Offline Learner 

1 0.12038 0.11327 

2 0.16071 0.16159 

3 0.19009 0.18918 

4 0.20179 0.20894 

5 0.22422 0.22364 

6 0.23469 0.22852 

7 0.24708 0.24795 

8 0.25502 0.25370 

9 0.27041 0.26346 

10 0.27259 0.26314 

 

 

6.2.3 Experiment II – Actively Learning New Labels 
We report the experimental results of the second experiment when new labels “Building” and “Explosion_Fire” are involved into the active 

learning system. Figure 6 shows the promising results of learning new labels. 

Although these two concepts start with relatively low accuracy, their performance can be gradually improved once they are incorporated 

into the system.  Note that for the new labels, when they are involved into the system, there is nearly no knowledge of them in the system.  

So their corresponding marginal distributions of these labels are uniformly distributed.  According to the last row of Eqn. (9), the self 

entropy for these labels are relatively high and it makes the active learning system tends to select the sample-label pairs associated with 

these labels for annotation.  This will be helpful to reduce the uncertainty of these labels and improve their accuracies.  However, without 

prior knowledge, such a process is gradual in a data-driven manner.  A data-driven manner means the label correlation is exploited from 

training samples rather than directly from some prior knowledge.  As it does not involve expensive expert’s effort, the accuracy of these 

labels is relatively lower compared with the performance when these labels exist in the initial training set.  In our next plan, we will study 

how to use some existing knowledge to accelerate the learning rate when new labels are involved, such as through WordNet and Google 

Distance, or our recent effort called Flickr Distance [39]. 

 

(a) Building 
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(b) Explosion_Fire 

Figure 6: The performance of learning two labels (compared with the case when these labels are labeled in the initial training set). 

7. CONCLUSION AND FUTURE WORK 
We have proposed an online multi-label active learning algorithm for semantic video annotation, which is scalable to the size of both video 

dataset and semantic concept set. With the support of this algorithm, a new system design of active annotation-based video search system is 

proposed, which is able to deal with large-scale video data and large-scale concept set. In this design, large-scale unlabeled video samples 

are assumed to arrive consecutively in batches with an initial pre-labeled training set, based on which an initial multi-label classifier is built. 

For each arrived batch, an online multi-label active learning engine is applied to efficiently update the classifier which maximizes its 

performance on all current-available data. This process repeats until all data are arrived, during which new concept labels are allowed to be 

introduced into the online multi-label active learning framework at any batch, even though these labels have no any pre-labeled training 

samples. This new framework significantly saved both labeling cost and computation cost but keeps comparable or even better performance 

compared with the state-of-the-art approaches.  Moreover, new label learning without pre-labeled sample demonstrated very promising 

results 

There are still a number of problems need to be addressed under this framework. As aforementioned, the design of the incentive programs 

for attracting grassroots users to participate active labeling is an interesting problem. And the quality evaluation and insurance of manual 

labeling, as well as anti-spam, are also essential for the entire framework.  Enabling region-level annotation in this active learning process 

will increase the relevance of video search results, and multi-label multi-instance learning [22] is a possible approach that can be integrated 

in.  Investigating the effects of the Gaussian noises in the online learner, speeding up new label learning, and testing the framework on 

larger and real world video datasets are also desired. In addition, applying it on image search, text search, and other multi-label 

classification problems is also our future work. 
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