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ABSTRACT

The correctness of typestate properties in a multithreaded
program often depends on the assumption of certain con-
currency invariants. However, standard typestate analysis
and concurrency analysis are disjoint in that the former is
unable to understand threading effects and the latter does
not take typestate properties into consideration. We com-
bine these two previously separate approaches and develop
a novel typestate-driven concurrency analysis for detecting
race conditions and atomicity violations.

Our analysis is based on a reformulation of typestate sys-
tems in which state transitions of a shared variable are con-
trolled by the locking state of that variable. By combining
typestate checking with lockset analysis, we can selectively
transfer the typestate to a transient state to simulate the
thread interference effect, thus uncovering a new class of
typestate errors directly related to low-level or high-level
data races. Such a concurrency bug is more likely to be
harmful, compared with those found by existing concurrency
checkers, because there exists a concrete evidence that it
may eventually lead to a typestate error as well.

We have implemented a race and atomicity checker for
C/C++ programs by extending a NULL pointer derefer-
ence analysis. To support large legacy code, our approach
does not require a priori annotations; instead, it automati-
cally infers the lock/data guardianship relation and variable
correlations. We have applied the toolset to check a future
version of the Windows operating system, finding many con-
currency errors that cannot be discovered by previous tools.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Reliability; D.2.5 [Software Engineering]: Test-
ing and Debugging—Debugging aids

General Terms
Algorithms, Reliability

Keywords

atomicity, data race, concurrency, defect detection

1. INTRODUCTION

Multithreaded programs are hard to get right. A com-
mon concurrency error is data race, which occurs when two
threads concurrently access the same data without synchro-
nization, and at least one of these accesses is a write. How-
ever, race-freedom does not guarantee correct synchroniza-
tion, because program correctness often depends on a stronger
non-interference property called atomicity, which requires
that every concurrent execution of a set of operations is
equivalent to some serial execution of the same operations.
Atomicity violations, sometimes called high-level data races,
can cause erroneous behaviors when a consistency require-
ment exists between multiple pieces of shared data.

Properties such as race-freedom and atomicity can be cat-
egorized as generic concurrency properties—they are invari-
ants for ensuring proper synchronization on shared-memory
data structures. Another important class of program prop-
erties, which has been intensively studied in prior research
for sequential programs, is related to typestates [1]. Types-
tates extend the ordinary types: For an object created dur-
ing program execution, its ordinary type does not change
through the lifetime of the object but its typestate may be
updated during the course of the computation. Typestate
errors often indicate violations to safety conditions, which
require that operations can only be invoked on objects with
appropriate states.

Despite significant advances in both fields, typestate anal-
ysis and concurrency analysis are disjoint since the former is
unable to understand threading effects and the latter mostly
focuses on generic concurrency properties. This introduces
two drawbacks. (1) Typestate systems are limited in the
presence of concurrency because they would miss many bugs
introduced by threading issues. (2) Concurrency tools are of-
ten overly conservative, resulting in a large amount of warn-
ings that are benign. This is especially a problem for atom-
icity analysis as many seeming violations to the atomicity
assumption are not harmful because they do not break any
critical invariants that programmers care about.

Example. To illustrate an atomicity problem, consider the
code snippet of a Win32 program shown in Figure 1. In
function ProcessBuffer, p->buffer is tested at line 3 to
make sure it is not NULL before being dereferenced at line
10. Although all shared accesses are protected by locking,
a problem would arise if function FreeBuffer, executed by



typedef struct {
CRITICAL_SECTION cs;
int* buffer;

} DATA;

void ProcessBuffer (DATA* p) {
EnterCriticalSection(&p->cs);
if (p->buffer == NULL) {
LeaveCriticalSection(&p->cs);
return;
}
LeaveCriticalSection(&p->cs);
// Do something
9 EnterCriticalSection(&p->cs);
10 *p->buffer = 1;
11 LeaveCriticalSection(&p->cs);
12 }
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void FreeBuffer (DATA* p) {
EnterCriticalSection(&p->cs);
if (p->buffer) {
delete(p->buffer);
p—>buffer = NULL;
}

LeaveCriticalSection(&p->cs);
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Figure 1: A simplified code snippet of a Win32 pro-
gram that is race-free but unsafe.

another thread, is interleaved between the two locking seg-
ments in ProcessBuffer at line 8. In this case, FreeBuffer
would reset the buffer to NULL, causing a crash at line 10 in
ProcessBuffer.

This code is buggy because it breaks an implicit invariant:
The validation against the typestate of an object and the
operation on the object that relies on the proper typestate
need to be treated as a set of atomic actions, i.e., they should
appear to be carried out as if the actions were executed
sequentially, independent of thread interleaving.

From this example, several interesting observations can
be drawn. (1) A traditional typestate checker cannot de-
tect this safety violation. Such a checker would conclude
that p->buffer cannot be NULL at line 10 in ProcessBuffer
since the function would have returned at line 5 otherwise.
(2) A standard race detector cannot catch this error because
the code is race-free: Every access to variable p->buffer
is guarded by lock p->cs. (3) Although a strict atomicity
checker that assumes every function needs to run atomically
would be able to issue an alarm, it is not practical to al-
ways enforce atomicity at function boundaries. A common
practice is to break down a large piece of code into small
fragments of locking blocks for performance reasons. Conse-
quently, a strict atomicity checker would generate too many
false alarms, making it hard to find meaningful results.

Concurrency errors, such as the one illustrated here, are
often semantic errors involving implicit high-level invari-
ants. These subtle bugs, which typically exhibit in corner-
case scenarios, are very hard to find, reproduce, and di-
agnose. Yet, for industrial software that is used daily by
millions of people, no code path can be treated as a rare
case. With the emerging trend of multicore technology, it

is expected that concurrency-related problems will manifest
even more frequently.

In this paper, we present a new approach that takes both
typestate property and concurrency property into account.
We simulate the thread interference effect by reformulating
typestate systems such that the state transition of a shared
variable is controlled by the locking state of that variable.
Our method is based on two key insights.

1. We can simulate the “worst case” scenario due to thread
interleaving by killing the state information associated
with an object—this is represented by transferring the
typestate to a transient state—whenever the object
is not guarded by its intended guarding lock. Con-
sider function ProcessBuffer in the above example,
if the analysis can understand that p->buffer should
be guarded by p->cs and reset the state of p->buffer
when the guarding lock is released at line 7, the NULL
dereference at line 10 would be uncovered.

2. To precisely simulate the thread interference effect, the
central question is how to determine when the state of
a variable needs to be brought to the transient state—
too much (e.g., when triggered by unrelated lock re-
lease) would lead to over-approximation and too lit-
tle (e.g., when failing to update correlated variables)
would result in under-approximation. To address this
issue, we apply inference techniques to automatically
identify lock/data and data/data correlations.

The advantages of the combined approach are two-fold.
First, the “thread-sensitive” aspect of the analysis extends
traditional typestate checking from the sequential context to
the multithreaded context. Second, the “typestate-driven”
aspect of the analysis enables a more focused checking by
pinpointing concurrency problems that could eventually lead
to typestate bugs.

Ideally, an analysis tool must meet several challenging and
sometimes conflicting goals at once.

e The analysis should offer enough precision. Unlike
Java or C#, C/C++ programs do not require locking
to be syntactically scoped. As a result, flow-sensitivity
is important. Also, since lock acquire and lock release
operations can be conditional, path-sensitivity is criti-
cal as well. These analysis features are all supported by
our tools. Additionally, our typestate-driven approach
further improves precision by distinguishing harmful
bugs from benign warnings.

e The analysis must scale to large programs with millions
lines of code. We support this by applying modular
(intra-procedural) checking that analyzes one function
at a time.

e Modular checking requires annotations and we need to
support large legacy code base that is infeasible to an-
notate by hand. The conventional wisdom is that any
annotation-based approach is cumbersome and hard to
deploy. We strive to change this perception by showing
that manual annotation effort can be largely replaced
by a series of automatic inference techniques.

The technical merit of this paper lies in addressing these
challenges and integrating practical techniques to produce



useful results. In summary, we make the following contribu-
tions:

e We present a reformulation of typestate systems in
which state transitions of a variable are subject to the
locking state of that variable. In particular, we show
how to combine a NULL pointer dereference typestate
checker with a lockstate checker to detect data races
and atomicity violations. To the best of our knowl-
edge, this is the first effort that combines typestate
analysis with lockset analysis.

e We present an inference algorithm for determining cor-
related variables that should be bundled. Although
the notion of annotating lock/data guardianship rela-
tion with the __guarded_by annotations is not new,
applying a judicious choice of heuristics to infer such
annotations and further use them to reveal atomicity
violations is a unique contribution.

e We have implemented a set of concurrency tools, in-
cluding a concurrency annotation inference and check-
ing tool EspC and an atomicity checker EspA, and
applied them to large real-world software systems.

The remainder of the paper is organized as follows. In Sec-
tion 2, we review the techniques applied in our approach. In
Section 3, we present the concurrency annotation inference
methods. In Section 4, we describe the implementation of
our tools. In Section 5, we discuss experimental results. In
Section 6, we review related work. We conclude in Section 7.

2. APPROACH

In this section, we use an important safety property—
freedom from NULL pointer dereferences—as a concrete ex-
ample to illustrate our approach.

2.1 Conventional Typestate Analysis

A typestate property can be captured by a finite state
machine where the nodes represent typestates and the arcs
correspond to operations that lead to state transitions. For-
mally, a typestate automaton for a variable, say p, is a tuple

A =(Q,%,init, s, Err),

where @ is the set of all states, ¥ is an alphabet denoting
operations on edges, init is the initial state, 6 : @ XX — Q@ is
the state transition function for p, Err is a set of terminating
states representing error states, Ve € Err,0 € X. §(e,0) = e.

2.1.1 Notations

A variable, represented by a C/C++ path expression, can
be classified as either a data variable or a lock variable. In
Win32 programs, a lock variable can be a critical section
declared as CRITICAL_SECTION, a mutex, a spin lock, or a
user-defined lock. Variables are mapped to the correspond-
ing memory locations. In the definitions below, for example,
data variable p is mapped to memory location m and lock
variable lock is mapped to memory location .

As a convention, we use superscripts to distinguish var-
ious automata. Specifically, we use null to represent the
NULL pointer dereference automaton, Is to represent the
lockset automaton, and ¢ to represent the combined concur-
rency automaton. In addition, we use subscripts to repre-
sent different instantiations. For example, A,, represents an
instantiation of automaton A for memory location m.

2.1.2  Analysis Definitions

Let Var = {pi...p:} be the set of all variables in the
analyzed function F. Let Mloc = {m1...m;} be the set of
all memory locations in F', and function p : Var — Miloc
be the mapping function giving memory locations for each
variable. Then, for every memory location m, the finite state
machine for variable p can be instantiated with m to yield
a specialized execution automaton

A = (Qm, X, Nitm, Om, Errm),

where Am = Alm/pl, Qm = Qm/pl, Sm = S[m/p] =
{o[m/p],0 € X}, and the state of the program at program
point x is given by the tuple State(z) € Qm, X - X Qm,.
We denote by State(x),, the element of the tuple State(x)
for location m.

2.1.3 NULL Pointer Dereference Automaton

The state machine for a standard NULL pointer derefer-
ence analysis is illustrated in Figure 2(a). Every variable,
say p, starts with a MaybeNULL state, and can be transferred
to other states depending on various operations occurred
to that variable. We use toNULL(p) and toNonNULL(p)
to represent operations that lead p to NULL and NonNULL,
respectively. An error occurs when a dereference is taken
from the NULL state or the MaybeNULL state.

The automaton for NULL pointer dereference is defined
as Anull — <Qnull7 Enull7i,r”;tnull7 6null7 E?"T’nu”>, where

Q™" = {MaybeNULL, NULL, NonNULL, MaybeNULLDeref,
NULLDeref },
ynell — ftoNULL(p), toNonNU LL(p), *p},
init™*! = MaybeNULL,
Err™! = {MaybeNULLDeref, NULLDeref },
and 6" is defined as follows (for state-changing edges):
Vs & Err.6™ (s,toNULL(p)) = NULL
Vs & Err.6™ (s,toNonNU LL(p)) = NonNULL
6™ (NULL, p) = NULLDeref
o™ (MaybeNULL, p) = MaybeNULLDeref

2.2 Lockset Analysis

Our analysis needs to understand the lock/data guardian-
ship relation as well as correlations between data variables to
guide state transitions. We obtain this information via con-
currency annotations, which can be either manually added
or automatically inferred. We explain the need of concur-
rency annotations in Section 2.2.1 and describe our lock
analysis in Section 2.2.2.

2.2.1 Concurrency Annotations

A fundamental limitation of the mainstream programming
languages in use today is that they do not directly support
the specification of concurrency requirements. Programmers
have to rely on informal documentation to express their in-
tention regarding the usage of locks. To improve the quality
of multithreaded software, we have designed Concurrency
SAL as an extension to Microsoft’s Standard Annotation
Language (SAL) [2]. Concurrency SAL defines a set of an-
notations that make the implicit locking rules explicit in
C/C++ programs. In this section, we describe a small sub-
set of Concurrency SAL that is related to this paper.

Data Protection. An effective technique for avoiding race
conditions is to always acquire the guarding lock before ac-
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Figure 2: Finite state machines for checking NULL pointer dereference. Figure (a) shows the traditional state
machine for thread-insensitive analysis. Figure (b) shows the extended state machine for thread-sensitive

analysis.

typedef struct {
CRITICAL_SECTION cs;
__guarded_by(cs) int* buffer;
} DATA;

Figure 3: The __guarded_by annotation clarifies the
lock/data guardianship relation.

cessing a shared variable. The __guarded_by annotation
is used to specify which lock is intended for guarding the
shared data. For example, the guardianship relation be-
tween cs and buffer in Figure 1 can be formalized with the
__guarded_by annotation, as illustrated in Figure 3.

Caller/Callee Locking Contract. Whenever a lock is
needed to protect some shared access, it is important to
clarify whether the function itself or its caller is responsible
for acquiring the lock. Annotation __requires_lock_held
on function Foo states that the caller of Foo must acquire
the lock prior to calling Foo.

Locking Side Effect. C/C++ programs do not enforce
lock acquires and lock releases to be syntactically scoped.
This free-style locking mechanism is a common source for
bugs. Annotations __acquires_lock and __releases_lock
formalize two important locking side effects of a function:
acquiring a lock and releasing a lock, respectively.

2.2.2 Lockset Automaton

We now define a lockset-based analysis for data race de-
tection. Let acquire(lock) and release(lock) represent the
acquire operations and release operations for lock variable
lock, and access(p) represent the access operations for data

variable p. The __guarded_by annotations, either manually
added by programmers or inferred by our tool, yield the fol-
lowing relation:

GuardedBy € Mloc x Mioc, where (m,l) € GuardedBy iff
p(p) = m and p(lock) =1 and the __guarded_by(lock) an-
notation is applied to p.

Based on the __guarded_by(lock) annotation on variable p,
we can define the lockset algorithm as a typestate system
with automaton A'.

Als — <Ql5, Els,initls76ls7E7‘Tls>,

Q" = {Unlocked, Locked, Race},

! = {acquire(lock), release(lock), access(p)},

init'* = Unlocked,

Err'® = {Race},

and 6" is defined as follows (for state-changing edges):
§'*(Unlocked,acquire(lock)) = Locked
8% (Locked,release(lock)) = Unlocked
§'* (Unlocked,access(p)) = Race

For each data location m protected by lock location I, we
create a specialized automaton A%, = A*[m/p,1/lock] (s.t.
GuardedBy(m,1) is true). Then the lockset at program point
x can be defined as

LS, = {l: 3m.GuardedBy(m,1) A State(z): = Locked}

2.3 Combined Concurrency Analysis

We now define an extended typestate system for concur-
rency analysis. Given a traditional typestate automaton A,
we construct a combined automaton that is a modification of
a product automaton from A and A'®, with the addition of a
transient state for each protected variable. When a variable



is in the transient state, it indicates that the variable is not
currently guarded and thus it can be modified by another
thread. We assume that the initial state init in automaton
A always represents the unknown state for the variable, i.e.,
it can be any possible state of the variable. Hence, we can
reuse the initial state as the transient state for the newly
created concurrency automaton.

For example, from the NULL pointer dereference automa-
ton A" and the lockset automaton defined in Section 2.2.2,
the resultant combined automaton is similar to the one shown
in Figure 2(b). For conciseness, Figure 2(b) is simplified to
reduce the number of states. This automaton is created
only for shared data that is explicitly annotated with the
__guarded_by annotations. For un-annotated data, the orig-
inal typestate automaton is reused.

We assume that the set of errors in the original typestate
automaton is divided into “may errors” and “must errors’:
Err = MayErr U MustErr. The distinction between “may
errors” and “must errors” is based on whether there exists
a direct evidence of a bug. For instance, suppose a pointer
p starts with NULL in function Foo. If Foo makes the deref-
erence of p right away, it is a “must error”. On the other
hand, if Foo calls an external function that may or may not
properly initialize p and then makes the dereference, it is a
“may error”.

For the combined concurrency automata, we define an au-
tomaton per location and then make connections between
state machines for locations of the same bundle, which rep-
resents a set of correlated locations. We will formalize the
notion of bundle and describe how to compute it in Sec-
tion 3.2.

We use Aj° = Als x-- »xAl,,SLk =(Ql*, Zl* initl®, 6%, Errl®)
to represent a standard product automaton related to the
same data bundle By, associated with lock I, where m; ... my
belong to B;. Given a data location m guarded by a lock
location [, the combined automaton is defined as follows:

ALy = (Qh, X, init gy, Oy, ETT7),

Q5 = Qm X Q1%

¥, =%, Unt,

inity, = (inity, Unlocked:),

Err, = (MustErr, x Qi°) U (MayErr, x {Race;,Locked; }),
and ¢y, is defined as follows:

(1) Simulate the thread interference effect by entering the
transient, unprotected state when unlocked:

Vs € Qm.0r,((s, Locked,),release(lock)) = (initn, Unlocked)
(2) Stay in the transient, unprotected state until locked:

Vo €acquire(lock).
05, ({inity, Unlocked; ), 0) = (inita, Unlocked)

(3) Go to the protected, unknown state when locked:
Vs € Qm.0r,((s,Unlocked;),acquire(lock)) = (init,, Locked;)
(4) Perform as the original automata when protected:

Vs € Qm,0 € Xm.05((s,Locked:),0) = (du(s, st), Locked:)

(5) Go to the error state from the transient state for any
operations leading to errors before:

Vs € Qm,0 € Tm.0m(s,0) = e, e € MayErr,
07, ({(inity,Locked: ), 0) = (e,Locked;) (atomicity violation)
0y, ((inity, Unlocked;), 0) = (e,Unlocked;) (race condition)

Those additional errors, revealed by the combined con-
currency automaton but not by the original typestate au-
tomaton, are generated from the transient state induced by
threading effects, i.e., they are potential typestate violations
directly related to concurrency. With the capability of un-
covering a whole new class of concurrency-related typestate
errors, our extended typestate system improves the sound-
ness of a traditional typestate system. Driven by types-
tate errors, our approach also improves the precision of a
conventional concurrency checker. This unique balance be-
tween the soundness/precision tradeoff offers a sweet spot
for checking high-level and low-level race conditions.

Although this paper has focused on extending the NULL
pointer dereference state machine, our approach is generic
and can be extended to other typestate properties.

3. LOCK INFERENCE

Since state transitions in the combined concurrency anal-
ysis are driven by the activities associated with guarding
locks, finding lock/data correlations is key to the precision
of our analysis. If the analysis over-kills the state informa-
tion following unrelated lock releases, false positives would
be generated. On the other hand, if the analysis misses
any lock/data guardianship relation, it would result in false
negatives. In the extreme case, if there does not exist any
__guarded_by annotation, the concurrency automaton would
degenerates to the original property automaton.

Because manually annotating legacy code can be very
costly, we apply inference techniques to automatically ex-
tract the implicit locking rules.

3.1 Data Protection Inference

For each analyzed function, we infer the __guarded_by an-
notations for formal parameters or global variables accessed
at the function. Our heuristic-based inference algorithm is
motivated by the observation that programmers are mostly
correct, thus we can infer their assumptions based on some
strong evidence exhibited by certain code paths.

For instance, our “high-confidence” seeding __guarded_by
annotations are generated as follows: For every locking block,
we conclude that the first access after the lock acquire and
the last access before the lock release need to be protected
by the guarding lock. The intuition is that developers do not
use locking liberally; they try to minimize the locking scope
to improve performance and avoid deadlocks. In Figure 1,
for example, the shared variable p->buffer is accessed right
after p->cs is acquired. If p->buffer does not need to be
guarded by p->cs, the access could have been moved before
the lock acquire operation.

Our algorithm also allows the inference to be more aggres-
sive (which can potentially be more noisy) by selecting the
best fitting lock from a set of candidate locks.

At each protected access to a structure field with loca-
tion m, we sort the currently held locks into the following
buckets:



e Priority 1: lock locations which are fields of the parent
of m.

e Priority 2: lock locations which are reachable from the
parent of m, but are not at the same level with m.

e Priority 3: lock locations reachable from formal pa-
rameter locations.

e Priority 4: lock locations reachable from global loca-
tions.

We choose the guarding lock from a non-empty bucket
with the highest priority (the priority with the smallest num-
ber). We ignore the locks reachable from m as they are
probably intended to protect fields of m, but not m itself.

3.2 Bundle Computation

In addition to lock/data correlations, data/data correla-
tions are also important for atomicity analysis. Suppose the
z and y coordinates of a Point object need to be updated
atomically, fragmenting the locking blocks in updating « and
y would lead to data inconsistency.

To be able to discover this kind of atomicity violation, we
introduce the notion of bundle. A bundle collects a set of
data locations whose updates need to be grouped atomically.
Whenever a variable is brought into the transient state, the
atomicity invariant could be broken, hence all variables in
the same bundle are also transferred to the unknown state.
For the Point data structure, our analysis needs to recognize
z and y as a bundle.

Bundle identification can be viewed as a technique to gen-
eralize our atomicity analysis. It uncovers high-level data
dependence, which is different from traditional data depen-
dence induced by reads and writes.

Our bundle inference technique is based on the follow-
ing observation: Mutual exclusion locks remain the de facto
mechanism for ensuring data consistency, partially due to
the lack of direct support for atomicity from programming
languages. As a result, the same lock is likely to be used to
guard a group of variables that need to be processed atom-
ically. Therefore, we use the guarding lock as a hint to de-
tect a data bundle: B; = {m : (m,l) € GuardedBy}. Alias
analysis allows us to identify path expressions with same
locations.

3.3 Locking Side Effects

The free-style locking mechanism in C/C++ poses a chal-
lenge for annotation inference because all the locking rules
and locking side effects are intertwined—one misunderstand-
ing would lead to other wrong conclusions. As a result, we
also need to infer other concurrency annotations, e.g., those
related to locking side effects.

For __acquires_lock, we infer that a function acquires
lock if p(lock) is added to the lockset along every path reach-
ing the function exit. Similarly, for __releases_lock, we
infer that a function releases lock if p(lock) is removed from
the lockset along every path reaching the function exit.

4. IMPLEMENTATION

To enable rapid development of custom checkers, we have
built a program analysis platform called the Esp analysis
framework. Using this framework, we have implemented our
techniques in several tools, including EspC (a concurrency

checker and an annotation inference tool), NullPtr (a NULL
pointer dereference checker), and EspA (a race and atomic-
ity checker).

4.1 Esp Analysis Framework

The architecture of the Esp platform is illustrated in Fig-
ure 4. The framework consists of a common intermediate
representation (IR) layer based on Control Flow Graphs
(CFGs), as well as a rich layer of analysis components. With
a simple interface, the platform provides an easy-to-use intra-
procedural, path-sensitive dataflow engine with integrated
alias analysis (a flow-insensitive, field-sensitive Andersen-
style alias analysis [3, 4]), build integration, extensive anno-
tation handling, automatic defect rendering, and refutation
of infeasible paths [5]. The platform appeals to domain ex-
perts by allowing them to focus almost exclusively on the
domain-specific aspects when developing a custom checker.
The Esp framework has been applied to power many widely-
used analysis tools at Microsoft.

4.2 EspC

EspC is an intra-procedural, path-sensitive lock analyzer,
analyzing one function at a time, and between different
functions via function preconditions and postconditions ex-
pressed as annotations. It computes locksets at every pro-
gram points and checks against concurrency violations. A
function assumes that all of its preconditions hold at entry,
and must ensure that all of its postconditions hold at exit.
At a call site, the caller must ensure that all the callee’s pre-
conditions hold before the callee is called, and assumes that
the callee’s postconditions hold when the callee returns.

We define all Win32 locking APIs using our pattern match-
ing specification language called OPAL. This makes EspC
understand the intrinsic locking behavior of a program even
without explicit source annotations. We then instrument the
CFGs by adding the matched locking event nodes. This al-
lows the analysis engine to track those specified APIs. When
a particular code pattern, say EnterCriticalSection(&cs),
is encountered, a special event node is injected into the CFG.
With such information, EspC implements the lockset algo-
rithm in Section 2.2.2 by computing locks acquired at every
program point.

To improve scalability, EspC employs a selective merge
algorithm [6]: At a merge point, we evaluate the locksets
from incoming paths—if the locksets are the same, we merge
the incoming states; otherwise, we keep them separate and
propagate them precisely. This allows our tool to gain path-
sensitivity while avoiding the exponential blow up.

We also apply many algorithms to optimize the perfor-
mance. For example, if a function does not contain Concur-
rency SAL annotations and locking operations, the analysis
phase is skipped. In addition, the symbolic path simula-
tion is only turned on on-demand when a potential error is
detected to ensure the path is feasible.

EspC uses an extensive set of algorithms to bucket lock-
ing anomalies into different warning categories with a corre-
sponding confidence level. For instance, a race warning from
a function that does not use locking at all is less likely to be a
real bug compared with a race warning from a function that
uses extensive locking. This bucketing mechanism allows a
user to apply EspC either as a precise bug-finding tool or as
a comprehensive validation tool by selectively monitoring at
different warning levels.
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Figure 4: The Esp analysis framework.

In addition to detecting concurrency errors such as race
conditions and locking mismatch errors, EspC can also find
missing concurrency annotations using the inference algo-
rithms outlined in Section 3. The inferred annotations can
be automatically patched to the source code.

4.3 NullPtr

NullPtr is an intra-procedural and path-sensitive NULL
pointer dereference checker. This tool tracks pointer val-
ues according to the state machine in Figure 2(a). It un-
derstands ordinary (non-concurrency) annotations as well
as the behavior of certain un-annotated system and library
APIs. For the purpose of this paper, the brevity and domain-
specificity of NullPtr makes it an ideal basis of a typestate-
guided concurrency analysis.

4.4 EspA

EspA is a NullPtr-based race and atomicity checker. It
tracks the state machine in Figure 2(b). The typestate-
guided concurrency analysis using EspA goes through a staged
process.

1. Run EspC with the inference mode turned on to infer
concurrency annotations.

2. Run NullPtr to generate MustNULL warnings.
3. Run EspA to generate MaybeNULL warnings.

4. Make a “diff” between EspA warnings and NullPtr
warnings, and output those extra warnings produced
by the EspA run but not by the NullPtr run.

To illustrate, we now walk through these steps for the ex-
ample in Figure 1. We first run EspC on the un-annotated
code with the inference mode turned on. Using the algo-
rithm described in Section 3, EspC will infer the missing
__guarded_by annotation and patch it to the source code,
resulting in the modified code shown in Figure 3. (At this
stage, EspC can be optionally run again to uncover all po-
tential race conditions and locking mismatch errors, but it
cannot reveal atomicity issues.) We then run NullPtr, fol-
lowed by EspA. Warnings generated by EspA but not by
NullPtr, if any, consists of the atomicity bugs and a refined
set of race conditions. In the case of Figure 1, a warning
at line 10 in function ProcessBuffer will be reported. All
these steps are automated by a scripting command utility.

S. RESULTS

Concurrency SAL and EspC have been deployed for the
Windows division at Microsoft. We evaluated EspC across
the whole Windows code base. We ran the typestate-guided
concurrency analysis with EspA on several networking sub-
components, and drilled down into the results with a pro-
cess of manually examining every warning to collect detailed
data.

The Windows code base consists of around 60 million lines
of code and spans across 6000 binaries (each binary is a DLL,
EXE, or SYS component). Our experiment was carried out
on an 8-core machine with a 2.66GHz Xeon CPU and 8GB of
RAM, running Windows Server 2003 Enterprise x64 Edition.
The analysis was spawned on 8 processes. All confirmed
bugs have been or will be fixed for the production code.

5.1 Lock Analysis with EspC

We ran EspC across Windows to test the performance,
precision, and scalability of our lockset analysis. The orig-
inal code base is un-annotated. For the experimental run
reported here, we have turned on the detection mode for
“failing to release critical section”, “releasing un-held criti-
cal section”, as well as the inference mode for finding lock

wrapper functions.

Problem Description. In Win32 programs, critical sec-
tions are light-weight synchronization objects for achieving
mutual exclusion among threads from the same process. If
a thread fails to release a critical section, the lock becomes
“orphaned”. Unfortunately, the operating system does not
provide any mechanism to recover an orphaned critical sec-
tion. Therefore, this is a bug pattern that may lead to dead-
locks.

Performance. The checking phase of EspC completed in 12
hours and 30 minutes for the whole operating system, com-
parable to the time it took to build the system. With the
build integration capability, EspC can be run on the back-
ground while the programs are being compiled. This allows
developers to find concurrency errors right away while de-
veloping their code.

Precision. A total number of 6813 warnings were issued,
including 942 warnings for “failing to release critical sec-
tion”, 472 warnings for “releasing un-held critical section”,
and 5399 instances for lock wrapper functions that need to
be annotated with __acquires_lock and __releases_lock.



| Component | Number of Files | Time (min) | Total Warnings | Bugs | False Positives | False Positive Rate |

A 7415 23:25 92 65 27 29%
B 5564 32:54 35 18 17 49%
C 2196 14:21 5 4 1 20%
D 3920 24:24 9 7 2 22%
B 3488 14:56 16 11 5 31%
F 2968 12:33 9 5 4 44%
G 10361 35:12 34 30 4 12%
H 1496 6:45 63 46 17 27%

Figure 5: Experimental results of EspC. Bugs include “failing to release critical section” and “releasing un-held

critical section”.

ACQUIRE_SPIN_LOCK (&ClientListLock, &01dIrql);

ClientBlockLink = ClientList.Flink;

while (ClientBlockLink != &ClientList)

{
// Do something
RELEASE_SPIN_LOCK (&ClientListLock, 01dIrql);
// Do something
ACQUIRE_SPIN_LOCK(&ClientListLock, &01dIrql);
ClientBlockLink = ClientBlockLink->Flink;

© 00N U WN -

10 }
11 RELEASE_SPIN_LOCK (&ClientListLock, 0ldIrql);

Figure 6: An example of atomicity vulnerability.
The assumed loop invariant at line 3 could be vi-
olated at line 7 due to thread interference.

The wrapper annotation inference is highly accurate. For
the bug warnings, we reviewed many components with the
corresponding product teams. Table 5 summarizes the re-
sults for 8 Windows components. Among these components,
there are 186 confirmed bugs and 77 false positives. The
confirmed bugs usually reside in error paths. There is a
common scenario that introduces false positives: A flag in a
structure is sometimes used to record whether a lock in the
same structure has been acquired and the lock acquisition
status is updated by some high-level design logic beyond
the comprehension of EspC. We are considering to support
conditional field annotations to express such structure-level
invariants.

5.2 Atomicity Analysis with EspA

We have run the typestate-guided concurrency analysis
with EspA on several networking subcomponents, following
the process described in Section 4.4.

Performance. The performance statistics is summarized
in Table 7, with a break down among EspC inference time,
NullPtr checking time, and EspA checking time. For the
largest subcomponent in this experiment (subcomponent ¢
with 839K LOC), the whole analysis took less than 25 min-
utes. If annotation inference can be omitted, i.e., if the
annotations have been previously added, the process would
have taken less than 6 minutes.

Precision. The number of inferred __guarded_by annota-
tions, race warnings, and atomicity warnings are summa-
rized in Table 8. The “Total Difference” column lists the

additional warnings from EspA. Out of the 99 warnings, 45
are harmful bugs, 39 are benign warnings, and 15 are false
positives.

Bug Example. Figure 6 illustrates a simplified bug exam-
ple for an atomicity violation. In this code, the while loop
tests the loop invariant at line 3. However, when the guard-
ing lock is released at line 6, another thread could update
the shared data, thus causing an access violation at line 9.

To illustrate how the typestate-driven method can help
distinguish harmful races, consider a common coding pat-
tern in Win32 programs called double-checked-locking?, as
illustrated below:

1 void AccessBuffer(DATA* p) {

2 if (p->buffer == NULL) {

3 return;

4 }

5 EnterCriticalSection(&p->cs);

6 if (p->buffer != NULL) {

7 cout << *p->buffer << endl;
8 }

9 LeaveCriticalSection(&p->cs);

1

0 }

The program tries to minimize blocking by only acquiring
a lock when necessary. It is critical to double-check the
null-ness of the buffer at line 6 because even though it is not
NULL at line 2, it could have been reset to NULL by another
thread by the time the lock is acquired. In this scenario,
the race at line 2 is intentional and benign. However, if
the double-check is missing at line 6, a real race bug would
arise. A standard race detector, e.g., EspC, would report the
warning at line 2; a standard NULL dereference checker, e.g.,
NullPtr, would miss the real race when the double-check
is omitted. The combined approach, on the other hand,
covers the sweet spot by only identifying the harmful data
race. In one case, we found such a code fragment where the
second NULL check is wrapped with a #ifdef DEBUG macro,
suggesting that the programmer has been trying to debug a
related crash. Ironically, the bug cannot be reproduced in
the debug build but would slip into the release build.

In summary, our experiments have validated the following
hypotheses: (1) Our approach is scalable and precise enough
to produce useful results. (2) Annotation inference can re-
duce, or even eliminate, the human annotation effort. (3)

!The double-checked-locking programming idiom is unsafe
for certain relaxed architectures such as Alpha, but is fine
for X86.



Sub Files | Functions | LOC | Inference Time | NullPtr Time | EspA Time
Component (min) (min) (min)
a 60 3066 179303 6.65 5.18 5.50
b 163 17744 163088 10.92 3.65 3.78
c 1323 16860 839465 18.70 2.93 2.92
d 78 773 82779 1.38 0.60 0.83
e 446 8448 411908 15.25 3.63 4.00
f 215 5070 223885 7.50 2.17 2.75

Figure 7: Performance statistics for the typestate-guided concurrency analysis.

Sub Inferred NullPtr EspA Total Data | Atomicity | Harmful | Benign False
Component | __guarded_by | Warnings | Warnings | Difference | Race | Violation Bugs Warnings | Positives
a 139 89 108 19 1 18 5 9 5
b 8 11 22 11 5 6 10 1 0
c 4 8 20 12 11 1 7 2 3
d 16 6 11 5 5 0 5 0 0
e 84 21 37 16 10 6 8 5 3
f 30 16 52 36 23 13 10 22 4

Figure 8: Warning statistics for the typestate-guided concurrency analysis.

The typestate-guided method is effective in detecting hard-
to-find semantic errors.

6. RELATED WORK

In this section, we discuss related work spanning across
many fields.

Typestate Checking. Typestate systems [1, 7, 6, 8] track
the states each object goes through during its lifetime. Type-
state has also been extended to roles [9]: The role of an
object captures its typestate as well as its involvement in
aliasing relationships. Our approach can be viewed as an
extended typestate analysis that is thread-sensitive.

Dynamic Race Detection. Data races can be found us-
ing dynamic tools, e.g., Eraser [10], Racetrack [11], Lock-
smith [12], and iDNA [13]. Static and dynamic approaches
are complementary, with some well-known tradeoffs, e.g.,
static analysis generally provides better coverage and dy-
namic analysis tends to offer more precision. The require-
ment of supporting DLLs and device drivers has motivated
us to apply static dataflow analysis, which is more favorable
for analyzing open programs.

Static Race Detection. A variety of static techniques
have been driven by the need for analyzing Java, which of-
fers built-in support for threads with syntactically scoped
locks. Recjava [14, 15] detects data races based on a race-
free type system. Ouwnership [16] is supported to make the
type systems more expressive. Chord [17] detects races by
pruning the set of memory access pairs via a staged analysis.
Based on that, the notion of conditional must not alias [18] is
proposed: A race occurs if two memory locations are aliased
when the two guarding locks are not aliased. There is also a
large body of work on race detection for C/C++ programs.
Early works include Warlock [19] and RacerX [20]. These
analyses are not path-sensitive. As a result, much effort has

to be spent in filtering the results, and only a small number
of bugs have been found. In comparison, the unstructured
usage of locking in C/C++ programs prompts us to employ
a path-sensitive and flow-sensitive analysis. This enables
our tools to discover a large number of concurrency bugs
with a favorable false positive rate. A race-free type system
is developed for Cyclone [21]. Model checking techniques
are used in Blast [22] and Kiss [23]. In a recent line of
work, Locksmith [12] conducts a correlation analysis using
a constraint-based technique. RELAY [24] uses a bottom
up approach in finding races. RADAR [25], implemented
based on RELAY, is a framework that automatically con-
verts a dataflow analysis for sequential programs into one
for concurrent programs. While sharing a similar spirit, our
approach applies lock inference techniques for refining race
detection and finding atomicity violations. As far as we
know, our toolset is the first that combines annotation in-
ference, patching, and checking in an industrial setting, with
the capability of finding atomicity errors.

Atomicity Analysis. Flanagan and Qadeer [26] develop a
type system to enforce atomicity based on Lipton’s theory of
reduction [27]. Atomizer [28] is a dynamic atomicity checker
that uses simple heuristic to determine atomic blocks. An-
other type system for atomicity is developed by combining
a more expressive type system for analyzing data races [29].
A dynamic atomicity checker is described in [30] for finding
atomicity violations. VYRD [31] applies a runtime tech-
nique for checking conformance to atomicity between spec-
ifications and implementations. Compared with type-based
atomicity tools, our typestate-based approach is less restric-
tive, thus more precise. One way to view our strategy is
that we give up the enforcement on the strict atomicity re-
quirement for all program side effects and instead focus on
a semantically defined atomicity requirement treating type-
states as the observable behavior. Our approach has the
practical benefit of being able to pinpoint harmful atomic-
ity bugs.



Correlation Inference. The SVD tool [32] develop a dy-
namic technique that uses heuristics to infer computation
unit (atomic regions) based on data and control flow. It re-
ports bugs when interleavings with unserializable writes are
detected. AVIO [33] extracts Access-Interleaving invariant
to infer atomicity intension and detects violations at run-
time. MUVI [34] detects inconsistency via pattern analy-
sis on multi-variable access correlations. JNuke [35] detects
stale-value concurrency errors. Vaziri et al. [36] present a
new definition of data races in terms of 11 problematic inter-
leaving scenarios, and introduces the notion of atomic sets of
locations to let programmers specify the existence of consis-
tency properties between fields in objects. Our bundle-based
variable correlation inference draws insights from these ef-
forts by sharing the data-centric approach, i.e., we concen-
trate on finding the bundling relation between variables.
However, our technique is directly based on the locking evi-
dence exhibited in code paths.

New Concurrency Model. Researchers have explored us-
ing optimistic concurrency [37, 38], or software transactions,
as a means to implement concurrency control. However, de-
velopment and adoption of a new programming paradigm
takes time and such research efforts do not directly solve
legacy threading issues, which is the main problem addressed
by this paper. Furthermore, atomicity analysis is still criti-
cal with the new programming model since atomicity errors
may still occur if the programmer fails to properly define a
transaction. A recent line of work [39, 40, 41] explores lock
allocation techniques to support pessimistic concurrency. It
will be interesting to explore if our method for finding vul-
nerable atomic regions can be used as an inference technique
to serve lock allocation purposes.

7. CONCLUSIONS

We have presented a new typestate-guided approach to
concurrency analysis. In particular, we have shown how to
combine a NULL dereference checker with lockset analysis
and demonstrated its effectiveness in detecting race condi-
tions and atomicity vulnerabilities. In the future, we plan
to integrate our techniques with a generic typestate checker
such as ESP [6] so that any user-specified typestate property
can be used to drive the combined analysis.
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