
Efficient and Effective Link Analysis with Precomputed
SALSA Maps

Marc Najork
Microsoft Research

Mountain View, CA, USA
najork@microsoft.com

Nick Craswell
Microsoft

Cambridge, UK
nickcr@microsoft.com

ABSTRACT
SALSA is a link-based ranking algorithm that takes the re-
sult set of a query as input, extends the set to include ad-
ditional neighboring documents in the web graph, and per-
forms a random walk on the induced subgraph. The station-
ary probability distribution of this random walk, used as a
relevance score, is significantly more effective for ranking
purposes than popular query-independent link-based rank-
ing algorithms such as PageRank. Unfortunately, this re-
quires significant effort at query-time, to access the link
graph and compute the stationary probability distribution.
In this paper, we explore whether it is possible to perform
most of the computation off-line, prior to the arrival of any
queries. The off-line phase of our approach computes a
“score map” for each node in the web graph by performing
a SALSA-like algorithm on the neighborhood of that node
and retaining the scores of the most promising nodes in the
neighborhood graph. The on-line phase takes the results
to a query, retrieves the score map of each result, and re-
turns for each result a score that is the sum of the matching
scores from each score map. We evaluated this algorithm on
a collection of about 28,000 queries with partially labeled
results, and found that it is significantly more effective than
PageRank, although not quite as effective as SALSA. We
also studied the trade-off between ranking effectiveness and
space requirements.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Storage and Retrieval—search process, selection process

General Terms
Algorithms, Measurement, Experimentation

Keywords
SALSA, link-based ranking, retrieval performance, web search

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’08, October 26–30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-59593-991-3/08/10 ...$5.00.

1. INTRODUCTION
One of the fundamental problems in information retrieval

is ranking – arranging the results of a query according to
their relevance. In classical information retrieval, ranking
relied primarily on textual features. Web search engines
have a number of additional features at their disposal, in-
cluding the hyperlinks leading from one web page to an-
other. A hyperlink can be viewed as an endorsement by a
web page’s author of another web page. Link-based ranking
algorithms can be broadly grouped into two classes: query-
independent algorithms that estimate the quality of a web
page, and query-dependent ones that estimate its relevance
to a particular query. Recent large-scale evaluations have
shown that some query-dependent link-based ranking al-
gorithms (notably, the SALSA algorithm) are substantially
more effective than well-known query-independent ones such
as PageRank [11, 12].

However, this effectiveness comes at a significant expense:
the first step in most query-dependent link-based ranking
algorithms is to expand the result set of a query into a neigh-
borhood graph. Given that the full web graph is enormous
(containing on the order of hundreds of billions of edges), it
does not fit into the main memory of any single machine.
One way to overcome this problem would be to store the
web graph on disk; however, computing SALSA scores for
an average-sized result set would take minutes in such a set-
ting, since it is necessary to first expand the result set to a
neighborhood set (requiring a disk seek per result), and then
to determine the linkage between documents in the neigh-
borhood set (requiring another disk seek per neighbor). For
a commercial search engine, latency on this scale is unac-
ceptable, given that there is a strong correlation between
fast response time and the engine’s popularity, as measured
by the number of submitted queries [8].

Alternatively, the web graph can be distributed over many
servers, each of which keeps its portion of the graph in main
memory. Computing SALSA using such infrastructure re-
quires two rounds of remote procedure calls to each server
(to expand the result set to a neighborhood set, and to de-
termine the linkage between neighbors). In this scenario,
it is possible to compute SALSA scores for the results in
on the order of 100 milliseconds. However, this approach
incurs substantial hardware expenditure, since storing the
web graph in main memory requires many servers.

In this paper, we examine the question of whether it is
possible to perform much of the computation ahead of query-
time, while also reducing the hardware requirements that are
required for computing SALSA at query-time. Our approach

has an off-line and an on-line phase. During the off-line
phase, we compute a “score map” for each vertex in the web
graph, which assigns scores to the vertex and some or all
of its neighbors. During the on-line, query-time phase, we
retrieve the score map for each result of the query, look up
each result in all score maps and add up its scores, and use
the sum as the total score of the result.

We evaluated this algorithm using the same data sets and
the same retrieval performance measures that were used in
earlier comparisons of PageRank, HITS and SALSA [3, 11,
12]. We found that our new algorithm is significantly more
effective than PageRank and HITS, although not quite as
effective as the best on-line version of SALSA known to us.
We also explored the tradeoff between the size of the score
map and retrieval performance. Given that any commercial
deployment of our algorithm would require the score maps
to be distributed over multiple servers and kept in main
memory on each, the size of a score map governs the number
of required servers. We found that it is possible to limit the
size of the score map quite substantially without giving up
too much in terms of effectiveness.

The remainder of this paper is structured as follows: Sec-
tion 2 describes the data sets and the performance measures
we used. Section 3 briefly reviews the on-line SALSA al-
gorithm and its effectiveness, as measured against our data
sets. Section 4 motivates the“score map”concept by demon-
strating that singleton-seed SALSA is not very effective if we
retain only the score of the seed itself. Section 5 defines a
version of SALSA that starts from a single seed document
and captures the scores of the seed and its neighbors in a
score map; this algorithm outperforms PageRank and HITS.
Section 6 shows that we can improve effectiveness further by
using a wider definition of neighborhood inspired by Dean
and Henzinger’s Companion algorithm. Section 7 examines
the efficiency-effectiveness tradeoff when retaining only the
k highest scores in the score map. Section 8 studies the
effectiveness of our approach for queries with varying de-
grees of specificity. Section 9 surveys related work. Finally,
section 10 offers concluding remarks and avenues for future
research.

2. EXPERIMENTAL SETUP
The evaluations presented in this paper were conducted

on the same two data sets used in several earlier studies [3,
11, 12]. These two data sets are a large web graph and a
substantial set of queries with associated results, some of
which were labeled by human judges.

The web graph was obtained by performing a breadth-first
search web crawl that retrieved 463,685,607 pages. These
pages contain 17,672,011,890 hyperlinks (after eliminating
duplicate links embedded in the same web page), which refer
to a total of 2,897,671,002 distinct URLs. The mean out-
degree of a crawled web page is 38.11; the mean in-degree
of discovered pages (whether crawled or not) is 6.10.

The query set was produced by sampling 28,043 queries
from the Live Search query log in a frequency-biased fash-
ion, and retrieving a total of 66,846,214 result URLs for
these queries, or about 2,838 results per query on average.
It should be pointed out that our web graph covers only
9,525,566 pages or 14.25% of the result set. 485,656 of the
results in the query set (about 17.3 results per query) were
rated by human judges as to their relevance to the given
query using a six point scale, the ratings being “definitive”,

“excellent”, “good”, “fair”, “bad”, and “detrimental”. Results
were selected for judgment based on their commercial search
engine placement; in other words, the subset of labeled re-
sults is biased towards documents considered relevant by
pre-existing ranking algorithms.

This study uses three alternative retrieval performance
measures to quantify how effective a ranking algorithm is:
the normalized discounted cumulative gain [4], the mean av-
erage precision, and the mean reciprocal rank.

In the following, given a rank-ordered vector of n results1,
let rat(i) be the rating of the result at rank i, with 5 being
“definitive” and 0 being “detrimental” or “unlabeled”. We
define the discounted cumulative gain at document cut-off
value k to be:

DCG@k =

k
X

i=1

1

log(1 + i)

“

2rat(i) − 1
”

The normalized discounted cumulative gain NDCG@k of a
scored result set is defined to be the DCG@k of the result set
rank-ordered according to the scores divided by the DCG@k

of the result set rank-ordered by an “ideal” scoring function,
one that rank-orders results according to their rating.

Furthermore, let rel(i) be 1 if rel(i) >= 3. The pre-
cision P@k at document cut-off value k is defined to be
1
k

Pk

i=1 rel(i), i.e. the fraction of relevant results among
the k highest-ranking results. The average precision at doc-
ument cut-off value k is defined to be:

AP@k =

Pk

i=1 rel(i)P@i
Pn

i=1 rel(i)

The reciprocal rank at document cut-off value k is defined
to be:

RR@k =

1
i

if ∃i ≤ k : rel(i) = 1 ∧ ∀j < i : rel(j) = 0
0 otherwise

Our implementations of NDCG, MAP, and MRR — de-
scribed in [10] — handle results with tied scores in a prin-
cipled manner. In earlier work [11, 12, 3], we used the same
measures and the same tie-aware implementations.

3. THE SALSA ALGORITHM
Among the first link-based ranking algorithms is Jon Klein-

berg’s Hypertext-Induced Topic Search (HITS) algorithm [5].
The HITS algorithm takes the result set of a query as input,
expands the result set to a base set by adding the immedi-
ate neighbors of each result, and constructs a neighborhood
graph from the base set by including all edges in the full web
graph that connect base set vertices. Kleinberg suggested
to consider only neighbors that are non-affiliated, e.g. web
pages that are on a different host or in a different domain
than the result page they are connected to. Moreover, he
suggested to limit the number of ancestors of each result
(web pages linking to the result) to 50, by sampling the an-
cestor set uniformly if there are too many.

Once the neighborhood graph has been constructed, HITS
computes two scores for each vertex in that graph: an au-
thority score and a hub score. The authority score estimates
how relevant a page is to the query that produced the result
set; the hub score estimates whether a page contains valu-
able links to authoritative pages. Authority and hub scores

1We assume that the result vector contains all relevant re-
sults.

mutually enforce each other: a page receives a high author-
ity score if it is linked to by pages with high hub scores, and
a page receives a high hub score if it links to pages with high
authority scores. Concretely, if A is the adjacency matrix
of the neighborhood graph, then the authority scores of the
base set are the principal eigenvector of the matrix AT A,
and the hub scores of the base set are the principal eigen-
vector of the matrix AAT (modulo normalization). These
eigenvectors can be computed using the standard power it-
eration method.

Lempel and Moran’s Stochastic Approach to Link-Sensiti-
vity Analysis [6, 7] is a variation of Kleinberg’s algorithm.
SALSA takes a result set R as input, and constructs a neigh-
borhood graph from R in precisely the same way as HITS.
Similarly, it computes an authority and a hub score for each
vertex in the neighborhood graph, and these scores can be
viewed as the principal eigenvectors of two matrices. How-
ever, instead of using the straight adjacency matrix that
HITS uses, SALSA weighs the entries according to their in-
and out-degrees. If we define the inverse in-degree matrix I

such that Iu,v is in(v)−1 if the neighborhood graph contains
an edge (u, v) and 0 otherwise, and we define the inverse
out-degree matrix O such that Ou,v is out(u)−1 if the neigh-
borhood graph contains an edge (u, v) and 0 otherwise, then
the SALSA authority scores are the principal eigenvector of
the matrix IT O, and the SALSA hub scores are the principal
eigenvector of the matrix OIT .

The SALSA computation can be viewed as a stochastic
process (hence the name), or more precisely as perform-
ing two independent random walks over the neighborhood
graph, an authority walk and a hub walk. The authority walk
starts out at any node with at least one incoming link; and
each transition consists in choosing an incoming link at ran-
dom, following it to reach some ancestor, and then selecting
one of the ancestor’s outgoing links at random and follow-
ing it. Likewise, the hub walk starts out at any node with
at least one outgoing link; and each transition consists in
choosing an outgoing link at random, following it to reach
some descendant, and then selecting one of the descendant’s
incoming links at random and following it. In this view, the
SALSA authority vector is the stationary probability dis-
tribution of the authority walk, and the hub vector is the
stationary probability distribution of the hub walk.

In earlier work [11, 12], we evaluated the effectiveness (the
retrieval performance) of both HITS and SALSA, comparing
them to BM25F [14] (a state-of-the art ranking algorithms
based on textual features, including anchor text) and PageR-
ank [13]. We found that HITS and SALSA hub scores are
not particularly useful for ranking purposes, and that HITS
authority scores are slightly more effective than PageRank
scores, but that SALSA authority scores are substantially
more effective than either. We note that the highest effec-
tiveness is achieved by combining BM25F, our best single
feature, with a link-based feature. We also found, quite sur-
prisingly, that SALSA performed best when sampling be-
tween 3 and 8 ancestors per result (depending on the per-
formance measure), as opposed to the 50 ancestors suggested
by Kleinberg and Lempel & Moran.

In subsequent work [3], we discovered that the perfor-
mance of SALSA can be improved further by selecting the
neighbors of results using consistent sampling instead of ran-
dom sampling. Consistent sampling is deterministic, and it
preserves set overlap – if two sets overlap by a certain frac-

tion, then (in expectation) consistent samples of both sets
will overlap by the same fraction. Consistent sampling can
be implemented using various methods, the best-known of
which is min-wise hashing [1]. In the algorithms below, the
function Cn(A) samples n elements consistently from set A;
Cn(A) = A if |A| ≤ n.

As it turns out, the performance of SALSA can be in-
creased further by sampling the descendants of each result
instead of including them all into the neighborhood graph.
In order to present this variant of the SALSA algorithm, it
is helpful to first introduce some notation.

Given a web graph (V, E) with vertex set V and edge
set E ⊆ V × V , a link section predicate P selects edges
(u, v) ∈ E. Based on what we learned in previous studies,
we consider only the id link section predicate in this paper:

id(u, v) ⇔ domain(u) 6= domain(v)

where domain(u) denotes the domain of URL u. So, id is
true only for inter-domain links.

The descendant set OP of a vertex u with respect to a
link-selection predicate P is defined to be:

O
P (u) = {v ∈ V : (u, v) ∈ E ∧ P (u, v)}

The ancestor set IP of a vertex v with respect to a link-
selection predicate P is defined to be:

I
P (v) = {u ∈ V : (u, v) ∈ E ∧ P (u, v)}

Given a web graph (V, E), a result set R ⊆ V , a link selec-
tion predicate P , and ancestor and descendant sampling pa-
rameters a and b, CS-SALSA (SALSA with consistent sam-
pling of result ancestors and descendants) returns a scoring
function s : R → R mapping results to real-valued authority
scores:2

1. Set the neighborhood vertex set:
B =

S

v∈R
{v} ∪ Ca(IP (v)) ∪ Cb(O

P (v))

2. Set the neighborhood edge set:
N = {(u, v) ∈ E : u ∈ B ∧ v ∈ B ∧ P (u, v)}

3. Let BA be {u ∈ B : in(u) > 0}.

4. For all u ∈ B: s[u] :=

1
|BA|

if u ∈ BA

0 otherwise

5. Repeat until s converges:

(a) For all u ∈ BA:

s
′[u] :=

X

(v,u)∈N

X

(v,w)∈N

s[w]

out(v)in(w)

(b) For all u ∈ BA : s[u] := s′[u]

Table 1 shows the effectiveness of CS-SALSA for the id
link selection predicate and ranging values of a and b. The
evaluation was performed using the data sets described in
section 2 and used in previous studies [3, 11, 12]. Note that
effectiveness is highest for a = 2 and b = 1. This behavior is
quite surprising, and we do not have a good explanation for
it. However, the phenomenon is real; it manifests itself even
when we evaluate against different web graphs and query
sets. To put the CS-SALSA’s NDCG@10 of 0.1820 into per-
spective, as reported in [11], the NDCG@10 of PageRank on
the same data is 0.0917, and that of BM25F is 0.2209.
2Given that hub scores have been shown to be ineffective for
ranking purposes, we ignore them in this exposition.

a\b 0 1 2 3 4 5
0 0.1707 0.1713 0.1715 0.1705 0.1699 0.1689
1 0.1727 0.1803 0.1799 0.1793 0.1789 0.1781
2 0.1761 0.1820 0.1816 0.1811 0.1811 0.1806
3 0.1753 0.1810 0.1809 0.1804 0.1805 0.1801
4 0.1736 0.1797 0.1801 0.1801 0.1803 0.1799
5 0.1722 0.1793 0.1800 0.1801 0.1801 0.1799

NDCG@10

a\b 0 1 2 3 4 5
0 0.0705 0.0711 0.0714 0.0706 0.0702 0.0695
1 0.0688 0.0743 0.0744 0.0741 0.0738 0.0734
2 0.0703 0.0745 0.0743 0.0741 0.0740 0.0737
3 0.0697 0.0737 0.0736 0.0732 0.0732 0.0729
4 0.0688 0.0726 0.0726 0.0726 0.0727 0.0723
5 0.0679 0.0720 0.0721 0.0721 0.0720 0.0719

MAP@10

a\b 0 1 2 3 4 5
0 0.2499 0.2519 0.2518 0.2493 0.2480 0.2458
1 0.2456 0.2570 0.2563 0.2555 0.2546 0.2533
2 0.2480 0.2557 0.2554 0.2544 0.2542 0.2531
3 0.2454 0.2521 0.2520 0.2508 0.2505 0.2498
4 0.2421 0.2486 0.2488 0.2484 0.2483 0.2474
5 0.2395 0.2470 0.2473 0.2469 0.2470 0.2464

MRR@10

Table 1: Effectiveness of CS-SALSA, sampling (up
to) a ancestors and b descendants of each result using
consistent sampling.

4. SINGLETON-SEED SALSA
The remainder of this paper introduces the singleton-seed

SALSA algorithm and various refinements. The original
SALSA has two stages at query time: neighborhood expan-
sion for a results set and eigenvector calculation. SS-SALSA
involves an offline calculation, finding a separate neighbor-
hood expansion for each document in the corpus, giving it a
score vector based on eigenvector calculation. Then at query
time the score vectors are summed to give the overall SS-
SALSA scores. It should be noted that the summed scores
are not mathematically equivalent to the original SALSA
scores. However, this SALSA-like algorithm has the advan-
tage of query-time efficiency, because graph expansion and
eigenvector calculation happen before query time.

The first variant of singleton-seed SALSA we present is a
“strawman”: it literally treats every vertex in the web graph
as a singleton result set and applied CS-SALSA to it. This
means that for each eigenvector calculation we keep only
the score of the seed vertex. As we will see, this algorithm
is quite ineffective; the main reason for presenting it is to
motivate the concept of a score map later on.

The off-line phase of our strawman algorithm SS-SALSA-
0 takes a web graph (V, E), a link selection predicate P ,
and ancestor and descendant sampling parameters a and b,
and returns a global authority scoring function g : V → R

mapping vertices to real-valued scores:

For all x ∈ V :

a\b 0 5 10 15 20 25
0 0.0342 0.0423 0.0434 0.0437 0.0438 0.0438
5 0.0366 0.0364 0.0364 0.0365 0.0365 0.0364
10 0.0285 0.0282 0.0282 0.0282 0.0282 0.0282
15 0.0304 0.0297 0.0297 0.0297 0.0297 0.0297
20 0.0624 0.0623 0.0623 0.0623 0.0623 0.0623
25 0.0599 0.0608 0.0609 0.0609 0.0608 0.0608

NDCG@10

a\b 0 5 10 15 20 25
0 0.0069 0.0093 0.0096 0.0098 0.0098 0.0098
5 0.0078 0.0079 0.0079 0.0079 0.0079 0.0079
10 0.0054 0.0055 0.0055 0.0055 0.0055 0.0055
15 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059
20 0.0161 0.0165 0.0165 0.0165 0.0165 0.0165
25 0.0151 0.0159 0.0160 0.0160 0.0159 0.0159

MAP@10

a\b 0 5 10 15 20 25
0 0.0304 0.0418 0.0426 0.0431 0.0429 0.0430
5 0.0337 0.0338 0.0338 0.0338 0.0338 0.0338
10 0.0227 0.0228 0.0228 0.0228 0.0228 0.0228
15 0.0254 0.0251 0.0251 0.0251 0.0251 0.0251
20 0.0647 0.0676 0.0676 0.0676 0.0676 0.0676
25 0.0581 0.0639 0.0639 0.0639 0.0639 0.0639

MRR@10

Table 2: Effectiveness SS-SALSA-0, sampling (up
to) a ancestors and b descendants of each result.

1. Set the neighborhood vertex set:
B = {x} ∪ Ca(IP (x)) ∪ Cb(O

P (x))

2. Set the neighborhood edge set:
N = {(u, v) ∈ E : u ∈ B ∧ v ∈ B ∧ P (u, v)}

3. Let BA be {u ∈ B : in(u) > 0}.

4. For all u ∈ B: s[u] :=

 1
|BA|

if u ∈ BA

0 otherwise

5. Repeat until s converges:

(a) For all u ∈ BA:

s
′[u] :=

X

(v,u)∈N

X

(v,w)∈N

s[w]

out(v)in(w)

(b) For all u ∈ BA : s[u] := s′[u]

6. g[x] := s[x]

Given a result set R ⊆ V , the on-line phase of SS-SALSA-
0 simply assigns the score g[r] to each r ∈ R.

Table 2 shows the effectiveness of SS-SALSA-0 for the id
link selection predicate and ranging values of a and b, using
the same data sets and performance measure as were used in
the previous section. It is quite apparent that SS-SALSA-0
performs much worse than CS-SALSA.

5. GOOD NEIGHBORS MATTER
Having shown that computing a single score per vertex in

the web graph is ineffective, we now present a refined version
of singleton-seed SALSA that computes a score map for each
vertex that captures the score of the seed itself and all its
neighbors. This means that the presence of a page in the
results set can confer a score on some other page. We will
use the notation [[⋆ 7→ x]] to denote a function that maps
every key to x, and as before, we will write s[k] := v to
indicate that s is extended to map k to v.

The off-line phase of this algorithm SS-SALSA-1 takes a
web graph (V, E), a link selection predicate P , and ancestor
and descendant sampling parameters a and b, and returns a
global authority scoring function g : V → (V → R) mapping
vertices to score maps, which in turn map vertices to real-
valued scores:

For all x ∈ V :

1. Set the neighborhood vertex set:
B = {x} ∪ Ca(IP (x)) ∪ Cb(O

P (x))

2. Set the neighborhood edge set:
N = {(u, v) ∈ E : u ∈ B ∧ v ∈ B ∧ P (u, v)}

3. Let BA be {u ∈ B : in(u) > 0}.

4. s := [[⋆ 7→ 0]]

5. For all u ∈ B: s[u] :=

1
|BA|

if u ∈ BA

0 otherwise

6. Repeat until s converges:

(a) For all u ∈ BA:

s
′[u] :=

X

(v,u)∈N

X

(v,w)∈N

s[w]

out(v)in(w)

(b) For all u ∈ BA : s[u] := s′[u]

7. g[x] := s

Given a result set R ⊆ V , the on-line phase of SS-SALSA-
1 assigns the score

P

v∈R
g[v][r] to each r ∈ R. In a reason-

able implementation, the score maps of the entire result set
are retrieved first, and then the summation iterates for each
result over the cached score maps.

Table 3 shows the effectiveness of SS-SALSA-1 for the id
link selection predicate and ranging values of a and b, using
the same data sets and performance measure as used previ-
ously. The SS-SALSA-1 algorithm is significantly more effec-
tive than SS-SALSA-0; in fact it outperforms both PageR-
ank and HITS. The highest NDCG@10 value shown in the
table is for the sampling parameters a = 0, b = 5. Under this
parameter setting, each score map has 6 key-value pairs: the
seed, no ancestors, and 5 descendants. If we represent score
maps as association lists of 8-byte integer URL identifiers
and 4-byte floating-point scores, then each map requires 72
bytes. It is also worth noting that the highest NDCG@10
value is in the rightmost column of the table; as we will see
below, effectiveness continues to increase as we go beyond
b = 5.

a\b 0 1 2 3 4 5
0 0.0342 0.1095 0.1253 0.1328 0.1367 0.1397
1 0.0372 0.1006 0.1123 0.1181 0.1220 0.1248
2 0.0381 0.1003 0.1122 0.1181 0.1219 0.1248
3 0.0390 0.1006 0.1122 0.1182 0.1219 0.1247
4 0.0395 0.1008 0.1123 0.1182 0.1219 0.1247
5 0.0401 0.1011 0.1127 0.1186 0.1223 0.1250

NDCG@10

a\b 0 1 2 3 4 5
0 0.0069 0.0409 0.0482 0.0518 0.0536 0.0551
1 0.0080 0.0376 0.0432 0.0461 0.0480 0.0495
2 0.0084 0.0374 0.0431 0.0461 0.0479 0.0494
3 0.0087 0.0376 0.0432 0.0461 0.0480 0.0495
4 0.0090 0.0377 0.0432 0.0461 0.0480 0.0494
5 0.0092 0.0379 0.0435 0.0464 0.0482 0.0495

MAP@10

a\b 0 1 2 3 4 5
0 0.0304 0.1704 0.1922 0.2012 0.2060 0.2093
1 0.0351 0.1592 0.1769 0.1861 0.1915 0.1953
2 0.0374 0.1589 0.1768 0.1862 0.1914 0.1951
3 0.0395 0.1593 0.1770 0.1861 0.1914 0.1948
4 0.0407 0.1594 0.1769 0.1860 0.1915 0.1948
5 0.0425 0.1602 0.1777 0.1869 0.1922 0.1954

MRR@10

Table 3: Effectiveness of SS-SALSA-1, sampling (up
to) a ancestors and b descendants of each result.

6. EXTENDING THE NEIGHBORHOOD
Our next variant of singleton-seed SALSA takes a more

expansive view of what constitutes the neighborhood of a
vertex, inspired by Dean and Henzinger’s Companion algo-
rithm [2]. The Companion algorithm included not only the
ancestors and descendants of a vertex into its neighborhood,
but also the descendants of ancestors and the ancestors of
descendants.

The off-line phase of this algorithm SS-SALSA-2 takes a
web graph (V, E), a link selection predicate P , ancestor and
descendant sampling parameters a and b, and mate and sib-
ling sampling parameters c and d,3 and returns a global au-
thority scoring function g : V → (V → R) mapping vertices
to score maps, which in turn map vertices to real-valued
scores:

For all x ∈ V :

1. Set the neighborhood vertex set:
Anc = Ca(IP (x))
Des = Cb(O

P (x))
Sib =

S

x∈Anc
Cc(O

P (x))

Mat =
S

x∈Des
Cd(I

P (x))
B = {x} ∪ Anc ∪ Des ∪ Sib ∪ Mat

2. Set the neighborhood edge set:
N = {(u, v) ∈ E : u ∈ B ∧ v ∈ B ∧ P (u, v)}

3. Let BA be {u ∈ B : in(u) > 0}.

3Siblings are nodes with a shared ancestor, mates are nodes
with a shared descendant.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

1 10 100 1000

Effectiveness of (0,b,0,0) for various b

N
D
C
G
@
1
0

1 10 100

Effectiveness of (0,∞,0,d) for various d

1 10 100 1000

Effectiveness of (a,∞,0,75) for various a

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 10 100 1000

Effectiveness of (0,b,0,0) for various b

M
A
P
@
1
0

1 10 100

Effectiveness of (0,∞,0,d) for various d

1 10 100 1000

Effectiveness of (a,∞,0,75) for various a

0.00

0.05

0.10

0.15

0.20

0.25

1 10 100 1000

Effectiveness of (0,b,0,0) for various b

M
R
R
@
1
0

1 10 100

Effectiveness of (0,∞,0,d) for various d

1 10 100 1000

Effectiveness of (a,∞,0,75) for various a

Figure 1: Effectiveness of SS-SALSA-2, sampling (up to) a ancestors, b descendants, c descendants of ancestors,
and d ancestors of descendants of each result.

4. s := [[⋆ 7→ 0]]

5. For all u ∈ B: s[u] :=

1
|BA|

if u ∈ BA

0 otherwise

6. Repeat until s converges:

(a) For all u ∈ BA:

s
′[u] :=

X

(v,u)∈N

X

(v,w)∈N

s[w]

out(v)in(w)

(b) For all u ∈ BA : s[u] := s′[u]

7. g[x] := s

The on-line phase of SS-SALSA-2 is identical to that of
SS-SALSA-1.

Note that SS-SALSA-2 has four free parameters. Evalu-
ating any single parameter combination is quite expensive
(multiple days on the hardware available to us), so we were
not able to probe the entire space. Instead, we explored the
effectiveness of the algorithm across one parameter dimen-
sion at a time, and fixed that parameter at the locally op-
timal setting when switching dimensions. It is possible and
even likely that this approach did not locate the optimal pa-
rameter combination; we merely provide a lower bound on
what is possible.

Figure 1 illustrates our efforts at tuning the parameters.
The vertical axis shows effectiveness in terms of NDCG@10,
the horizontal axis (plotted on a log scale) shows the value
of one parameter with the three others remaining fixed; the
line shows the effectiveness of SS-SALSA-2 at the given pa-
rameter settings. In the left graph, a, c, and d are fixed at
0, and b is probed in the range from 1 to 1000. Since the
horizontal axis is plotted on a log scale, the graph does not
show the extreme values for b, 0 (which does worst) and ∞
(which does best with an NDCG@10 of 0.1526). In the mid-
dle graph, b is fixed at ∞ (“include all descendants”), a and
c are fixed at 0, and d ranges from 1 to 100. The NDCG@10
is maximal at 0.1569 for d = 75. In the right graph, b is
fixed at ∞, d is fixed at 75, c is fixed at 0, and a ranges from
1 to 1000. The line in the right graph is more erratic than
in the left and middle graphs, but no value of a improves
on a = 0 (“include no ancestors”). The parameter c has no
effect when a = 0, so it is not tuned here.

Our tuned parameters (0,∞, 0, 75) are striking in that
they include no ancestors and all descendants of the seed.
This differs from other algorithms; for example CS-SALSA
works best with a small number of both ancestors and de-
scendants from each seed (see Table 1). If the role of neigh-
borhood expansion is to include certain nodes that are ‘use-
ful’ for SALSA computation, it seems that finding useful

k bytes NDCG@10 MAP@10 MRR@10
1 12 0.0342 0.0069 0.0304
2 24 0.1234 0.0475 0.1942
3 36 0.1369 0.0539 0.2090
4 48 0.1430 0.0565 0.2149
5 60 0.1470 0.0583 0.2186

10 120 0.1534 0.0612 0.2249
15 180 0.1549 0.0618 0.2269
20 240 0.1557 0.0621 0.2274
∞ n/a 0.1569 0.0626 0.2284

PR 4 0.0917 0.0271 0.0972
AS 379 0.1826 0.0759 0.2589

Table 4: Effectiveness and space requirements of SS-
SALSA-3, sampling no ancestors, all descendants,
no siblings, and 75 mates of each result, and using
the k highest scores in the neighborhood of each
result for ranking. For comparison, the table also
shows the space requirements and effectiveness of
PageRank and “approximate SALSA”.

hubs and authorities from a singleton seed requires a differ-
ent strategy.

In the non-singleton case, an algorithm like CS-SALSA ex-
pands from a result set that might already contain multiple
useful hubs and authorities. Then neighborhood expansion
gives it multiple chances to find further useful nodes. By
contrast SS-SALSA must find a graph with multiple use-
ful hubs and authorities from a single seed. This explains
why relatively aggressive expansion is required, taking many
nodes via parameters b = ∞ and d = 75.

When expanding aggressively from a single seed, there is
a greater risk of suffering from noise or drift. This might
be the reason that ancestors and descendants are treated
differently (a = 0 and b = ∞). Web authors create inter-
domain links for a variety reasons, so the ancestors of a node
may contain a mixture of hub pages and other types of page.
Perhaps ancestor expansion yields useful pages at too low a
rate, and the SALSA calculation suffers. It may be that
single-seed expansion succeeds more reliably for a seed that
is a useful hub, because a hub page has a coherent set of
descendants yielding useful authorities at a sufficient rate
for the SALSA computation to succeed. Overall, sampling
of descendants might be a more reliable strategy.

We leave it to future work to design an experiment to test
this explanation. This would involve identifying pages as
hubs or authorities, then testing whether the score maps of
hubs make a greater contribution to the overall effectiveness
of SS-SALSA.

7. THE EFFECTIVENESS-SPACE TRADE-
OFF

Increasing the number of sampled descendants per result
and including its mates into the neighborhood graph leads to
significant gains in effectiveness, but at a crippling cost: the
more neighbors we include in each score map, the larger the
size of the map. In order to be useful to a commercial search
engine, ranking needs to be very fast; so if singleton-seed
SALSA were to be used as a ranking feature, the score maps
would have to be retrieved very fast, and thus would have to
reside in main memory, distributed over a cluster of servers.

The hardware cost of this cluster is directly proportional
to the memory footprint of each score map. So, we should
investigate whether it is possible to reduce the size of each
score map without losing too much in terms of effectiveness,
exploring the effectiveness-space tradeoff.

The SS-SALSA-3 algorithm is similar to SS-SALSA-2, but
it caps the size of each score map. Given a mapping s : V →
R, the function topk(s) returns a mapping that contains the
k highest values along with their keys, and that maps every
other key to 0.

The off-line phase of SS-SALSA-3 takes a web graph (V, E),
a link selection predicate P , ancestor and descendant sam-
pling parameters a and b, mate and sibling sampling pa-
rameters c and d, and a score map cap k, and returns a
global authority scoring function g : V → (V → R) map-
ping vertices to score maps, which in turn map vertices to
real-valued scores:

For all x ∈ V :

1. Set the neighborhood vertex set:
Anc = Ca(IP (x))
Des = Cb(O

P (x))
Sib =

S

x∈Anc
Cc(O

P (x))

Mat =
S

x∈Des
Cd(I

P (x))
B = {x} ∪ Anc ∪ Des ∪ Sib ∪ Mat

2. Set the neighborhood edge set:
N = {(u, v) ∈ E : u ∈ B ∧ v ∈ B ∧ P (u, v)}

3. Let BA be {u ∈ B : in(u) > 0}.

4. s := [[⋆ 7→ 0]]

5. For all u ∈ B: s[u] :=

1
|BA|

if u ∈ BA

0 otherwise

6. Repeat until s converges:

(a) For all u ∈ BA:

s
′[u] :=

X

(v,u)∈N

X

(v,w)∈N

s[w]

out(v)in(w)

(b) For all u ∈ BA : s[u] := s′[u]

7. g[x] := topk(s)

It is worth pointing out that the score map g[x] computed
by SS-SALSA-3 for a vertex x does not necessarily contain
a (non-zero) score for x.

The on-line phase of SS-SALSA-3 is identical to that of
SS-SALSA-1 and SS-SALSA-2.

Table 4 shows the effectiveness of SS-SALSA-3 for various
values of k and fixed sampling parameters a = 0, b = ∞,
c = 0, and d = 75. The second column shows the size
in bytes of each feature vector, assuming that we represent
score maps as association lists of 8-byte integer URL identi-
fiers and 4-byte floating-point scores. The bottom row shows
the performance of SS-SALSA-2 for the same sampling pa-
rameters; SS-SALSA-2 being a special case of SS-SALSA-3
with k = ∞. It is possible to get quite close to the effective-
ness of SS-SALSA-2 for fairly small values of k, i.e. modest
score map sizes and therefore a manageable hardware ex-
pense. For example, a search engine could maintain a dis-
tributed in-memory table mapping 10 billion URLs to 120

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 2 4 6 8 10 12 14 16 18 20 22 24

N
D
C
G
@
1
0

26 374 1640 2751 3768 4284 3944 3001 2617 1871 1367 771 1629

pagerank sss(0,∞,0,75,10) sss(0,∞,0,75,∞) salsa(2,1) bm25f

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 2 4 6 8 10 12 14 16 18 20 22 24

M
A
P
@
1
0

26 374 1640 2751 3768 4284 3944 3001 2617 1871 1367 771 1629

pagerank sss(0,∞,0,75,10) sss(0,∞,0,75,∞) salsa(2,1) bm25f

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 2 4 6 8 10 12 14 16 18 20 22 24

M
R
R
@
1
0

26 374 1640 2751 3768 4284 3944 3001 2617 1871 1367 771 1629

pagerank sss(0,∞,0,75,10) sss(0,∞,0,75,∞) salsa(2,1) bm25f

Figure 2: Effectiveness of different ranking features, broken down by query specificity.

byte score maps each using a cluster of around 80 comput-
ers with 16 GB of RAM each. By comparison, the approach
described by Gollapudi et al. [3] produces an NDCG@10 of
0.1826 on the same web graph and query set, but associates
a 379-byte feature vector with each URL in the web graph.

8. BREAKDOWN BY QUERY SPECIFICITY
Finally, we investigated the correlation between the speci-

ficity of a query and the effectiveness of SS-SALSA-2 and SS-
SALSA3. Our definition of specificity is purely syntactic: we
do not attempt to capture whether one query is more specific
than another query in any semantic sense; rather, we just
compare the cardinalities of the result sets produced by the
various queries. We view queries with large result sets (for
which good ranking algorithms are all the more important)
as general, and queries with small result sets as specific.

Unfortunately, our query set does not contain the size of
the entire result set. Therefore, we adopt our previous ap-
proach [11, 12] and approximate query specificity by the
sum of inverse document frequencies of the individual query
terms. The inverse document frequency of a query term t

with respect to a document collection C is defined to be

log |C|
|C(t)|

, where C(t) is the subset of documents in C con-

taining t. This approach assumes that the individual terms
of a multi-word query occur independently of each other;
the fact that this assumption is unwarranted means that we
may over-estimate the specificity of a query. Although not
perfect, using query term IDF as a measure of specificity is
at least directionally accurate.

We broke our query set down into 13 subsets according
to specificity, and ranked the queries in each subset using
CS-SALSA with a = 2 and b = 1,4 SS-SALSA-2 with a = 0,
b = ∞, c = 0 and d = 75, and SS-SALSA-3 with the same
sampling parameters and k = 10. For comparison, we also
include the performance of PageRank [13] and BM25F [14].

Figure 2 shows the performance of each feature for each
query subset. The figure shows three graphs, one per per-
formance measure. The lower horizontal axis of each graph
shows query specificity (the most general queries being on
the far left); the upper horizontal axis shows the size of
each of the 13 query subsets. The vertical axis denotes re-
trieval performance. Each graph contains five curves, one
for each of the chosen features. As we already observed in
previous work, BM25F performs best for medium-specific

4Note that the CS-SALSA curve differs from the curve
shown in [12] due to the use of consistent sampling and dif-
ferent and better sampling parameters.

to fairly specific queries. This is not too surprising: BM25F
measures the textual similarity between the query and the
results, and is bound to work better in the presence of un-
common, specific query terms. Link-based features on the
other hand perform best for very general queries. Among
the link-based features, PageRank is the least effective and
CS-SALSA is the most effective across all levels of query
specificity. SS-SALSA-2 and SS-SALSA-3 fall in-between,
and they perform quite similarly across the spectrum.

9. RELATED WORK
The idea of leveraging hyperlinks in the ranking of web

search results goes back to Marchiori [9], who proposed to
view the number of links to a web page as a measure of its
popularity with other web page authors. Page et al. refined
this idea through the PageRank measure [13], which takes
not only the number of referring hyperlinks into account, but
also their“quality”(the PageRank score of the endorsing web
page divided by the number of endorsements on that page).

Kleinberg introduced the concept of considering only the
neighborhood of the result set in the web graph for rank-
ing purposes. The underlying hypothesis is that result web
pages are likely to be topically related (by virtue of each
page containing the query terms), and that topically related
pages tend to cite each other and be co-cited by“hub”pages.
This concept is captured by the HITS algorithm, which com-
putes a hub and an authority score for each page in a result
set using a mutual recurrence relationship between the two
score vectors [5]. Lempel and Moran’s SALSA algorithm [6,
7] is a variant of HITS that takes the number of in- and out-
links of each page in the neighborhood graph into account.

Two recent studies evaluated the effectiveness of the afore-
mentioned ranking algorithms [11, 12]. The studies used a
17.7 billion edge web graph and 28,043 queries with par-
tially labeled results (the same data sets that were used in
this pager), and found that SALSA is substantially more
effective than HITS, PageRank and in-degree.

One significant problem of SALSA and HITS is that they
both are query-time algorithms, and that they are time-
intensive to compute. In particular, determining the neigh-
borhood graph of a result set is expensive, since it requires
several rounds of remote procedure calls to hyperlink servers
maintaining the web graph in main memory. Gollapudi et
al. attempted to address this problem by proposing an al-
gorithm for approximating SALSA that consists of an off-
line (indexing-time) and an on-line (query-time) stage [3].
The off-line stage computes a summary of the neighborhood
of each web page; the summaries are stored in a summary

server. The on-line stage retrieves the summaries of each
result to a query (using a single round of remote procedure
calls), uses them to construct an approximate neighborhood
graph, and computes SALSA on that approximate graph.

The work described in this paper is similar to the ap-
proximate SALSA algorithm. The main difference is that
in approximate SALSA, the eigenvector computation that is
at the heart of SALSA is performed at query-time, whereas
in our approach, it is performed off-line, further reducing
the amount of computation that has to be performed at
query time. Inherent to both algorithms is a tradeoff be-
tween effectiveness and space requirements. Compared to
approximate SALSA, the algorithm described in this paper
performs particularly well in the space-restrained portion of
the spectrum; it is possible to achieve decent effectiveness
at a storage expense of, say 120 bytes per web page.

10. CONCLUSION
This paper describes a novel approach to link-based rank-

ing that represents an interesting trade-off between effective-
ness and efficiency. The algorithm described in this paper
is a more effective ranking feature than PageRank, HITS
authority scores, or simple in-degree; but it is somewhat
less effective than SALSA authority scores. The algorithm
consists of an off-line stage and an on-line stage. Most of
the computation happens during the off-line stage; the on-
line stage simply consists in retrieving a “score map” for
each result to a query, and adding up scores for each re-
sult from each score map. In this respect, the algorithm
is similar to PageRank (the off-line phase of which requires
a very expensive eigenvector computation over the entire
web graph; whereas the on-line phase merely looks up a sin-
gle score for each result). By contrast, the original SALSA
algorithm is performed entirely on-line, and introduces a
substantial latency into the query processing pipeline, most
of it attributable to assembling the neighborhood graph of
the result set. A recent variant [3], Approximate SALSA,
eliminates some of that latency by summarizing the neigh-
borhoods of each web page off-line. However, the summaries
require 379 bytes per page and must be stored in memory
for fast query-time access. This means that a large search
engine would require a cluster of “summary lookup” servers
to use the approximate SALSA technique. The SS-SALSA
technique described in this paper also requires lookup servers,
but the score maps are one-third the size, so hardware costs
are also one third. This increase in efficiency is associated
with a drop in effectiveness. Therefore SS-SALSA occupies
a point on the efficiency-effectiveness tradeoff curve where
efficiency is important, but effectiveness is maintained. The
effectiveness of SS-SALSA is still better than PageRank or
HITS.

11. REFERENCES
[1] A. Broder, M. Charikar, A. Frieze, M. Mitzenmacher.

Min-wise independent permutations. Journal of
Computer and System Sciences 60(3):630–659, 2000.

[2] J. Dean and M. Henzinger. Finding related pages in
the World Wide Web. In Proc. of the 8th International
World Wide Web Conference, pages 389–401, 1999.

[3] S. Gollapudi, M. Najork and R. Panigrahy. Using
Bloom filters to speed up HITS-like ranking
algorithms. In Proc. of the 5th Workshop on
Algorithms and Models for the Web Graph, pages
195–201, 2007.

[4] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of IR techniques. ACM Transactions on
Information Systems, 20(4):422–446, 2002.

[5] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. In Proc. of the 9th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
668–677, 1998.

[6] R. Lempel and S. Moran. The stochastic approach for
link-structure analysis (SALSA) and the TKC effect.
Computer Networks and ISDN Systems,
33(1–6):387–401, 2000.

[7] R. Lempel and S. Moran. SALSA: The stochastic
approach for link-structure analysis. ACM
Transactions on Information Systems, 19(2):131–160,
2001.

[8] G. Linden. Marissa Mayer at Web 2.0. Online at:
http://glinden.blogspot.com/2006/11/marissa-mayer-at-

web-20.html

[9] M. Marchiori. The quest for correct information on
the Web: hyper search engines. In Computer Networks
and ISDN Systems, 29(8–13):1225–1236, 1997.

[10] F. McSherry and M. Najork. Computing information
retrieval performance measures efficiently in the
presence of tied scores. In 30th European Conference
on Information Retrieval, pages 414–421, 2008.

[11] M. Najork, H. Zaragoza and M. Taylor. HITS on the
Web: how does it compare? In 30th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
471–478, 2007.

[12] M. Najork. Comparing the effectiveness of HITS and
SALSA. In 16th ACM Conference on Information and
Knowledge Management, pages 157–164, 2007.

[13] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank citation ranking: bringing order to the
Web. Technical report, Stanford Digital Library
Technologies Project, 1998.

[14] H. Zaragoza, N. Craswell, M. Taylor, S. Saria, and
S. Robertson. Microsoft Cambridge at TREC–13:
Web and HARD tracks. In Proc. of the 13th Text
Retrieval Conference, 2004.

