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Abstract. Local reasoning about programs exploits the natural loeabisiour
common in programs by focussing on the footprint - that pérthe resource
accessed by the program. We address the problem of fornfelhacterising and
analysing the footprint notion for abstract local funcgantroduced by Calcagno,
O’Hearn and Yang. With our definition, we prove that the fowits are the only
essential elements required for a complete specificatianlo€al function. We
formalise the notion of small specifications in local reasgrand show that for
well-founded resource models, a smallest specificatiomysvexists that only
includes the footprints, and also present results for thewell-founded case.
Finally, we use this theory of footprints to investigate toaditions under which
the footprints correspond to the smallest safe states. W&ept a new model of
RAM in which, unlike the standard model, the footprints oésvprogram corre-
spond to the smallest safe states, and we also identify aajesmndition on the
primitive commands of a programming language which guaesthis property
for arbitrary models.

Categories and Subject Descriptor®.2.4 [Software/Program verifica-
tion]: Correctness proofs, Formal methods, Validatior B [Specifying
and Verifying and Reasoning about Programs]: Logics of pangs

General TermsLanguages, theory, verification

Key words footprints, separation logic, local reasoning

1 Introduction

Local reasoning about programs focusses on the collecfiogsources directly acted
upon by the program. It has recently been introduced and tessubstantial effect in
local Hoare reasoning about memory update. Researchers prgvimesi Hoare rea-
soning based on First-order Logic to specify how prograrnteracted with thevhole
memory. O'Hearn, Reynolds and Yang instead introduced! léoare reasoning based
on Separation Logic [14,11]. The idea is to reason only ableeifocal parts of the
memory—thefootprints—that are accessed by a program. Intuitively, the footprint
form the pre-conditions of themallaxioms, which provide the smallest complete spec-
ification of the program. All the true Hoare triples are dahle from the small axioms
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and the general Hoare rules. In particular, fitaene ruleextends the reasoning to prop-
erties about the rest of the heap which has not been changée bpmmand.

O’Hearn, Reynolds and Yang originally introduced Separatiogic to solve the
problem of how to reason about the mutation of data strustiwrenemory. They have
applied their reasoning to several memory models, includlieaps based on pointer
arithmetic [14], heaps with permissions [4], and the coratiom of heaps with vari-
able stacks which views variables as resource [5, 17]. Ih ease, the basic soundness
and completeness results for local Hoare reasoning aratedhethe same. For this
reason, Calcagno, O’Hearn and Yang [9] recently introdwdestract local functions
over abstract resource models which they call separatigebahs. They generalised
their specific examples of local imperative commands and emgmmodels in this ab-
stract framework. They introduced Abstract Separationit.¢g provide local Hoare
reasoning about such functions, and give general soundnedssompleteness results.

We believe that the general concept of a local function isrel&mental step to-
wards establishing the theoretical foundations of locaboming, and Abstract Sepa-
ration Logic is an important generalisation of the local Hoeeasoning systems now
widely studied in the literature. However, Calcagno, O’Heand Yang do not char-
acterise the footprints and small axioms in this generabrhevhich is a significant
omission. O’Hearn, Reynolds and Yang, in one of their firgtgya on the subject [14],
state the local reasoning viewpoint as:

‘to understand how a program works, it should be possibledasoning and
specification to be confined to the cells that the progranedlgtaccesses. The
value of any other cell will automatically remain unchanged

A complete understanding of the foundations of local Ho@asoning therefore re-
quires a formal characterisation of the footprint notioriH&arn tried to formalise
footprints in his work on Separation Logic (personal comination with O’Hearn).
His intuition was that the footprints should be the smaktates on which the program
is safe - thesafety footprintand that thesmall axiomsarising from these footprints
should give rise to a complete specification using the géndales for local Hoare rea-
soning. However, Yang discovered that this notion of foiotpdoes not work, since it
does not always yield eompletespecification for the program. Consider the program

AD = 1z := new();dispose(x)

This allocate-deallocatgrogram allocates a new cell, stores its address value in the
stack variabler, and then deallocates the cell. It is local because all amat con-
stituents are local. This tiny example captures the essehaecommon type of pro-
gram; there are many programs which, for example, creat#,avork on the list, and
then destroy the list.

The smallest heap on which ti# program is safe is the empty heamp. The
specification using this pre-condition is:

{emp} AD  {emp} (1)

! Yang's example was the ‘allocate-deallocate-test’ pnoghdDT ::= ‘x := new();dispose(x); if
(x=1) then z:=0 else z:=1;x=0". OWD program provides a more standard example of
program behaviour.
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We can extend our reasoning to larger heaps by applying dmeefrrule: for example,
extending to a one-cell heap with arbitrary addresssd valuev gives

{l—v} AD {l— v} (2

However, axiom (1) does not give the complete specificatfdneAD program. In fact,
it captures very little of the spirit of allocation followdxy de-allocation. For example,
the following triple is also true:

{l—=v} AD {Il—-vAx#l} 3

This triple (3) is true because,lifis already allocated, then the new address cannot be
[ and hence: cannot bd. It cannot be derived from (1). However, the combination of
axiom (1) and axiom (3) for arbitrary one-cell heaps doesipithe smallest complete
specification. This example illustrates that O’Hearn’siitite view of the footprints as
the minimal safe states just does not work for common imperagrograms.

In this paper, we introduce the formal definition of the faatpof a local func-
tion that does yield a complete specification for the functieor ourAD example, our
definition identifiesemp and the arbitrary one-cell heaps— v as footprints, as ex-
pected. We prove the general result that, for any local fancthe footprints are the
only elements which aressentiato specify completely the behaviour of this function.

We then investigate the questionxffficiencyFor well-founded resource, we show
that the footprints are also always sufficient: that is, a plete specification always
exists that only uses the footprints. We also explore redalt the non-well-founded
case, which depend on the presencenedativity A resource has negativity if it is
possible to combine two non-unit elements to get the uniigkvis like taking two non-
empty pieces of resource and joining them to get nothingnbBorwell-founded models
without negativity, such as heaps with infinitely divisiltactional permissions, either
the footprints are sufficient (such as for tivete command in the permissions model)
or there is no smallest complete specification (such as faregad command in the
permissions model). For models with negativity, such asrttegjers under addition, we
show that there can exist smallest complete specificatiaredon elements that are
not essential and hence not footprints.

The final section reports on work that is new to this journabian of the paper.
We apply our theory of footprints to the issue of regaining slafety footprint notion,
which has been plagued by ti#d problem. We address a question that arose from
discussions with O’Hearn and Yang, which is whether theamislternative model of
RAM in which the safety footprint does correspond to the akfootprint, yielding
complete specifications. We present such a model based o@arirgtion of the cause
of the AD problem in the original model. We prove that in this new mdtelfootprint
of everyprogram, includingAD, does correspond to the safety footprint. Moreover, we
identify a general condition on the primitive commands & grogramming language
which ensures this property to hold in arbitrary models.

As well as the final section on the regaining of safety foatistithis journal version
also contains proofs of all the results that were excludechfihe conference paper.
AcknowledgementsWe thank Calcagno, O'Hearn and Yang for detailed discussion
on footprints. Raza acknowledges support of an ORS awartir®aacknowledges
support of a Microsoft/Royal Academy of Engineering Seiesearch Fellowship.
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2 Background

The discussion in this paper is based on the framework intred in [9], where the
approach of local reasoning with separation logic was fdisad for a notion ofocal
functions that act on an abstract model of resource. In tluikwe investigate the
notion of footprint in this abstract setting, and this seetgives a description of the
underlying framework.

2.1 Separation Algebras and Local Functions

We begin by describing separation algebras, which provigedel of resource which
generalises over the specific heap models used in sepalagicrworks. Informally,
a separation algebra models resource as a set of elementsaithie ‘glued’ together
to create larger elements. The ‘glueing’ operator satiglieperties in accordance with
this resource intuition, such as commutativity, assodgtsgtias well as the cancellation
property which requires that, if we are given an element dadger element, then there
is a unique element that can be glued to the smaller one tdlygivarger one.

Definition 1 (Separation Algebra). A separation algebrais a cancellative, partial
commutative monoidX, e, u), where X' is a set ande is a partial binary operator
with unitu. The operator satisfies the familiar axioms of associatidibmmutativity
and unit, using a partial equality o’ where either both sides are defined and equal,
or both are undefined. It also satisfies the cancellative ergpstating that, for each

o € X, the partial functioro e () : X— X' is injective.

We shall sometimes overload notation, usiigo denote the separation algebra
(X, e,u). Examples of separation algebras include multisets ungdenuywith unit(),
the natural numbers with addition (with uif, heaps as finite partial functions from
locations to values ( [9] and example 1), heaps with permissi[9, 4], and the com-
bination of heaps and variable stacks enabling us to modgrams with variables as
local functions ([9], [17] and example 1). These examplébale an intuition of re-
source, withr; e o5 intuitively giving more resource than just andos for oy, o2 # .
However, notice that the very general notion of a separaigebra also permits exam-
ples which may be non-intuitive, such &s, v} with a e @ = w. Since our aim is to
investigate general properties of local reasoning, weradléied to impose minimal re-
strictions on what counts as resource. Thus our resultstetidifor arbitrary separation
algebras, be they intuitive or non-intuitive examples abuerce.

Definition 2 (Separateness and substatefsiven a separation algebraX, e, u), the
separatenesg+#) relation between two states), oy € X' is given byog#o; iff o
o1 is defined. Theubstate(=) relation is given by < oy iff 0. 01 = 0 ® 02. We
write og < o1 whenoy < 07 andog # o1.
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Lemma 1 (Subtraction).For 01,09 € X, if 01 = o9 then there exists a unique ele-
ment denoteds — o1 € X, such thatoy — 1) ® 01 = 09.

Proof: Existence follows by definition ef. For uniqueness, assume there exist” €
Y such thatr’ e 0; = 09 ando” e o1 = 5. Then we have’ e 0; = ¢” e o1, and thus
by the cancellation property we havé=¢". 1l

We consider functions on separation algebras that geseriatiperative programs
operating on heaps. Such programs may behave non-detsticafly, and can also
fault. Thus to model non-determinism, we need to consider funstimm a separation
algebraX’ to its powerse®(X'). To model faulting, we add a special top elemenb
the powerset. We therefore consider total functions of thenff : ¥ — P(X)". On
any element o, the function can either map to a set of elements, to msaffelexe-
cution with non-deterministic outcomes, ortg which represents a faulting execution.
Mapping to the empty set represents divergence (non-tetiim).

Definition 3. The standard subset relation on the powerset is extend@t( ) " by
definingp C T for all p € P(X) . The binary operatok onP(X) " is given by

pxq={opeo1|oo#or Nog EpAor €q} if pgeP(Y)
=T otherwise

P(X) T is a total commutative monoid undewith unit {u}.

Definition 4 (Function ordering). For functionsf,g: ¥ — P(X)T, f C giff f(o) C
g(o)forallo € X.

We shall only consider functions that axell-behavedn the sense that they dot
cally with respect to resource. For imperative commands on themeael, the locality
conditions were first characterised in [21], where a sousslpeoof for local reason-
ing with separation logic was demonstrated for the speci#faphmodel. The conditions
identified were

— Safety monotonicityif the command is safe on some heap, then it is safe on any
larger heap.

— Frame property if the command is safe on some heap, then in any outcome of
applying the command on a larger heap, the additional hedppawill remain
unchanged by the command.

In[9], these two properties were amalgamated and formdifateabstract functions
on arbitrary separation algebras.

Definition 5 (Local Function). A local function on X is a total functionf : ¥ —
P(X) " which satisfies thiocality condition:
oo’ implies f(o’' e o) C {0’} * f(0)

We letLocFunc be the set of local functions oxn.
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Intuitively, we think of a command to be local if, wheneveetbommand exe-
cutes safely on any resource element, then the command etiltouch’ any addi-
tional resource that may be added. Safety monotonicitpdidifrom the above defi-
nition because, iff is safe ono (f(o) = T), then it is safe on any larger state, since
flo"eo) E{o'} fo)C T.

The frame property follows by the fact that the additionaltst’ is preserved in
the output off (¢’ e o). Note, however, that the ordering allows for reduced non-
determinism on larger states. This, for example, is the frashe AD command from
the introduction which allocates a cell, assigns its addiestack variable, and then
deallocates the cell. On the empty heap, its result wouthadlll possible values for
variablex. However, on the larger heap where cell 1 is already alla#teresult would
allow all values forr except 1, and we therefore have a more deterministic outocome
this larger state.

Lemma 2. Locality is preserved under sequential composition, netedninistic choice
and Kleene-star, which are defined as

. T if flo) =T
(f;9)(0) = { L {g(c") | o’ € f(o)} otherwise

(f +9)(0) = J(0) Ug(0)
7 @) =]

Example 1 (Separation algebras and local functions).

1. Plain heap model A simple example is the separation algebra of hé&h®, u ),
whereH = L — g, Val arefinite partial functions from a set of locations to a set of
values, the partial operateiis the union of partial functions with disjoint domains,
and the unituyy is the empty function. Fok € H, let dom(h) be the domain of
h. We writel — v for the partial function with domaif/} that mapd to v. For
hi,hy € H,if hy < hy thenhy — ha = hi |dgom(hy)—dom(hs)- AN €xample of a
local function is thelispose[l] command that deletes the cell at location

. JA{r=(I—v)} b= (I-v)

disposell](h) = { T otherwise
The function is local: ifh # (I+— v) thendispose[l](h) = T, anddisposel[l](h’ o
h) C T. Otherwisedispose[l](h' e h) = {(W ¢ h) — (I—v)} T {h'} x{h — (I
v)} = {h'} % dispose[l](h).

2. Heap and stack There are two approaches to modelling the stack in thealiter
ture. One is to treat the stack as a total function from véemto values, and only
combine two heap and stack pairs if the stacks are the samseothier approach,
which we use here, is to allow splitting of the variable staokl treat it as part of
the resource. We can incorporate the variable stack intseparation algebra by



Footprints in Local Reasoning 7

using the sef = L U Var —g, Val, whereL andVal are as before andar

is the set of stack variablds, y, z, ...}. The e operator as before combines heap
and stack portions with disjoint domains, and is undefinéétise. The unitiz

is the state with an empty heap and empty stack, where both e stack are
empty. Although this approach is limited to disjoint refece to stack variables,
this constraint can be lifted by enriching the separatigelta withpermissions
[4]. However, this added complexity can be avoided for ttsea$sion in this paper.
For a stateh € H, we letloc(h) andvar(h) denote the set of heap locations and
stack variables in the domain @frespectively. In this model we can define the
allocation and deallocation commands as

[ {W ex—lel—w|we Valle L\loc(h')} h=1h ex—wv
newlz](h) = { T otherwise

. Wex—l} h=hex—lel—v
disposelz](h) = { {T } otherwise

Commands for heap mutation and lookup can be defined as

hexr—lel—v} h=hex—lel—w
mutatelz, vl(h) = { {T } otherwise

hWex—lel—vey—v} h=hexr—lel—vey—w
lookuplz, y](h) = { {T } otherwise

Note that in all cases, any stack variables that the comnwareferring to should
be in the stack in order for the command to execute safelgraikse the command
will be acting non-locally. Th&D command described in the introduction, which is
the sequential compositiorew|z]; dispose[z], corresponds to the following local
function

[ {W ex—l|l&loc(h)} h=h ezx—wv
AD(h) = { T otherwise

3. Integers. The integers form a separation algebra under additionidhtity 0. In
this case we have that any ‘adding’ functiftr) = {z + ¢} that adds a constant
c is local, while a function that multiplies by a constantf(z) = {cz}, is non-
local. However, the integers under multiplication alsonioa separation algebra
with identity 1, and in this case every multiplying functianlocal but not every
adding function. This illustrates the point that the notadocality of commands
depends on the notion of separation of resource that is lnsied.

2.2 Predicates, Specifications and Local Hoare Reasoning

We now present the local reasoning framework for local fiomst on separation alge-
bras. This is an adaptation of Abstract Separation Logicj&h some minor changes



8 Mohammad Raza and Philippa Gardner

in formulation for the purposes of our discussion. Predisaiver separation algebras
are treated simply as subsets of the separation algebra.

Definition 6. A predicate p over X' is an element of the powersetY).

Note that the top elemendt is not a predicate and that theoperator, although defined
onP(X)" x P(X)T — P(X)T, acts as a binary connective on predicates. We have
the distributive law for union:

(| |X)*p=| [{z*p|z e X} whereX C P(X)

The same is not true for intersection in general, but doed fwlprecise predicates.
A predicate is precise if for any state, there is at most alsisigbstate that satisfies the
predicate.

Definition 7 (Precise predicate) A predicatep € P(X) is preciseiff, for everyo €
X, there exists at most ong, € p such thatr, < o.

Thus with precise predicates, there is at most a unique whyei@k a state to get a
substate that satisfies the predicate. Such predicatesedé@useparation logic works to
describe heaps that contain data structures such as liiske@hd trees. Any singleton
predicate{c} is precise. Another example of a precise predicatgis v | v € Val}
for somel, while {i—wv | | € L} for somev is not precise.

Lemma 3 (Precision characterization).A predicatep is precise iff, for all X C
P, [1X)sp=[Kaxp|zeX}

Proof: We first show the left to right direction. Assumés precise. We have to show
thatforall X C P(X), (1 X)*p=[{z*p |z € X}. Assumer € ([]X) xp. Then
there existr1, o5 such thatr = o1 e 03 ando; € [ | X andos € p. Thusforallz € X,
o€xzx*p,andhencer € [[{z+p |z € X}.Nowassume € [[{z*p |z € X}.
Theno € x * p for all x € X. Hence there exists; < ¢ such thatr; € p. Sincep is
precise,s; is unique. Letr, = 0 — o1. Thus we have, € z for all z € X, and so
o9 € []X. Hence we have € ([ X) x p.

For the other direction, we assume thats not precise and show that there exists
an X for which the distributive law does not hold. Sineés not precise, there exists
a o € X such that for two distinct,00 € p, we havesr; < o andos =< o. Let
o}l =0 — oy andoy = 0 — o3. Now letX = {{o1},{05}}. Sinceo € {o}} *p and
o € {0} xp, we haver € [ [{z *p | z € X}. However, because of the cancellation
property we have that] # ¢4, and so([ ] X) xp =0 *p = 0. Henceg ¢ ([1X) * p,
and we therefore havg | X ) xp A [[{z*p |z € X}. 1

Our Hoare reasoning framework is formulated with tuplesref mnd post- condi-
tions, rather than the usual Hoare triples that includetinetfon, as in [9]. In our case
the standard triple shall be expressed as a fundgtisatisfyinga tuple(p, ¢), written
I E (p,q). The reason for this is that we shall be examining the progeethat a pre-
and post- condition tuple may have with respect to a givewtian, such as whether a
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given tuple is complete for a given function. This approachery similar to the notion
of thespecification statemef& Hoare triple with a ‘hole’) introduced in [12], which is
used in refinement calculi, and was also used to prove coar@ss of a local reasoning
system in [21].

Definition 8 (Specification).Let X' be a separation algebra. tatementon X' is a
tuple (p, q), wherep,q € P(X) are predicates. Aspecification¢ on X' is a set of
statements. We lebs, = P(P(X) x P(X)) denote the set of all specifications on
X, We shall exclude the subscript when it is clear from the ednfThedomain of a
specification is defined aB(¢) = | [{p | (p,q) € ¢}. Domain equivalenceis defined
as¢ =p ¢ iff D(¢) = D(y).

Thus the domain is the union of the preconditions of all tlageshents in the specifica-
tion. It is one possible measuresize how much ofY’ the specification is referring to.
We also adapt the notion of precise predicates to specifitsati

Definition 9. A specification is precise iff its domain is precise.

Definition 10 (Satisfaction).A local function f satisfies a statemertp, ¢), written
f E (p,q), iff, forall o € p, f(o) E q. f satisfies a specification € @, written
fE o iff f = (p,q) forall (p,q) € ¢.

Definition 11 (Semantic consequencel.et p,q,r,s € P(X) and ¢,9 € &. Each

judgement(p,q) = (r,s),¢ = (».9), (p,q) = ¢ and¢ = < holds iff all local
functions that satisfy the left hand side also satisfy thhtrhand side.

Proposition 1 (Order Characterization). f C g iff, for all p,q € P(X), g E (p,q)
implies f |~ (p, q).

For every specificatio, there is a ‘best’ local function satisfying (lemma 4),
in the sense that all statements that the best local funstitisfies are satisfied by any
local function that satisfieg. For example, in the heap and stack separation algebra of
example 1.2, consider the specification

¢ ={({r—v},{z—lel—w]|le LweVal})|veVal}

There are many local functions that satisfy this specificafirivially, the local function
that always diverges satisfies it. Another example is thallfamction that assigns the
valuew of the newly allocated cell to be 0, rather than any non-deitéstically chosen
value. However, the best local function for this specifimatis thenew[z] function
described in 1.2, as it can be checked that for any local fomgt satisfying ¢, we
havef C new[z]. The notion of the best local function shall be used whenesking
questions about completeness of specifications. It is addpdm [9], except that we
generalise to the best local function of a specificationamatiian a single pre- and post-
condition pair.
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Definition 12 (Best local function).For a specificationp € &, the best local function
of ¢, written bla[¢), is the function of typ&l — P(X) T defined by

blalg](0) =[ [{{o"} xq| o = 0" 0", 0" € p,(p,q) € 9}

Lemma 4. Let¢ € &. The following hold:

— blal¢] is local

— bla[¢] = ¢
— if fislocalandf = ¢ thenf C bla[¢)

Proof: To show thabla[¢] is local, consider, o2 such thab; #02. We then calculate

bla[p](c1 ® 02)
=[{{o'} xq|o1e0s=0"e0",0" €p,(p,q) € ¢}
Cll{{o1e0'}xq|o2=0"e0",0" €p,(p,q) € ¢}
=[H{o1} x{o'} xq| o2 =0"e0",0" €p,(p,q) € ¢}
={o1}*[{{o'}xq|o2a=0"e0",0" €p,(p,q) € ¢}
= {01} * bla[¢](02)

In the second-last step we used the property {liat is precise (lemma 3).

To show thabla|[¢] satisfiesp, consider anyp, ¢) € ¢ ando € p. Thenbla[¢](c) C
{u}xq=q.

For the last point, supposé = ¢ and f is local. Then for any such thate =
o1 802 andos € pand(p, q) € ¢,

f(o) = f(o1 002)
C {01} * f(o2)
C{o1}*q

Thusf (o) E bla[¢] (o).
In the case that there do not exist, o such thatr = o, @ 03 andos € D(¢), then

bla[¢](o) =10
=T

So in this case als@ (o) C bla[¢p|(c). B

Lemma5. For ¢ € # andp,q € P(X), bla[¢] = (p.q) < ¢ = (p. @)
Proof:

bla[¢] = (p,q)
SV 2 =P flE¢=fFE (pq (bylemma4)
o FE (P9 (by definition 11)
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(p,9) PCp (pg) ¢C4 (pi @), alli eI (pi,qi), alli € LI #0
(p*r,qg*r) ', 4q") (I—liEI pivuiel qi) (I_liEI p“rlz‘el qi)
Frame Consequence Union Intersection

Fig. 1. Inference rules for local Hoare reasoning

The inference rules of the proof system are given in figureahséquence, union and
intersection are adaptations of standard rules of Hoarie.lddpe frame rule is what
permits local reasoning, as it codifies the fact that, sincénactions are local, any
assertion about a separate part of resource will continbeltb for that part after the
application of the function. As we shall not be using them deeot state the standard
rules for basic constructs such as composition, non-détéstic choice, and Kleene-
star [9].

Definition 13 (Proof-theoretic consequence)or predicatesp, ¢, r, s and specifica-
tions ¢, ¢, each of the judgements, q) - (r,s),¢ F (p,q), (p,q) + ¢, and¢ + ¢
holds iff the right-hand side is derivable from the left-dagide by the rules in figure 1.

The proof system of figure 1 is sound and complete with redpebie satisfaction
relation.

Theorem 1 (Soundness and Completenesg)-- (p,q) < ¢ E (p,q)

Proof: Soundness can be checked by checking each of the proof nuigsiie 1. The
frame rule is sound by the locality condition, and the otlageseasy to check.

For completeness, assume we are gigen (p, ¢). By lemma 5, we havéla[¢] =
(p,q). Soforallo € p, bla[¢](c) C ¢, which implies

|| blalol(e) Eq ()
oEp
Now we have the following derivation:
e
(7”, S) forall (r, s) € ¢

({c'},s) toraic’ er () e

({o—0o'}x{o'},{oc—0'}*8) forale’ er (rs)ed,0' <0,0€p
( I_I {o —0o'}x{0'}, I_I {o—0'}*5) traiocop
o' <o o' <o
o'er o'er
(r,s)€Ed (r,s)€d

({o}, bla[¢](0)) forale c »
(| J{e}, || blalgl(o))

oEp oEp

(pq)
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The last step in the proof is k) and the rule of consequence. Note that the intersec-
tion rule can be safely applied because the argument of thesgction is necessarily
non-empty (if it were empty thetia[¢](c) = T, which contradict®la[¢](c) C ¢). B

3 Properties of Specifications

We discuss certain properties of specifications as a prisitgifor our main discussion
on footprints in Section 4. We introduce the notion of@npletespecification for a
local function: a specification from which all propertiestinold for the function can
be derived in the proof system. However, a function may hasayntomplete speci-
fications, so we introduce a canonical form for specificatioffe show that of all the
complete specifications of a local function, there exists@uwe canonical complete
specification for every domain. As discussed in the intréidac an important notion
of local reasoning is themall specificationvhich completely describes the behaviour
of a local function by mentioning only the footprint. Thus, @ prerequisite to inves-
tigating their existence, we formalise small specificai@s complete specifications
with the smallest possible domain. Similarly, we defirig specifications as complete
specifications with the biggest domain.

Definition 14 (Complete Specification)A specificationp € & is acomplete specifi-
cationfor f, writtencomplete(¢, f), iff, forall p,q € P(X),f E (p,q) < ¢ = (p, q).
Letd .5y b€ the set of all complete specifications of f.

¢ is complete forf whenever the tuples that hold frareexactlythe tuples that follow
from ¢. This also means that any two complete specficaticmsdy for a local function
are semantically equivalent, that és=F . The following proposition illustrates how
the notions of best local action and complete specificatiercisely related.

Proposition 2. For all ¢ € ¢ and local functionsf, complete(¢, ) < f = bla[¢).

Proof: Assume = bla[¢]. Then, by lemma 5, we have thiat a complete specification
for f.

For the converse, assumemplete(o, f). We shall show that for any € X,
f(o) = bla[¢](0).

case 1:f(c) = T.If bla[¢](c) # T, thenbla[p] = ({c}, bla[¢](o)). This means
that¢ = ({o}, bla[¢](0)) (by lemma 5), and s¢ = ({c}, bla[¢](0)), but this is a
contradiction. Thereforehla[p](c) = T

case 2:bla[¢|(c) = T.If f(o) # T,thenf E ({c}, f(c)). This means that
¢ E ({0}, f(0)), and sobla[¢] E ({c}, f(o)), but this is a contradiction. Therefore,
flo)=T
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case 3:bla[¢](c) # T and f(o) # T. We have

fE |}, f0)

= bla[¢] E ({0}, f(0))
= bla[¢](c) C f(0)

bla¢] k= ({0}, bla[¢](a))
= [ ({o}, bla[¢](a))
= f(0) C bla[¢)(o)

Thereforef (o) = bla[¢](c) B

Any specification is therefore only complete for a uniquealdainction, which is its
best local action. However, a local function may have lotsamhplete specifications.
We therefore introduce a canonical form for specifications.

Definition 15 (Canonicalisation).Thecanonicalisationof a specificatiorp is defined
as ¢ean = {({o}, blalg)(0)) | o € D(¢)}. A specification is ircanonical form if it

is equal to its canonicalisation. Lek,,, sy denote the set of all canonical complete
specifications of f.

Proposition 3. For any specificatio, we havep =F ¢q,.

Proof: We first show E ¢.qr. FOrany(p, q) € ¢ean, (p, q) is of the form({o}, bla[¢](0))
for somes € D(¢). So we havéla[¢] = (p, q), and sop = (p, ¢) by lemma 5.

We now show..,, E ¢. For any (p,q) € ¢, we havebla[¢] = (p,q). So for all
o € p, bla[¢](o) C ¢, which implies

|| blaldle) Eq ()

oEp

Now we have the following derivation:

(bcan
({0}, bla[(b](o)) forallo € p

(Lo}, | ] blalgl(0))

ogEp gEp
(p,q)

The last step is byx) and consequence. So we hawg, + ¢, and by soundness

¢can ): ¢ n

Thus, the canonicalisation of a specification is logicaliigalent to the specifica-
tion. The following corollary shows that all complete sgeitions that have the same
domain have a unique canonical form, and specificationsffigfrdint domains have dif-
ferent canonical forms.
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Corollary 1. @.,,(s) is isomorphic to the quotient sét.,,,,,,(s)/ =p, under the iso-
morphism that map|~, t0 ¢can.

Proof: By proposition 2, all complete specifications férhave the same best local
action, which isf itself. So by the definition of canonicalisation, it can bersé¢hat
complete specifications with different domains have @iffecanonicalisations, and
complete specifications with the same domain have the sanunicalisation. This
shows that the mapping is well-defined and injective. Evanpnical complete speci-
fication¢ is also complete, an]~ , maps tod.., = ¢, SO the mapping is surjective.
|

Definition 16 (Small and Big specifications)¢ is a small specificationfor f iff ¢ €
Deomp(r) @nd there is na) € @.opm,p(5) sSuch thatD(y) C D(¢). Abig specificationis
defined similarly.

Smallandbig specifications are thus the specifications with the smadiedtbiggest
domains respectively. The question is ifiwhen small andgpigcifications exist. The
following result shows that a canonical big specificatioisesfor every local function.

Proposition 4 (Big Specification).For any local functionf, the canonical big specifi-
cation for f is given bypy, sy = {({c}, f(0)) | f(o) C T}.

Proof: f = ¢uig(y) is trivial to check. To showomplete(dyigsy, f), assumef =

(p, q) for somep, g € P(X). Note that, for any € p, f(o) C ¢ and so|_| f(o) Egq.
oep

We then have the derivation
¢bi.q(f)
({c}, f(o)) foral fo)= T

(Lt L] feo)

oEp oEp
(,q)

By soundness we géti, () = (0, q)- vig(s) has the biggest domain becauswould
fault on any element not included i, sy, and so it cannot be a domain element for
a specification off. l

Small specifications are used in local reasoning to comlspecify the behaviour of
an update command by only mentioning the behaviour of thentand on the part of
the resource that is affected by the command [14, 4, 7]. Tlsttn of the existence of
small specifications is therefore strongly related to thecept of footprints. Finding a
small specification is about finding the complete specificatvith the smallest possible
domain, and therefore enquiring about which elements afe essential and sufficient
for a complete specification. This requires a formal charétion of the footprint
notion, which we shall now present.
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4 Footprints

In the introduction we discussed how thA® program demonstrates that the footprints
of a local function do not correspond simply to the smalle$t states, as these states
alone do not always yield complete specifications. In thisise we introduce the def-
inition of footprint that does yield complete specificasoim order to understand what
the footprint of a local function should be, we begin by asalyg the definition of local-
ity. Recall that the locality definition 5 says that the actom a certain state, imposes
alimit on the action on a bigger statg e o;. This limitis {2} * f(01), as we have
floz @ 01) E {02} * f(01).

Another way of viewing this definition is that for any state the action of the
function on that state has to be within the limit imposedebgrysubstater’ of o, that
is, f(o) C {o—0d'}x f(0’). Inthe case where’ = o, this condition is trivially satisfied
for any function (local or non-local). The distinguishintgeeacteristic of local functions
is that this condition is also satisfied by every strict satesbfo, and thus we have

f0)C []{o =o'} *f(o)

o' <o

We define this overall constraint imposed @iy all of its strict substates as thacal
limit of f ono, and show that the locality definition is equivalent to $girgy the local
limit constraint.

Definition 17 (Local limit). For a local functionf on X ando € 3/, thelocal limit of
fong is defined as

Li(o) = [ | {o =o'} * f(o))

o' <o

Proposition 5. fislocal <  f(o) C Ly(o) forallo € X

Proof: Assumef is local. So for any, for everys’ < o, f(o) E {0 — o'} = f(o').
f (o) is therefore smaller than the intersection of all these,setich iSL;(c).

For the converse, assume the rhs and thae o, is defined. Ib; = uthenf(o, @
o2) C {01} f(02) and we are done. Otherwis@; < o1 e03 and we havg (o e02) C
Li(o1002) C{o1}* f(o2). W

Thus for any local functiorf acting on a certain state the local limit determines
a smallest upper boundn the possible outcomes on based on the outcomes on all
smaller states. If this smallest upper bound does correspractly to the set of all
possible outcomes ot, theno is ‘large enough’ that just the action gfon smaller
states and the locality gf determines the complete behaviourfaino. In this case we
will not think of ¢ as a footprint off, as smaller states are sufficient to determine the
action of f ono. With this observation, we define footprints as those stateghich the
outcomes cannot be determined only by the smaller statasistithe set of outcomes
is astrict subset of the local limit.
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Definition 18 (Footprint). For a local functionf ando € X, o is a footprint of f,
written Fy (o), iff f(c) C Ly(o). We denote the set of footprints oby F'(f).

Note that an element is therefore not a footprint iff the action gfon o is at the
local limit, thatisf(c) = L¢ (o).

Lemma 6. For any local functionf, all the smallest safe states ffare footprints of
f

Proof: Leto be a smallest safe state fér Then for any’ < o, f(¢’) = T. Therefore
L¢(o) =T andsof(c) C L¢(o). N

However, the smallest safe states are not alwaysutiefootprints. An example is
the AD command discussed in the introduction. The empty heap istpriot as it is
the smallest safe heap, but the heap kellv is also a footprint.

Example 2 (Dispose)The footprints of thedispose[l] command in the plain heap
model (example 1.1) are the cells at locatioWe check this by considering the fol-
lowing cases

1. The empty heap,g, is not afootprint SiNC& ;s posepi) (um) = T = dispose[l](ug)
2. Every celll— v for somev is a footprint

Ldispose[l] (lH’U) = {ll—>’U} * d’LSpOSB[Z](UH) = {ll—>’U} « T =T
dispose[l](l—v) = {un} C Laisposen) (1)

3. Every stater such that > (I+—wv) for somev is not a footprint
Laisposeit)(0) € {o— (1) }xdispose[l] (1 v) = {o—(I+>v)} = disposell](o)

By proposition 5, we havé j;,.sc; (o) = dispose[l](c). The intuition is thatr
does not characterise any ‘new’ behaviour of the functitsmaction ons is just a
consequence of its action on the cells at locatiand the locality property of the
function.

4. Every stater such that i (I+—wv) for somev is not a footprint

Ldispose[l] (U) C {0} * dZSpOS@[l] (U’H) = {U} * T =T= d’LSpOSG[Z](U)

Again by proposition 5L ;sposep) (o) = disposel[l](o).

Example 3 AD command)The AD (Allocate-Deallocate) command was defined on
the heap and stack model in example 1.2. We have the follogasgs for.

1. o % x—wv; for somev; is not a footprint, sinc& 4p(c) = T = AD(0).
2. 0 = z +— v for somew; is a footprint sinceLap(c) = T (by case (1)) and
AD(o) ={x—w|w € L} C Lap(o).
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3. 0 =l+—w; e x— vy for somel, vy, vo is a footprint.

LAD(O') = {l|—>U1} * AD(.T'_)UQ)
(AD faults on all other elements strictly smaller than
={l~un}+x{z—w|welL}
={l—viex—w|weL}

AD(0) ={l—viex—w]|we L,w#!1}C Lap(o)
4. 0 = h e x—v; for somevy, and wherdloc(h)| > 1, is not a footprint.

Lap(o) E |_| {(h=1l—v}+x AD(l—vexruvq)
hb
={heox—w|w¢loc(h)} = AD(o)
By proposition 5we geL ap (o) = AD(o).

Our footprint definition therefore works properly for thegmecific examples. Now
we give the formal general result which captures the undeglintuition of local rea-
soning that the footprints of a local function are the onlyesdial elements for a com-
plete specification of the function.

Theorem 2 (Essentiality).The footprints of a local function are the essential domain
elements for any complete specification of that functicet, it

Fi(0) & VY6 E€Dupmpp). o € D(®)

Proof: Assume some fixed ando. We establish the following equivalent statement :

_‘Ff(O') <~ El(b € glf)covnp(f)- g g D((b)

We first show the right to left implication. So assumé a complete specification ¢f
such that ¢ D(¢). Sincecomplete(, f), by proposition 2, we havé = bla[¢]. So

flo) = |_| {oc—01} ¢

01=0,01€p,(p,q)EP

Now for any sef o — o1 } x¢ in the above intersection, we have thate p, and(p, q) €
¢ for somep. o1 € pimpliesf(o1) C ¢, and therefordo — o1 } x f(01) C {0 — 01} *q.
Also, o1 # o, because otherwise we would hawves p, which would contradict the
assumption that ¢ D(¢). Soo; < o and we have

Li(o) E{o—o1}* flon) E{o -1} xq

So the local limit is smaller than each get— o1 } * ¢ in the intersection, and therefore
it is smaller than the intersection itseli; (o) C f(o). We know from proposition 5
that f(o) C Ls(c), so we getf(o) = Ls(o) and therefore-Fy (o).
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We now show the left to right implication. Assume thatis not a footprint of
f. We shall use the big specificationy,, ), to construct a complete specification
of f the domain of which does not contain If f(o) = T then the big specifica-
tion itself is such a specification, and we are done. Otheragsume (o) C T. Let
¢ = buigry/{({c}, f(0))}. It can be seen that ¢ D(¢). Now we need to show that
¢ is complete forf. For this it is sufficient to show - ¢y, ) because we know that
Pvig(y) is complete forf. - is trivial.

Fort, we just need to show + ({¢}, f(o)). We have the following derivation:

¢
({c'}, f(0))) foralle’ <o, f(aYET
({o—0d'}x{d'},{oc—c'}x f(c')) foralle’ <o, f(c)CT

(o, ] fo—oYxf@)

o' <o,f(c")CT
({o}, L¢(o))

The intersection rule can be safely applied as there is at m#&es’ < o such that
f(o') & T. This is becausg(c) C T, so if there were no suck’ theno would be a
footprint, which is a contradiction. Note that the last stsps the fact that

[T H{o—o}=f(0")= [ [{o—0'}# f(o') = Ls(0)

o' <o,f(c)CT o' <o

because adding the top element to an intersection does aogelits value. Since is
not a footprint,f(¢) = L(0), and sop - ({c}, f(o)). A

5 Sufficiency and Small Specifications

We know that the footprints are the only elements thatasentiafor a complete spec-
ification of a local function in the sense that every compé#gtecification must include
them. Now we ask when a set of elementsugficientfor a complete specification of
a local function, in the sense that there exists a complegeifspation of the function
that only includes these elements. In particular, we widtntmw if the footprints alone
are sufficient. To study this, we begin by identifying theiantof thebasisof a local
function.

5.1 Bases

In the last section we defined the local limit of a functibon a stater as the constraint
imposed onf by all the strict substates of. This was used to identify the footprints
as those states on which the actionfofannot be determined by just its action on the
smaller states. We are now addressing the question of whenad states isufficient
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to determine the behaviour gf on any state. We shall do this by identifying a fixed
set of states, which we call Basisfor f, such that the action of on any stater
can be determined by just the substategr dhken from this set (rather than all the
strict substates of). Thus we first generalise the local limit definition to calesithe
constraint imposed by only the substates taken from a gieen s

Definition 19 (Local limit imposed by a set).For a subsetA of a separation algebra
X7, thelocal limit imposed by4 on the action off on ¢ is defined by

Lajlo)= [] {o-0o}=f()

o’'<0,0'€A

Sometimes, the local limit imposed by is enough to completely determirfe In this
case, we cald abasisfor f.

Definition 20 (Basis).A C X' is abasisfor f, writtenbasis(A, f), iff La ; = f.

This means that, when given the actionfodn elements in A alone, we can determine
the action off on any element in¥ by just using the locality property of. Every
local function has at least one basis, namely the trivialshgstself. We next show the
correspondence between the bases and complete speaifscatia local function.

Lemma7. Letoa ;s = {({c}, f(0)) | o € A, f(o) C T}.Thenwe haviusis(4, f) <
complete(ga r, f).

Proof: We haveL 4 ; = bla[¢ 4, ] by definition. The result follows by proposition 2
and the definition of basiill

For every canonical complete specificatiore @), we havep = ¢p4),¢. By the
previous lemma it follows thab(¢) forms a basis foyf. The lemma therefore shows
that every basis determines a complete canonical speificand vice versa. This
correspondence also carries over to all complete speddiisafor f by the fact that
every domain-equivalent class of complete specifications fis represented by the
canonical complete specification with that domain (corgl). By the essentiality of
footprints (theorem 2), it follows that the footprints amegent in every basis of a local
function.

Lemma 8. The footprints off are included in every basis of f.

Proof: Every basisA of f determines a complete specification fbthe domain of
which is a subset ofl. By the essentiality theorem (2), the domain includes tbée fo
prints.H

The question of sufficiency is about how small the basis can@wen a local
function, we wish to know if it has a smallest basis.
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5.2 Well-founded Resource

We know that every basis must contain the footprints. Thtisffootprints alone form

a basis, then the function will havesanallesicomplete specification whose domain are
just the footprints. We find that, for well-founded resouncedels, this is indeed the
case.

Theorem 3 (Sufficiency 1).If a separation algebra is well-founded under the re-
lation, then the footprints of any local function form a tsaffir it, thatis,f = Ly, ¢-

Proof: Assume thaty is well-founded under<. We shall show by induction that
Lr(sy,s(0) = f(o) forall o € X. The induction hypothesis is that for all < o,
Lppy,s(a’) = f(o')

case 1:Fy (o). We havef (o) = {u} = f(o) is in the intersection in the definition of
LF(.m(o—), and soLF(f)’f(o—) C f(o). We have by locality thaf () C LF(f),f(cr),
and sof (o) = Lp(y),¢(0).

case 2-Fy (o). We have

f(o) =Lys(o) (because is nota footprint of f)

= [{o -0} f(o)
o' <o
|_| ({o—0'} = |_| {0’ ="} % f(¢”)) (by the induction hypothesis)
o' <o o' 20!, Fy (o)
['] {oc—0o'}x{c' ="} * f(6") (bythe precision ofc — o’})

o' <o,0'" =<0’ ,Fs(c’")
=[] AHoe=0"3x1("

o' <0,F¢ (o)
= |_| {oc —d"}* f(c") (because is not a footprint of f)

o' 20,Ff(c’)

= Lp(s),s(0)

In section 3, the notions of big and small specifications virtreduced (definition 16),
and the existence of a big specification was shown (propos#t). We are now in a
position to show the existence of the small specificationsfell-founded resource. If
X7 is well-founded, then every local function has a small sfiEation whose domain is
the footprints of the function.

Corollary 2 (Small specification).For well-founded separation algebras, every local
function has a small specification givendy ) ;-

Proof: ¢r(y, s is complete by theorem 3 and lemma 7. It has the smallest agooyai
the essentiality theorerll
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Thus, for well-founded resource, the footprints are alwessential and sufficient,
and specifications need not consider any other elementsabtiqe, small specifica-
tions may not always be in canonical form even though theyagdahave the same
domain as the canonical form. For example, the heap dispmeenand can have the
specification{({{ — v | v € Val},{ug})} rather than the canonical one given by
({1}, {ur}) | v € Val}.

Although well-founded resource is usually the case in fizact notable exception
is the fractional permissions model [4] in which the reseurcludes permissions that
can be indefinitely divided.

5.3 Non-well-founded Resource

If a separation algebra is non-well-founded under theelation, then there is some
infinite descending chain of elements - o5 > o3.... From a resource-oriented point
of view, there are two distinct ways in which this could happ®ne way is when it
is possible to remove non-empty pieces of resource fromta stdefinately, as in the
separation algebra of non-negative real numbers undeti@udn this case any infinite
descending chain does not have more than one occurrencg elieanent. Another way
is when an infinite chain may exist because of repeated caxtces of some elements.
This happens when therenggativitypresent in the resource: some elements have in-
verses in the sense that adding two non-unit elements tegethy give the unit. An
example is the separation algebra of integers under additiberel + (—1) = 0, so
adding -1 to 1 is like adding negative resource. Also, sihce 0 + 1, we have that
1> 0 = 1... forms an infinite chain.

Definition 21 (Negativity). A separation algebra~ hasnegativity iff there exists a
non-unit element € X that has an inverse, that is, # v ando e ¢/ = u for some
o’ € X. We say thaf’ is non-negativeif no such element exists.

All separation algebras with negativity are non-well-fded, because for elements
o ando’ such that e ¢’ = u, the sef{ o, u} forms an infinite descending chain (there is
no least element). All well-founded models are therefone-negative. For the general
non-negative case, we find that either the footprints forrasagy or there is no smallest
basis.

Theorem 4 (Sufficiceny II).If X is non-negative then, for any locd] either the foot-
prints form a smallest basis or there is no smallest basid.for

Proof: Let A be a basis foif (we know there is at least one, which is the trivial basis
X itself). If A is the set of footprints then we are done. So assun@ntains some
non-footprintu. We shall show that there exists a smaller basisfforhich isA/{u}.

So it suffices to showf (o) = L /¢,},5(0) forall o € £. We have

flo)=Laso)= [] {o—o}xf(o)

o’'<0,0'€A
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case 1 £ 0. We havef (o) = ['] {0 =0} x f(0') = Lasgy.5(0)
_ o'=o,0'€A/{u}
case 2 = o. In this case

fe)=( [] Ho=oY#f0)) 1 {o-upxfw) @)
o' Ro,0'€A/{p}
Consider the right hand side of the intersectioflijt

{o—n}* fw)
={o—pu}+Ls(n) (because: is nota footprint of f)

={o—pu}x [|{n—0}=f(o)

o' <pu
—fo—my [Tlu-ots  [1  {o'=o"}= 100"
o' <u o <c’,0""€A/{p}

(case 1 applies becauggis non-negative, s6’ < u = p A o’)
=[] [] {o—pys{pu—o'}x{c’ —o" = f(c") (by precision)
o'<po’" =0’ 0""cA/{p}
=[] [T {o—0"}+f(0")
o' <po’ <o’ 0”"€A/{pn}
= [] {o—0"}* f(o")
o <u,0"€A/{p}
= [1  {o—0"}=f(")

o a0 €A/}

This is the left hand side of the intersection(ir, and thus we have

flo) = [l {o—o}x s

o' %0,0’ €A/{n}

Corollary 3 (Small Specification).If X' is non-negative, then every local function ei-
ther has a small specification given by , or there is no smallest complete specifi-
cation for that function.

Example 4 (Permissions).he fractional permissions model [4] is non-well-founded
and non-negative. It can be represented by the separagebralHPerm = L —gy,

Val x P whereL andVal are as in example 1, and is the interval (0, 1] of rational
numbers. Elements dP represent ‘permissions’ to access a heap cell. A permission
of 1 for a cell means both read and write access, while any igsion less than 1

is read-only access. joins disjoint heaps and adds the permissions togetherrfpr a
cells that are present in both heaps only if the resultingnssion for each heap cell
does not exceed 1, and the operation is undefined otherwigbid case, the write
function that updates the value at a location requires a igsiom of at least 1 and
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faults on any smaller permission. It therefore has a smatiifipation with precondition
being the cell with permission 1. The read function, howgean execute safely on
any positive permission, no matter how small. Thus this fisnccan be completely
specified with a specification that has a precondition giwethk cell with permission
z,forall 0 < z < 1. However, this is not amallestspecification, as a smaller one can
be given by further restricting < z < 0.5. We can therefore always find a smaller
specification by reducing the value obut keeping it positive.

For resource with negativity, we find that it is possible tedamall specifications
that include non-essential elements (which by theorem 2atéootprints). These el-
ements are non-essential in the sense that complete sp#aeiiie exist that do not in-
clude them, but there is no complete specification that aedionly essential elements.

Example 5 (Integerspn example of a model with negativity is the separation atgeb
of integers(Z, +,0). In this case there can be local functions which can havelsmal
specifications that contain non-footprints. Lfet Z — P(Z) " be defined ag (n) =

{n + ¢} for some constant, as in example 1f is local, but it has no footprints. This is
because for any, f(n) = 1 + f(n — 1), and son is not a footprint off. However,f
does have small specifications, for exampld0}, {c})}, {({5}, {6 + ¢})}, or indeed
{({{n},{n + c})} for anyn € Z. So although every element is non-essential, some
element is required to give a complete specification.

6 Regaining Safety Footprints

In the introduction we discussed how the notion of footwiam the smallest safe states
- the safety footprintis inadequate for giving complete specifications, astilaied by
theAD example. For this reason, so far in this paper we have imgagsti the general no-
tion of footprint for arbitrary local functions on arbitsaseparation algebras. Equipped
with this general theory, we now investigate how the regajmif safety footprints may
be achieved with different resource modelling choices. & By presenting an alter-
native model of RAM, based on an investigation of why th® problem occurs in the
standard model. We then demonstrate that the footprintseofif) command in this
new model do correspond to the safety footprints. In the feation we identify, for
arbitrary separation algebras, a condition on the primitemmands of the program-
ming language which guarantees safety footprints for alypgms, and then show that
the safety footprints are in fact regained for all programsur new RAM model.

6.1 An alternative model

In this section we explore the possibility of an alternativeap model in which the
safety footprints do correspond to the actual footprinte. b&gin by taking a closer
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look at why theAD anomaly occurs in the standard heap and stack model deganibe
example 1.2. Consider an application of the allocation camairin this model:

new(z](42 —vex > w)={42—vex—lel—r |l e L\{42},r € Val}

The intuition of locality is that the initial stat#2 — v e 2 — w is only describing
a local region of the heap and the stack, rather than the wgloleal state. In this
case it says that the address 42 is initially allocated, hedléfinition of the allocation
command is that the resulting state will have a new cell, tthédress of which can
be anything other than 42. However, we notice that the Instiate is in fact not just
describing only its local region of the heap. It does stast 42 is allocated, but it also
implicitly states a very global property: thall other addresses are not allocatebhis
is why the allocation command can choose to allocate anyitotthat is not 42. Thus
in this model, every local state implicitly contains somelgll allocation information
which is used by the allocation command. In contrast, a conghsach as mutate does
not require this global ‘knowledge’ of the allocation statf any other cell that it is not
affecting. Now the global information of which cells aredighangesas more resource
is added to the initial state, so this can lead to programyietiebeing sensitive to the
addition of more resource to the initial state, and this gieitg is apparant in the case
of the AD program.

Based on this observation, we consider an alternative maddiefore, a state will
represent a local allocated region of the heap. Howeveakeaihkefore, a given state will
say nothing about the allocation status of any other lonati®his information will be
represented explicitly in &ee set, which will contain all the locations that are not al-
located in theglobal heap The model can be interpreted from an ownership point of
view, where the free set is to be thought of as a unique, atpieie of resource that
commands involving allocation need ownership of. An angisgvith the permissions
model: a command that wants to read or write to a cell needsship of the appropri-
ate permission on that cell. In the same way, in our new mededmmand that wants
to do allocation or deallocation needs to have ownershipefftee set: the ‘permis-
sion’ to see which cells are free in the global heap so thatritahoose one of them to
allocate, or update the free set with the address that itateaés. On the other hand,
commands that only read or write to cells shall not requira@nship of the free set.

Formally, we work with a separation algel(H, e, uy). Let L, Var andVal be
locations, variables and values, as before. The stated] are given by the grammar:

hio=ug|l—v|z—v|F|heh

wherel € L, v € Val, z € Var andF € P(L). As before,e is undefined for states
with overlapping locations or variables. Liic(h) andvar(h) be the set of locations
and variables in state respectively. The sef' carries the information of which loca-
tions are free. Thus we allow at most one free set in a stateftenfree set must be
disjoint from all locations in the state. Soe F is only defined wheroc(h) N F = ()
andh # I’ e F’ for anyh’ and F’. Associativity and commutativity of is imposed,
anduy is defined as the identity; e h = heug = h.

In this setting, the allocation command requires ownershithe free set for safe
execution, since it chooses the location to allocate framgét. It removes the chosen
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address from the free set as it allocates the cell. It is defase

[ {Wer—lel—weF\{l}|weVal,lc F} h=h ex—veF
newlz](h) = { T otherwise

Note that the output statds e = +— [ e [ — w e F\{I} are defined, since we have
I ¢ F\{l} and the input staté’ e x — v e F' implies thatloc(h') is disjoint from
F\{l}. The deallocation command also requires the free set, aslétas the set with
the address of the cell that it deletes:

, Wex—leFU{l}}) h=hex—lelveF
disposelz](h) = { il’ w otherwise

Again, the output states are defined, since the input stagibesthatloc(h’) U {i} is
disjoint from F', and soloc(k') is disjoint from F U {/}. Notice that in this model,
only the allocation and deallocation commands require ogiip of the free set, since
commands such as mutation and lookup are completely indepéif the allocation
status of other cells, and they are defined exactly as in eleain:

{hl0$'—>lOl»—>’U} h=hex—lel—w

mutate[r, v](h) = { T otherwise

hWex—lel—vey—uvt h=hex—lel—vey—w
lookup[z,y](h) = { {T : otherwise

Lemma 9. The functionswew|z], dispose|x], mutate[x,v] and lookup[z,y] are all
local in the separation algebréH, e, u ).

Proof: Let f = new[z] and assumé’#h. We want to showf(h' e h) T {h'} « f(h).
Assumé, = h'” e x+— v o F for someh”, z, [, v and F’, because otherwisg(h) = T
and we are done. So we have

f(W eh)={h' eh" exr—leliswe F\{l}|weVallecF}
={h}x{h ex—lel—we F\{l}|we Val,l e F}

= (W'} f(h)

The other functions can be checked in a similar vilhy.

6.2 Safety footprints for AD

We consider the footprint of thAD command in the new model. In this model the
sequential compositionew[z]; dispose[x] gives the function

[ {Wex—leF|lcF} h=her—veF
AD(h) = { T otherwise
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The smallest safe states are given by the{set>ve F' | v € Val, F € P(L)}. By
lemma 6, these smallest safe states are footprints. Howevéee before, in this model
these are thenly footprints of theAD command. To see this, consider a larger state
h e x+—wv e F' for non-emptyh. We have

AD(hex—veF)={hex—leF|]lcF}
={h}x{z—leF|leF}
={h}x AD(x—veF)

Since the local limitL 4 p(hexz—ve F) C {h}+x AD(xz+— ve F') by definition, we have
by proposition5thal sp(hez+—ve F) = AD(hex—uve F), andschex—uveF
is not a footprint ofAD.

Thus the footprints ofA D in this model do not include any non-empty heaps. By
corollary 2, in this model thelD command has a smallest complete specification in
which the pre-condition only describes the empty heap. 3péification is

{{z—veF},{x—leF})|veVal,FeP(L)lecF}

Intuitively, it says that if initially the heap is empty, thvariablex is present in the
stack, and we know which cells are free in the global heam #fter the execution,
the heap will still be empty, exactly the same cells willldig free, and: will point to
one of those free cells. This completely describes the hehasf the command for all
larger states using the frame rule. For example, we get tmplsde specification on the
larger state in which 42 is allocated:

{{£2—w} x {z—ve F} {42~ w}x{z—leF})|v,we Val,F € P(L),l € F}

In the pre-condition, the presence of location 42 in the heapns that 42 is not in
the free setr’ (by definition ofx). Therefore, in the post-conditiom, cannot point to
42,

Notice that in order to check that we have ‘regained’ safeptgrints, we only
needed to check that the footprint definition (definition é8)responds to the smallest
safe states. The desired properties such as essentiafftgiesicy, and small specifica-
tions then follow by the results established in previougisas.

6.3 Safety footprints for arbitrary programs

Now that we have regained the safety footprintsA@rin the new model, we want to
know if this is generally the case fany program We consider the abstract imperative
programming language given in [9]:

Cu=c|skip|C;C|C+C|C*

wherec ranges over an arbitrary collection of primitive commanidss nondeterminis-
tic choice,; is sequential composition, arig* is Kleene-star (iterateg. As discussed
in [9], conditionals and while loops can be encoded usirand(-)* and assume state-
ments. The denotational semantics of commands is giverguré&.
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[c] € LocFunc [skip](o) = {o}
[Ci;Co] =[G [C]  [Cr+Ce]=[C]uC:]  [C]=L1,.ICc"]

Fig. 2. Denotational semantics for the imperative programminguzige

Taking the primitive commands to bew|x], dispose[z], mutate[z, v], andlookup|x, y],
our original aim was to show that, for every commagidthe footprints of|C] in the
new model are the smallest safe states. However, in attegiatido this, we identified
a general condition on primitive commands under which tisaltéholds for arbitrary
separation algebras.

Let f be a local function on a separation algebralf, for A € P(X), we define

f(A) = |_| f (o), then the locality condition (definition 5) can be restated a
oc€EA

Vo',o € X. f({o'} + {o}) E{o"} x f({o})

As discussed before, the ordering allows local functions to be more deterministic
on larger states. This sensitivity of determinism to largtates is apparant in theD
command in the standard model from example 1.2. On the engay,Hhe command
produces an empty heap, and reassigns variabbeanyvalue, while on the singleton
cell 1, it disallows the possibility that = 1 afterwards. In the new model, thé&D
command does not have this sensitivity of determinism irothtput states. In this case
the presence or absence of the cell 1 does not affect thermatcof theA D command,
since the command can only assigmo a value chosen from the free set, which does
not change no matter what additional cells may be framed ith ihs observation, we
consider the general class of local functions in which thiss#tivity of determinism is
not present.

Definition 22 (Determinism Constancy).Let f be a local function andafe(f) the
set of states on whicfidoes not faultf has the determinism constancy property iff for
everyo € safe(f),

Vo' € . f({o'} + {o}) = {0} * F({o})

Notice that the determinism constancy property by itsefflies that the function is
local, and it can therefore be thought of as a form of ‘strayaality’. Firstly, we find
that local functions that have determinism constancy adNeve footprints given by
the smallest safe states.

Lemma 10. If a local functionf has determinism constancy then its footprints are the
smallest safe states.

Proof: Letmin(f) be the smallest safe states fofThese are footprints by lemma 6.
For any larger states’ e o whereo € min(f), o’ € X ando is non-empty, we have

flo"eo) = f({o’} x{o}) = {o"} x f(0)
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SinceLs(o’ e o) C {c'} * f(o), by proposition 5 we have thidit; (¢’ e o) = f(c' @),
and soc’ e ¢ is not a footprint off. M

We now demonstrate that the determinism constancy propepyeserved by all
the constructs of our programming language. This impliasittall the primitive com-
mands of the programming language have determinism canstdren the footprints
of every program are the smallest safe states.

Theorem 5. If all the primitive commands of the programming languageéhdeter-
minism constancy, then the footprint of every program igigiy the smallest safe
states.

Proof: Assuming all primitive commands have determinism constame shall show
by induction that every composite command has determin@mstancy and the result
follows by lemma 10. So for commands andCs, let f = [C1] andg = [C:2] and
assumef andg have determinism constancy. For sequential compositierhave for
o € safe(f;g) ando’ € X,

(f;9)({o'} *{o})
=g9(f{o'} *{o}))
=g({o'} x f({c}))
(f has determinism constancy amd: safe(f) sinceo € safe(f;g))

=g( || {o'}+{or})
g1€f(o)
= || 9{o'}x{or})
o1€f(0)
L] {o'}*g(0n)
o1€f(o)
(gehas determinism constancy amd € safe(g) sinceo € safe(f;g) andoy € f(0))

={o'}x || g(or) (distributivity)
o1€f(0)

={o'} = (f;:9)(0)

For non-deterministic choice, we have toE safe(f + g) ando’ € X,
(f+9){o'} = {o})
= f{o'} +{o}) bg({o’} +{o})
={o"t+ f({o}) u{o'} xg({o})
(f andg have determinism constancy amdt safe(f) ando € safe(g) sinceo € safe(f + g))
={o'}* (f({c}) Ug({c})) (distributivity)
— {0} + (f +9)({o})
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For Kleene-star, we have fore safe(f*) ando’ € X,

(f){o'} +{o})
=]/ (o} {o})
=o'+ (o}

n
(determinism constancy preserved under sequential catigroando € safe(f™))

={o'} x| | f"({o}) (distributivity)

={o"} (/) ({e})
|

Now that we have shown the general result, it remains to ctiextlall the primitive
commands in the new model of section 6.1 do have determinisrstancy.

Proposition 6. Let H; be the stack and heap model of example 1.2Hnbe the alter-
native model of section 6.1. The commanéds|x], mutate[z, v] andlookup[z, y] all
have determinism constancy in both models. dikgose[z] command has determinism
constancy inHy but not in H;.

Proof: We give the proofs for the new and dispose commands in the todels, and
the cases for mutate and lookup can be checked in a similafwayispose|x] in Hy,
the following counterexample shows that it does not haverdghism constancy.

disposelz]({l—v} * {x—lel—w})
= dispose[z](D)
E {l—vex—l}
= {l—~v} * dispose|z|(x—1 o [—w)

Fornewlz] in Hy, any safe state is of the fore x+— v. For anyh’ € H;, we have
{h'} * newlz](he xr—v) = {h'} x {hex—lel—w|we Val,l € L\loc(h)} (1)

If h” e h @ z+— v is undefined then’ shares locations wittoc(h) or variables with
var(h) U {z}. This means that the RHS inis the empty set. We havecw[z]|({h’} *
{hex—v}) = new[z](d) = @ = {h'} xnew|z](hex—v). If k' e hex— v is defined,
then

newlzx]({h'} x {h e x—uv})
= new|x](h'  h ® x+—v)
={hWehex—lel—w|weValle L\loc(h' eh)}
={hW}*x{hex—lel—w|weValle L\loc(h' e h)}
={h}«{hex—lel—w|weValle L\loc(h)}
= {h'} x new[z](h ® x—v)
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For dispose|z] in Ho, any safe state is of the forme x+— /e [+—v e F. Leth' € H,.
We have

{W'} * dispose[z](h e z—lel—ve F)={h'} x {hex—le FU{I}} (i)

If hehex—lel—wveF isundefined then eithér contains a free set or it contains
locations inloc(h) U {i} or variables invar(h) U {z}. If b’ contains a free set or it
contains locations itoc(h) or variables ivar(h)U{z}, then the RHS it} is the empty
set. Ifh’ contains the locatiohthen also the RHS ifft is the empty set since the free set
F U {l} also containg. Thus in both cases the RHS{inis the empty set, and we have
dispose[z]({h'}x{hexrlelsveF}) =0 = {h'}*dispose[z|(hexrlel—veF).

If h" e hex—iel—uve F is defined then we have

dispose[x]({h'} x {hex—lel—veF})
= dispose[z](h e hexr—leli—veF)
={hehex—le FU{l}}
={h'}«{hex—le FU{l}}
= {h'} x dispose[z]|(he x>l el—veF)

Fornew[z] in Hs, any safe state is of the forme x—uv e F. Leth’ € H,. We have
{h'}snew[z](hex—veF) = {h'}x{hexrslel—weF\{l} | w e Val,l € F} ({it)

If " o h e x— v e F is undefined then eithér’ contains a free set or it contains
locations infoc(h) or variables irvar(h) U {z}. In all these cases the RHSji is the
empty set, and so we havew[z]|({h'} *{hez—veF}) =0 = {h'} xnew(z|(hex—
vel),

If b’ o h e z+—wv e Fis defined then we have

new[z]({h'} x {hex—veF})
= new[z|(h' e hex—veF)
={hWehex—lel—we F\{l}|weValleF}
={h}+x{hex—lel—we F\{l}|weVal,lec F}
= {h'} * new[z](hexr—v e F)

Thus theorem 5 and proposition 6 tell us that in the alteveatiodel of section
6.1, the footprint of every program is given by the smallede states, and hence we
have regained safety footprints for all programs. In fdet,4ame is true for the original
model of example 1.2 if we do not include the dispose commanral primitive com-
mand, since all the other primitive commands have detesmirdonstancy. This, for
example, would be the case when modelling a garbage calléantguage [16].

7 Conclusions

In this work we have developed a general theory of footpfiotshe abstract notion
of local functions on separation algebras. Based on an sisady the definition of
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locality introduced in [9], we have introduced the definitiof the footprint of a local

function, and have demonstrated that according to this itlefin the footprints are

the only essential elements necessary to obtain completéfisations for local Hoare
reasoning about such functions. For well-founded resouarodels, we have shown
that the footprints are also sufficient, and we have alsoepites results for non-well-
founded models.

The final section demonstrates how this theory of footprirats been applied to
resolve the safety footprint problem discussed in the thtotion. We have introduced
an alternative heap model in which safety footprints arairegd for all programs, and
have presented a general condition on primitive commandsruvhich safety foot-
prints are regained for all programs in arbitrary modelse Teory of footprints has
proven very useful in exploring such situations in whichesafootprints could be re-
gained, as one only needs to check that the smallest saés statrespond to the foot-
print definition 18. This automatically gives the requiredperties such as essentiality
and sufficiency, which, without the footprint definition atidorems, would need to be
explicitly checked in the different cases.

Finally, we comment on some related work. The discussiohigygaper has been
based on the static notion of footprintssiatesof the resource on which a program acts.
A different notion of footprint has recently been describeflL 0], where footprints are
viewed astracesof execution of a computation. O’'Hearn has described howAthe
problem is avoided in this more elaborate trace semantcteallocation of cells in
an execution prevents the framing of those cells. Interghti however, our example
model from section 6.1 illustrates that it is not essentiahbve to this more elaborate
setting and incorporate dynamic, execution-specific miion into the footprint in
order to resolve th&D problem. In our model, with the explicit representation refef
cells in states, one can remain in an extensional semantithave a purely static,
resource-based (rather than execution-based) view gfifioids.
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