
Footprints in Local Reasoning

Mohammad Raza and Philippa Gardner

Department of Computing,
Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK

{mraza,pg}@doc.ic.ac.uk

Abstract. Local reasoning about programs exploits the natural local behaviour
common in programs by focussing on the footprint - that part of the resource
accessed by the program. We address the problem of formally characterising and
analysing the footprint notion for abstract local functions introduced by Calcagno,
O’Hearn and Yang. With our definition, we prove that the footprints are the only
essential elements required for a complete specification ofa local function. We
formalise the notion of small specifications in local reasoning and show that for
well-founded resource models, a smallest specification always exists that only
includes the footprints, and also present results for the non-well-founded case.
Finally, we use this theory of footprints to investigate theconditions under which
the footprints correspond to the smallest safe states. We present a new model of
RAM in which, unlike the standard model, the footprints of every program corre-
spond to the smallest safe states, and we also identify a general condition on the
primitive commands of a programming language which guarantees this property
for arbitrary models.

Categories and Subject DescriptorsD.2.4 [Software/Program verifica-
tion]: Correctness proofs, Formal methods, Validation; F.3.1 [Specifying
and Verifying and Reasoning about Programs]: Logics of programs

General TermsLanguages, theory, verification

Key words footprints, separation logic, local reasoning

1 Introduction

Local reasoning about programs focusses on the collection of resources directly acted
upon by the program. It has recently been introduced and usedto substantial effect in
local Hoare reasoning about memory update. Researchers previously used Hoare rea-
soning based on First-order Logic to specify how programs interacted with thewhole
memory. O’Hearn, Reynolds and Yang instead introduced local Hoare reasoning based
on Separation Logic [14, 11]. The idea is to reason only aboutthe local parts of the
memory—thefootprints—that are accessed by a program. Intuitively, the footprints
form the pre-conditions of thesmallaxioms, which provide the smallest complete spec-
ification of the program. All the true Hoare triples are derivable from the small axioms

2 Mohammad Raza and Philippa Gardner

and the general Hoare rules. In particular, theframe ruleextends the reasoning to prop-
erties about the rest of the heap which has not been changed bythe command.

O’Hearn, Reynolds and Yang originally introduced Separation Logic to solve the
problem of how to reason about the mutation of data structures in memory. They have
applied their reasoning to several memory models, including heaps based on pointer
arithmetic [14], heaps with permissions [4], and the combination of heaps with vari-
able stacks which views variables as resource [5, 17]. In each case, the basic soundness
and completeness results for local Hoare reasoning are essentially the same. For this
reason, Calcagno, O’Hearn and Yang [9] recently introducedabstract local functions
over abstract resource models which they call separation algebras. They generalised
their specific examples of local imperative commands and memory models in this ab-
stract framework. They introduced Abstract Separation Logic to provide local Hoare
reasoning about such functions, and give general soundnessand completeness results.

We believe that the general concept of a local function is a fundamental step to-
wards establishing the theoretical foundations of local reasoning, and Abstract Sepa-
ration Logic is an important generalisation of the local Hoare reasoning systems now
widely studied in the literature. However, Calcagno, O’Hearn and Yang do not char-
acterise the footprints and small axioms in this general theory, which is a significant
omission. O’Hearn, Reynolds and Yang, in one of their first papers on the subject [14],
state the local reasoning viewpoint as:

‘to understand how a program works, it should be possible forreasoning and
specification to be confined to the cells that the program actually accesses. The
value of any other cell will automatically remain unchanged.’

A complete understanding of the foundations of local Hoare reasoning therefore re-
quires a formal characterisation of the footprint notion. O’Hearn tried to formalise
footprints in his work on Separation Logic (personal communication with O’Hearn).
His intuition was that the footprints should be the smalleststates on which the program
is safe - thesafety footprint, and that thesmall axiomsarising from these footprints
should give rise to a complete specification using the general rules for local Hoare rea-
soning. However, Yang discovered that this notion of footprint does not work, since it
does not always yield acompletespecification for the program. Consider the program1

AD ::= x := new(); dispose(x)

This allocate-deallocateprogram allocates a new cell, stores its address value in the
stack variablex, and then deallocates the cell. It is local because all its atomic con-
stituents are local. This tiny example captures the essenceof a common type of pro-
gram; there are many programs which, for example, create a list, work on the list, and
then destroy the list.

The smallest heap on which theAD program is safe is the empty heapemp. The
specification using this pre-condition is:

{emp} AD {emp} (1)

1 Yang’s example was the ‘allocate-deallocate-test’ program ADT ::= ‘x := new();dispose(x); if
(x=1) then z:=0 else z:=1;x=0’. OurAD program provides a more standard example of
program behaviour.

Footprints in Local Reasoning 3

We can extend our reasoning to larger heaps by applying the frame rule: for example,
extending to a one-cell heap with arbitrary addressl and valuev gives

{l 7→ v} AD {l 7→ v} (2)

However, axiom (1) does not give the complete specification of theAD program. In fact,
it captures very little of the spirit of allocation followedby de-allocation. For example,
the following triple is also true:

{l 7→ v} AD {l → v ∧ x 6= l} (3)

This triple (3) is true because, ifl is already allocated, then the new address cannot be
l and hencex cannot bel. It cannot be derived from (1). However, the combination of
axiom (1) and axiom (3) for arbitrary one-cell heaps does provide the smallest complete
specification. This example illustrates that O’Hearn’s intuitive view of the footprints as
the minimal safe states just does not work for common imperative programs.

In this paper, we introduce the formal definition of the footprint of a local func-
tion that does yield a complete specification for the function. For ourAD example, our
definition identifiesemp and the arbitrary one-cell heapsl 7→ v as footprints, as ex-
pected. We prove the general result that, for any local function, the footprints are the
only elements which areessentialto specify completely the behaviour of this function.

We then investigate the question ofsufficiency. For well-founded resource, we show
that the footprints are also always sufficient: that is, a complete specification always
exists that only uses the footprints. We also explore results for the non-well-founded
case, which depend on the presence ofnegativity. A resource has negativity if it is
possible to combine two non-unit elements to get the unit, which is like taking two non-
empty pieces of resource and joining them to get nothing. Fornon-well-founded models
without negativity, such as heaps with infinitely divisiblefractional permissions, either
the footprints are sufficient (such as for thewrite command in the permissions model)
or there is no smallest complete specification (such as for the read command in the
permissions model). For models with negativity, such as theintegers under addition, we
show that there can exist smallest complete specifications based on elements that are
not essential and hence not footprints.

The final section reports on work that is new to this journal version of the paper.
We apply our theory of footprints to the issue of regaining the safety footprint notion,
which has been plagued by theAD problem. We address a question that arose from
discussions with O’Hearn and Yang, which is whether there isan alternative model of
RAM in which the safety footprint does correspond to the actual footprint, yielding
complete specifications. We present such a model based on an examination of the cause
of theAD problem in the original model. We prove that in this new modelthe footprint
of everyprogram, includingAD, does correspond to the safety footprint. Moreover, we
identify a general condition on the primitive commands of the programming language
which ensures this property to hold in arbitrary models.

As well as the final section on the regaining of safety footprints, this journal version
also contains proofs of all the results that were excluded from the conference paper.
AcknowledgementsWe thank Calcagno, O’Hearn and Yang for detailed discussions
on footprints. Raza acknowledges support of an ORS award. Gardner acknowledges
support of a Microsoft/Royal Academy of Engineering SeniorResearch Fellowship.

4 Mohammad Raza and Philippa Gardner

2 Background

The discussion in this paper is based on the framework introduced in [9], where the
approach of local reasoning with separation logic was formalised for a notion oflocal
functions that act on an abstract model of resource. In this work we investigate the
notion of footprint in this abstract setting, and this section gives a description of the
underlying framework.

2.1 Separation Algebras and Local Functions

We begin by describing separation algebras, which provide amodel of resource which
generalises over the specific heap models used in separationlogic works. Informally,
a separation algebra models resource as a set of elements that can be ‘glued’ together
to create larger elements. The ‘glueing’ operator satisfiesproperties in accordance with
this resource intuition, such as commutativity, associativity, as well as the cancellation
property which requires that, if we are given an element and alarger element, then there
is a unique element that can be glued to the smaller one to givethe larger one.

Definition 1 (Separation Algebra).A separation algebra is a cancellative, partial
commutative monoid(Σ, •, u), whereΣ is a set and• is a partial binary operator
with unit u. The operator satisfies the familiar axioms of associativity, commutativity
and unit, using a partial equality onΣ where either both sides are defined and equal,
or both are undefined. It also satisfies the cancellative property stating that, for each
σ ∈ Σ, the partial functionσ • (·) : Σ 7→Σ is injective.

We shall sometimes overload notation, usingΣ to denote the separation algebra
(Σ, •, u). Examples of separation algebras include multisets under union (with unit∅),
the natural numbers with addition (with unit0), heaps as finite partial functions from
locations to values ([9] and example 1), heaps with permissions [9, 4], and the com-
bination of heaps and variable stacks enabling us to model programs with variables as
local functions ([9], [17] and example 1). These examples all have an intuition of re-
source, withσ1 •σ2 intuitively giving more resource than justσ1 andσ2 for σ1, σ2 6= u.
However, notice that the very general notion of a separationalgebra also permits exam-
ples which may be non-intuitive, such as{a, u} with a • a = u. Since our aim is to
investigate general properties of local reasoning, we are inclined to impose minimal re-
strictions on what counts as resource. Thus our results shall hold for arbitrary separation
algebras, be they intuitive or non-intuitive examples of resource.

Definition 2 (Separateness and substate).Given a separation algebra(Σ, •, u), the
separateness(#) relation between two statesσ0, σ1 ∈ Σ is given byσ0#σ1 iff σ0 •
σ1 is defined. Thesubstate(�) relation is given byσ0 � σ1 iff ∃σ2. σ1 = σ0 • σ2. We
write σ0 ≺ σ1 whenσ0 � σ1 andσ0 6= σ1.

Footprints in Local Reasoning 5

Lemma 1 (Subtraction).For σ1, σ2 ∈ Σ, if σ1 � σ2 then there exists a unique ele-
ment denotedσ2 − σ1 ∈ Σ, such that(σ2 − σ1) • σ1 = σ2.

Proof: Existence follows by definition of�. For uniqueness, assume there existσ′, σ′′ ∈
Σ such thatσ′ • σ1 = σ2 andσ′′ • σ1 = σ2. Then we haveσ′ • σ1 = σ′′ • σ1, and thus
by the cancellation property we haveσ′ = σ′′.

We consider functions on separation algebras that generalise imperative programs
operating on heaps. Such programs may behave non-deterministically, and can also
fault. Thus to model non-determinism, we need to consider functions from a separation
algebraΣ to its powersetP(Σ). To model faulting, we add a special top element⊤ to
the powerset. We therefore consider total functions of the form f : Σ → P(Σ)⊤. On
any element ofΣ, the function can either map to a set of elements, to modelsafeexe-
cution with non-deterministic outcomes, or to⊤, which represents a faulting execution.
Mapping to the empty set represents divergence (non-termination).

Definition 3. The standard subset relation on the powerset is extended toP(Σ)⊤ by
definingp ⊑ ⊤ for all p ∈ P(Σ)⊤. The binary operator∗ onP(Σ)⊤ is given by

p ∗ q = {σ0 • σ1 | σ0#σ1 ∧ σ0 ∈ p ∧ σ1 ∈ q} if p, q ∈ P(Σ)

= ⊤ otherwise

P(Σ)⊤ is a total commutative monoid under∗ with unit{u}.

Definition 4 (Function ordering). For functionsf, g : Σ → P(Σ)⊤, f ⊑ g iff f(σ) ⊑
g(σ) for all σ ∈ Σ.

We shall only consider functions that arewell-behavedin the sense that they actlo-
cally with respect to resource. For imperative commands on the heap model, the locality
conditions were first characterised in [21], where a soundness proof for local reason-
ing with separation logic was demonstrated for the specific heap model. The conditions
identified were

– Safety monotonicity: if the command is safe on some heap, then it is safe on any
larger heap.

– Frame property: if the command is safe on some heap, then in any outcome of
applying the command on a larger heap, the additional heap portion will remain
unchanged by the command.

In [9], these two properties were amalgamated and formulated for abstract functions
on arbitrary separation algebras.

Definition 5 (Local Function). A local function on Σ is a total functionf : Σ →
P(Σ)⊤ which satisfies thelocality condition:

σ#σ′ implies f(σ′ • σ) ⊑ {σ′} ∗ f(σ)

We letLocFunc be the set of local functions onΣ.

6 Mohammad Raza and Philippa Gardner

Intuitively, we think of a command to be local if, whenever the command exe-
cutes safely on any resource element, then the command will not ‘touch’ any addi-
tional resource that may be added. Safety monotonicity follows from the above defi-
nition because, iff is safe onσ (f(σ) ⊏ ⊤), then it is safe on any larger state, since
f(σ′ • σ) ⊑ {σ′} ∗ f(σ) ⊏ ⊤.

The frame property follows by the fact that the additional stateσ′ is preserved in
the output off(σ′ • σ). Note, however, that the⊑ ordering allows for reduced non-
determinism on larger states. This, for example, is the casefor theAD command from
the introduction which allocates a cell, assigns its address to stack variablex, and then
deallocates the cell. On the empty heap, its result would allow all possible values for
variablex. However, on the larger heap where cell 1 is already allocated, its result would
allow all values forx except 1, and we therefore have a more deterministic outcomeon
this larger state.

Lemma 2. Locality is preserved under sequential composition, non-deterministic choice
and Kleene-star, which are defined as

(f ; g)(σ) =

{

⊤ if f(σ) = ⊤
⊔

{g(σ′) | σ′ ∈ f(σ)} otherwise

(f + g)(σ) = f(σ) ⊔ g(σ)

f∗(σ) =
⊔

n

fn(σ)

Example 1 (Separation algebras and local functions).

1. Plain heap model. A simple example is the separation algebra of heaps(H, •, uH),
whereH = L ⇀fin V al are finite partial functions from a set of locations to a set of
values, the partial operator• is the union of partial functions with disjoint domains,
and the unituH is the empty function. Forh ∈ H , let dom(h) be the domain of
h. We write l 7→ v for the partial function with domain{l} that mapsl to v. For
h1, h2 ∈ H , if h2 � h1 thenh1 − h2 = h1 |dom(h1)−dom(h2). An example of a
local function is thedispose[l] command that deletes the cell at locationl:

dispose[l](h) =

{

{h− (l 7→v)} h � (l 7→v)
⊤ otherwise

The function is local: ifh 6� (l 7→ v) thendispose[l](h) = ⊤, anddispose[l](h′ •
h) ⊑ ⊤. Otherwise,dispose[l](h′ • h) = {(h′ • h)− (l 7→v)} ⊑ {h′} ∗ {h− (l 7→
v)} = {h′} ∗ dispose[l](h).

2. Heap and stack. There are two approaches to modelling the stack in the litera-
ture. One is to treat the stack as a total function from variables to values, and only
combine two heap and stack pairs if the stacks are the same. The other approach,
which we use here, is to allow splitting of the variable stackand treat it as part of
the resource. We can incorporate the variable stack into theseparation algebra by

Footprints in Local Reasoning 7

using the setH = L ∪ V ar ⇀fin V al, whereL andV al are as before andV ar
is the set of stack variables{x, y, z, ...}. The• operator as before combines heap
and stack portions with disjoint domains, and is undefined otherwise. The unituH

is the state with an empty heap and empty stack, where both heap and stack are
empty. Although this approach is limited to disjoint reference to stack variables,
this constraint can be lifted by enriching the separation algebra withpermissions
[4]. However, this added complexity can be avoided for the discussion in this paper.
For a stateh ∈ H , we let loc(h) andvar(h) denote the set of heap locations and
stack variables in the domain ofh respectively. In this model we can define the
allocation and deallocation commands as

new[x](h) =

{

{h′ • x 7→ l • l 7→w | w ∈ V al, l ∈ L\loc(h′)} h = h′ • x 7→v
⊤ otherwise

dispose[x](h) =

{

{h′ • x 7→ l} h = h′ • x 7→ l • l 7→v
⊤ otherwise

Commands for heap mutation and lookup can be defined as

mutate[x, v](h) =

{

{h′ • x 7→ l • l 7→v} h = h′ • x 7→ l • l 7→w
⊤ otherwise

lookup[x, y](h) =

{

{h′ • x 7→ l • l 7→v • y 7→v} h = h′ • x 7→ l • l 7→v • y 7→w
⊤ otherwise

Note that in all cases, any stack variables that the command is referring to should
be in the stack in order for the command to execute safely, otherwise the command
will be acting non-locally. TheADcommand described in the introduction, which is
the sequential compositionnew[x]; dispose[x], corresponds to the following local
function

AD(h) =

{

{h′ • x 7→ l | l 6∈ loc(h′)} h = h′ • x 7→v
⊤ otherwise

3. Integers. The integers form a separation algebra under addition withidentity 0. In
this case we have that any ‘adding’ functionf(x) = {x + c} that adds a constant
c is local, while a function that multiplies by a constantc, f(x) = {cx}, is non-
local. However, the integers under multiplication also form a separation algebra
with identity 1, and in this case every multiplying functionis local but not every
adding function. This illustrates the point that the notionof locality of commands
depends on the notion of separation of resource that is beingused.

2.2 Predicates, Specifications and Local Hoare Reasoning

We now present the local reasoning framework for local functions on separation alge-
bras. This is an adaptation of Abstract Separation Logic [9], with some minor changes

8 Mohammad Raza and Philippa Gardner

in formulation for the purposes of our discussion. Predicates over separation algebras
are treated simply as subsets of the separation algebra.

Definition 6. A predicatep overΣ is an element of the powersetP(Σ).

Note that the top element⊤ is not a predicate and that the∗ operator, although defined
onP(Σ)⊤ × P(Σ)⊤ → P(Σ)⊤, acts as a binary connective on predicates. We have
the distributive law for union:

(
⊔

X) ∗ p =
⊔

{x ∗ p | x ∈ X} whereX ⊆ P(Σ)

The same is not true for intersection in general, but does hold for precise predicates.
A predicate is precise if for any state, there is at most a single substate that satisfies the
predicate.

Definition 7 (Precise predicate).A predicatep ∈ P(Σ) is preciseiff, for everyσ ∈
Σ, there exists at most oneσp ∈ p such thatσp � σ.

Thus with precise predicates, there is at most a unique way tobreak a state to get a
substate that satisfies the predicate. Such predicates are used in separation logic works to
describe heaps that contain data structures such as linked lists and trees. Any singleton
predicate{σ} is precise. Another example of a precise predicate is{l 7→ v | v ∈ V al}
for somel, while {l 7→v | l ∈ L} for somev is not precise.

Lemma 3 (Precision characterization).A predicatep is precise iff, for allX ⊆
P(Σ), (

d
X) ∗ p =

d
{x ∗ p | x ∈ X}

Proof: We first show the left to right direction. Assumep is precise. We have to show
that for allX ⊆ P(Σ), (

d
X) ∗ p =

d
{x ∗ p | x ∈ X}. Assumeσ ∈ (

d
X) ∗ p. Then

there existσ1, σ2 such thatσ = σ1 •σ2 andσ1 ∈
d
X andσ2 ∈ p. Thus for allx ∈ X ,

σ ∈ x ∗ p, and henceσ ∈
d
{x ∗ p | x ∈ X}. Now assumeσ ∈

d
{x ∗ p | x ∈ X}.

Thenσ ∈ x ∗ p for all x ∈ X . Hence there existsσ1 � σ such thatσ1 ∈ p. Sincep is
precise,σ1 is unique. Letσ2 = σ − σ1. Thus we haveσ2 ∈ x for all x ∈ X , and so
σ2 ∈

d
X . Hence we haveσ ∈ (

d
X) ∗ p.

For the other direction, we assume thatp is not precise and show that there exists
anX for which the distributive law does not hold. Sincep is not precise, there exists
a σ ∈ Σ such that for two distinctσ1, σ2 ∈ p, we haveσ1 � σ and σ2 � σ. Let
σ′

1 = σ − σ1 andσ′
2 = σ − σ2. Now letX = {{σ′

1}, {σ
′
2}}. Sinceσ ∈ {σ′

1} ∗ p and
σ ∈ {σ′

2} ∗ p, we haveσ ∈
d
{x ∗ p | x ∈ X}. However, because of the cancellation

property we have thatσ′
1 6= σ′

2, and so(
d
X) ∗ p = ∅ ∗ p = ∅. Hence,σ 6∈ (

d
X) ∗ p,

and we therefore have(
d
X) ∗ p 6=

d
{x ∗ p | x ∈ X}.

Our Hoare reasoning framework is formulated with tuples of pre- and post- condi-
tions, rather than the usual Hoare triples that include the function, as in [9]. In our case
the standard triple shall be expressed as a functionf satisfyinga tuple(p, q), written
f |= (p, q). The reason for this is that we shall be examining the properties that a pre-
and post- condition tuple may have with respect to a given function, such as whether a

Footprints in Local Reasoning 9

given tuple is complete for a given function. This approach is very similar to the notion
of thespecification statement(a Hoare triple with a ‘hole’) introduced in [12], which is
used in refinement calculi, and was also used to prove completeness of a local reasoning
system in [21].

Definition 8 (Specification).LetΣ be a separation algebra. AstatementonΣ is a
tuple (p, q), wherep, q ∈ P(Σ) are predicates. Aspecificationφ on Σ is a set of
statements. We letΦΣ = P(P(Σ) × P(Σ)) denote the set of all specifications on
Σ. We shall exclude the subscript when it is clear from the context. Thedomain of a
specification is defined asD(φ) =

⊔

{p | (p, q) ∈ φ}. Domain equivalenceis defined
asφ ∼=D ψ iff D(φ) = D(ψ).

Thus the domain is the union of the preconditions of all the statements in the specifica-
tion. It is one possible measure ofsize: how much ofΣ the specification is referring to.
We also adapt the notion of precise predicates to specifications.

Definition 9. A specification is precise iff its domain is precise.

Definition 10 (Satisfaction).A local functionf satisfies a statement(p, q), written
f |= (p, q), iff, for all σ ∈ p, f(σ) ⊑ q. f satisfies a specificationφ ∈ Φ, written
f |= φ, iff f |= (p, q) for all (p, q) ∈ φ.

Definition 11 (Semantic consequence).Let p, q, r, s ∈ P(Σ) and φ, ψ ∈ Φ. Each
judgement(p, q) |= (r, s), φ |= (p, q), (p, q) |= φ, and φ |= ψ holds iff all local
functions that satisfy the left hand side also satisfy the right hand side.

Proposition 1 (Order Characterization). f ⊑ g iff, for all p, q ∈ P(Σ), g |= (p, q)
impliesf |= (p, q).

For every specificationφ, there is a ‘best’ local function satisfyingφ (lemma 4),
in the sense that all statements that the best local functionsatisfies are satisfied by any
local function that satisfiesφ. For example, in the heap and stack separation algebra of
example 1.2, consider the specification

φ = {({x 7→v}, {x 7→ l • l 7→w | l ∈ L,w ∈ V al}) | v ∈ V al}

There are many local functions that satisfy this specification. Trivially, the local function
that always diverges satisfies it. Another example is the local function that assigns the
valuew of the newly allocated cell to be 0, rather than any non-deterministically chosen
value. However, the best local function for this specification is thenew[x] function
described in 1.2, as it can be checked that for any local function f satisfyingφ, we
havef ⊑ new[x]. The notion of the best local function shall be used when addressing
questions about completeness of specifications. It is adapted from [9], except that we
generalise to the best local function of a specification rather than a single pre- and post-
condition pair.

10 Mohammad Raza and Philippa Gardner

Definition 12 (Best local function).For a specificationφ ∈ Φ, the best local function
of φ, writtenbla [φ], is the function of typeΣ → P(Σ)⊤ defined by

bla [φ](σ) =
l

{{σ′} ∗ q | σ = σ′ • σ′′, σ′′ ∈ p, (p, q) ∈ φ}

Lemma 4. Letφ ∈ Φ. The following hold:

– bla[φ] is local
– bla[φ] |= φ
– if f is local andf |= φ thenf ⊑ bla [φ]

Proof: To show thatbla[φ] is local, considerσ1, σ2 such thatσ1#σ2. We then calculate

bla [φ](σ1 • σ2)
=

d
{{σ′} ∗ q | σ1 • σ2 = σ′ • σ′′, σ′′ ∈ p, (p, q) ∈ φ}

⊑
d
{{σ1 • σ′} ∗ q | σ2 = σ′ • σ′′, σ′′ ∈ p, (p, q) ∈ φ}

=
d
{{σ1} ∗ {σ

′} ∗ q | σ2 = σ′ • σ′′, σ′′ ∈ p, (p, q) ∈ φ}
= {σ1} ∗

d
{{σ′} ∗ q | σ2 = σ′ • σ′′, σ′′ ∈ p, (p, q) ∈ φ}

= {σ1} ∗ bla [φ](σ2)

In the second-last step we used the property that{σ1} is precise (lemma 3).

To show thatbla[φ] satisfiesφ, consider any(p, q) ∈ φ andσ ∈ p. Thenbla[φ](σ) ⊑
{u} ∗ q = q.

For the last point, supposef |= φ and f is local. Then for anyσ such thatσ =
σ1 • σ2 andσ2 ∈ p and(p, q) ∈ φ,

f(σ) = f(σ1 • σ2)
⊑ {σ1} ∗ f(σ2)
⊑ {σ1} ∗ q

Thusf(σ) ⊑ bla[φ](σ).
In the case that there do not existσ1, σ2 such thatσ = σ1 • σ2 andσ2 ∈ D(φ), then

bla[φ](σ) =
d
∅

= ⊤

So in this case alsof(σ) ⊑ bla[φ](σ).

Lemma 5. For φ ∈ Φ andp, q ∈ P(Σ), bla[φ] |= (p, q) ⇔ φ |= (p, q).

Proof:

bla[φ] |= (p, q)
⇔ ∀f : Σ → P(Σ)⊤.f |= φ⇒ f |= (p, q) (by lemma 4)
⇔ φ |= (p, q) (by definition 11).

Footprints in Local Reasoning 11

(p, q)

(p ∗ r, q ∗ r)

p′ ⊑ p (p, q) q ⊑ q′

(p′, q′)

(pi, qi), all i ∈ I
`
F

i∈I
pi,

F

i∈I
qi

´

(pi, qi), all i ∈ I, I 6= ∅
`d

i∈I
pi,

d
i∈I

qi

´

Frame Consequence Union Intersection

Fig. 1. Inference rules for local Hoare reasoning

The inference rules of the proof system are given in figure 1. Consequence, union and
intersection are adaptations of standard rules of Hoare logic. The frame rule is what
permits local reasoning, as it codifies the fact that, since all functions are local, any
assertion about a separate part of resource will continue tohold for that part after the
application of the function. As we shall not be using them, wedo not state the standard
rules for basic constructs such as composition, non-deterministic choice, and Kleene-
star [9].

Definition 13 (Proof-theoretic consequence).For predicatesp, q, r, s and specifica-
tionsφ, ψ, each of the judgements(p, q) ⊢ (r, s), φ ⊢ (p, q), (p, q) ⊢ φ, andφ ⊢ ψ
holds iff the right-hand side is derivable from the left-hand side by the rules in figure 1.

The proof system of figure 1 is sound and complete with respectto the satisfaction
relation.

Theorem 1 (Soundness and Completeness).φ ⊢ (p, q) ⇔ φ |= (p, q)

Proof: Soundness can be checked by checking each of the proof rules in figure 1. The
frame rule is sound by the locality condition, and the othersare easy to check.

For completeness, assume we are givenφ |= (p, q). By lemma 5, we havebla[φ] |=
(p, q). So for allσ ∈ p, bla[φ](σ) ⊑ q, which implies

⊔

σ∈p

bla [φ](σ) ⊑ q (∗)

Now we have the following derivation:

φ

(r, s) for all (r, s) ∈ φ

({σ′}, s) for all σ′ ∈ r, (r, s) ∈ φ

({σ − σ′} ∗ {σ′}, {σ − σ′} ∗ s) for all σ′ ∈ r, (r, s) ∈ φ, σ′ � σ, σ ∈ p

`

l

σ′�σ

σ′∈r
(r,s)∈φ

{σ − σ
′} ∗ {σ′},

l

σ′�σ

σ′∈r
(r,s)∈φ

{σ − σ
′} ∗ s

´

for all σ ∈ p

({σ}, bla[φ](σ)) for all σ ∈ p

(
G

σ∈p

{σ},
G

σ∈p

bla[φ](σ))

(p, q)

12 Mohammad Raza and Philippa Gardner

The last step in the proof is by(∗) and the rule of consequence. Note that the intersec-
tion rule can be safely applied because the argument of the intersection is necessarily
non-empty (if it were empty thenbla[φ](σ) = ⊤, which contradictsbla[φ](σ) ⊑ q).

3 Properties of Specifications

We discuss certain properties of specifications as a prerequisite for our main discussion
on footprints in Section 4. We introduce the notion of acompletespecification for a
local function: a specification from which all properties that hold for the function can
be derived in the proof system. However, a function may have many complete speci-
fications, so we introduce a canonical form for specifications. We show that of all the
complete specifications of a local function, there exists a unique canonical complete
specification for every domain. As discussed in the introduction, an important notion
of local reasoning is thesmall specificationwhich completely describes the behaviour
of a local function by mentioning only the footprint. Thus, as a prerequisite to inves-
tigating their existence, we formalise small specifications as complete specifications
with the smallest possible domain. Similarly, we definebig specifications as complete
specifications with the biggest domain.

Definition 14 (Complete Specification).A specificationφ ∈ Φ is a complete specifi-
cation for f , writtencomplete(φ, f), iff, for all p, q ∈ P(Σ),f |= (p, q) ⇔ φ |= (p, q).
LetΦcomp(f) be the set of all complete specifications of f.

φ is complete forf whenever the tuples that hold forf areexactlythe tuples that follow
fromφ. This also means that any two complete specficationsφ andψ for a local function
are semantically equivalent, that is,φ �� ψ. The following proposition illustrates how
the notions of best local action and complete specification are closely related.

Proposition 2. For all φ ∈ Φ and local functionsf , complete(φ, f) ⇔ f = bla[φ].

Proof: Assumef = bla[φ]. Then, by lemma 5, we have thatφ is a complete specification
for f .

For the converse, assumecomplete(φ, f). We shall show that for anyσ ∈ Σ,
f(σ) = bla [φ](σ).

case 1:f(σ) = ⊤. If bla[φ](σ) 6= ⊤, thenbla [φ] |= ({σ}, bla[φ](σ)). This means
that φ |= ({σ}, bla[φ](σ)) (by lemma 5), and sof |= ({σ}, bla[φ](σ)), but this is a
contradiction. Therefore,bla[φ](σ) = ⊤

case 2:bla[φ](σ) = ⊤. If f(σ) 6= ⊤, thenf |= ({σ}, f(σ)). This means that
φ |= ({σ}, f(σ)), and sobla[φ] |= ({σ}, f(σ)), but this is a contradiction. Therefore,
f(σ) = ⊤

Footprints in Local Reasoning 13

case 3:bla[φ](σ) 6= ⊤ and f(σ) 6= ⊤. We have

f |= ({σ}, f(σ))
⇒ bla [φ] |= ({σ}, f(σ))
⇒ bla [φ](σ) ⊑ f(σ)

bla [φ] |= ({σ}, bla[φ](σ))
⇒ f |= ({σ}, bla[φ](σ))
⇒ f(σ) ⊑ bla[φ](σ)

Thereforef(σ) = bla[φ](σ)

Any specification is therefore only complete for a unique local function, which is its
best local action. However, a local function may have lots ofcomplete specifications.
We therefore introduce a canonical form for specifications.

Definition 15 (Canonicalisation).Thecanonicalisationof a specificationφ is defined
asφcan = {({σ}, bla[φ](σ)) | σ ∈ D(φ)}. A specification is incanonical form if it
is equal to its canonicalisation. LetΦcan(f) denote the set of all canonical complete
specifications of f.

Proposition 3. For any specificationφ, we haveφ �� φcan.

Proof: We first showφ � φcan. For any(p, q) ∈ φcan, (p, q) is of the form({σ}, bla[φ](σ))
for someσ ∈ D(φ). So we havebla[φ] |= (p, q), and soφ |= (p, q) by lemma 5.

We now showφcan � φ. For any (p, q) ∈ φ, we havebla[φ] |= (p, q). So for all
σ ∈ p, bla[φ](σ) ⊑ q, which implies

⊔

σ∈p

bla [φ](σ) ⊑ q (∗)

Now we have the following derivation:

φcan

({σ}, bla[φ](σ)) for all σ ∈ p

(
⊔

σ∈p

{σ},
⊔

σ∈p

bla[φ](σ))

(p, q)

The last step is by(∗) and consequence. So we haveφcan ⊢ φ, and by soundness
φcan |= φ.

Thus, the canonicalisation of a specification is logically equivalent to the specifica-
tion. The following corollary shows that all complete specifications that have the same
domain have a unique canonical form, and specifications of different domains have dif-
ferent canonical forms.

14 Mohammad Raza and Philippa Gardner

Corollary 1. Φcan(f) is isomorphic to the quotient setΦcomp(f)/ ∼=D, under the iso-
morphism that maps[φ]∼=D

to φcan.

Proof: By proposition 2, all complete specifications forf have the same best local
action, which isf itself. So by the definition of canonicalisation, it can be seen that
complete specifications with different domains have different canonicalisations, and
complete specifications with the same domain have the same canonicalisation. This
shows that the mapping is well-defined and injective. Every canonical complete speci-
ficationφ is also complete, and[φ]∼=D

maps toφcan = φ, so the mapping is surjective.

Definition 16 (Small and Big specifications).φ is a small specificationfor f iff φ ∈
Φcomp(f) and there is noψ ∈ Φcomp(f) such thatD(ψ) ⊏ D(φ). A big specificationis
defined similarly.

Smallandbig specifications are thus the specifications with the smallestand biggest
domains respectively. The question is if/when small and bigspecifications exist. The
following result shows that a canonical big specification exists for every local function.

Proposition 4 (Big Specification).For any local functionf , the canonical big specifi-
cation forf is given byφbig(f) = {({σ}, f(σ)) | f(σ) ⊏ ⊤}.

Proof: f |= φbig(f) is trivial to check. To showcomplete(φbig(f), f), assumef |=

(p, q) for somep, q ∈ P(Σ). Note that, for anyσ ∈ p, f(σ) ⊑ q and so
⊔

σ∈p

f(σ) ⊑ q.

We then have the derivation

φbig(f)

({σ}, f(σ)) for all f(σ) ⊏ ⊤

(
⊔

σ∈p

{σ},
⊔

σ∈p

f(σ))

(p, q)

By soundness we getφbig(f) |= (p, q). φbig(f) has the biggest domain becausef would
fault on any element not included inφbig(f), and so it cannot be a domain element for
a specification off .

Small specifications are used in local reasoning to completely specify the behaviour of
an update command by only mentioning the behaviour of the command on the part of
the resource that is affected by the command [14, 4, 7]. The question of the existence of
small specifications is therefore strongly related to the concept of footprints. Finding a
small specification is about finding the complete specification with the smallest possible
domain, and therefore enquiring about which elements ofΣ are essential and sufficient
for a complete specification. This requires a formal characterisation of the footprint
notion, which we shall now present.

Footprints in Local Reasoning 15

4 Footprints

In the introduction we discussed how theAD program demonstrates that the footprints
of a local function do not correspond simply to the smallest safe states, as these states
alone do not always yield complete specifications. In this section we introduce the def-
inition of footprint that does yield complete specifications. In order to understand what
the footprint of a local function should be, we begin by analysing the definition of local-
ity. Recall that the locality definition 5 says that the action on a certain stateσ1 imposes
a limit on the action on a bigger stateσ2 • σ1. This limit is {σ2} ∗ f(σ1), as we have
f(σ2 • σ1) ⊑ {σ2} ∗ f(σ1).

Another way of viewing this definition is that for any stateσ, the action of the
function on that state has to be within the limit imposed byeverysubstateσ′ of σ, that
is,f(σ) ⊑ {σ−σ′}∗f(σ′). In the case whereσ′ = σ, this condition is trivially satisfied
for any function (local or non-local). The distinguishing characteristic of local functions
is that this condition is also satisfied by every strict substate ofσ, and thus we have

f(σ) ⊑
l

σ′≺σ

{σ − σ′} ∗ f(σ′)

We define this overall constraint imposed onσ by all of its strict substates as thelocal
limit of f onσ, and show that the locality definition is equivalent to satisfying the local
limit constraint.

Definition 17 (Local limit). For a local functionf onΣ andσ ∈ Σ, thelocal limit of
f onσ is defined as

Lf (σ) =
l

σ′≺σ

{σ − σ′} ∗ f(σ′)

Proposition 5. f is local ⇔ f(σ) ⊑ Lf(σ) for all σ ∈ Σ

Proof: Assumef is local. So for anyσ, for everyσ′ ≺ σ, f(σ) ⊑ {σ − σ′} ∗ f(σ′).
f(σ) is therefore smaller than the intersection of all these sets, which isLf(σ).

For the converse, assume the rhs and thatσ1 • σ2 is defined. Ifσ1 = u thenf(σ1 •
σ2) ⊑ {σ1}∗f(σ2) and we are done. Otherwise,σ2 ≺ σ1•σ2 and we havef(σ1•σ2) ⊑
Lf (σ1 • σ2) ⊑ {σ1} ∗ f(σ2).

Thus for any local functionf acting on a certain stateσ, the local limit determines
a smallest upper boundon the possible outcomes onσ, based on the outcomes on all
smaller states. If this smallest upper bound does correspond exactly to the set of all
possible outcomes onσ, thenσ is ‘large enough’ that just the action off on smaller
states and the locality off determines the complete behaviour off onσ. In this case we
will not think of σ as a footprint off , as smaller states are sufficient to determine the
action off onσ. With this observation, we define footprints as those stateson which the
outcomes cannot be determined only by the smaller states, that is, the set of outcomes
is astrict subset of the local limit.

16 Mohammad Raza and Philippa Gardner

Definition 18 (Footprint). For a local functionf andσ ∈ Σ, σ is a footprint off ,
writtenFf (σ), iff f(σ) ⊏ Lf(σ). We denote the set of footprints off byF (f).

Note that an elementσ is therefore not a footprint iff the action off onσ is at the
local limit, that isf(σ) = Lf (σ).

Lemma 6. For any local functionf , all the smallest safe states off are footprints of
f .

Proof: Letσ be a smallest safe state forf . Then for anyσ′ ≺ σ, f(σ′) = ⊤. Therefore
Lf (σ) = ⊤ and sof(σ) ⊏ Lf(σ).

However, the smallest safe states are not always theonly footprints. An example is
theAD command discussed in the introduction. The empty heap is a footprint as it is
the smallest safe heap, but the heap celll 7→v is also a footprint.

Example 2 (Dispose).The footprints of thedispose[l] command in the plain heap
model (example 1.1) are the cells at locationl. We check this by considering the fol-
lowing cases

1. The empty heap,uH , is not a footprint sinceLdispose[l](uH) = ⊤ = dispose[l](uH)
2. Every celll 7→v for somev is a footprint

Ldispose[l](l 7→v) = {l 7→v} ∗ dispose[l](uH) = {l 7→v} ∗ ⊤ = ⊤
dispose[l](l 7→v) = {uH} ⊏ Ldispose[l](l 7→v)

3. Every stateσ such thatσ ≻ (l 7→v) for somev is not a footprint

Ldispose[l](σ) ⊑ {σ−(l 7→v)}∗dispose[l](l 7→v) = {σ−(l 7→v)} = dispose[l](σ)

By proposition 5, we haveLdispose[l](σ) = dispose[l](σ). The intuition is thatσ
does not characterise any ‘new’ behaviour of the function: its action onσ is just a
consequence of its action on the cells at locationl and the locality property of the
function.

4. Every stateσ such thatσ 6≻ (l 7→v) for somev is not a footprint

Ldispose[l](σ) ⊑ {σ} ∗ dispose[l](uH) = {σ} ∗ ⊤ = ⊤ = dispose[l](σ)

Again by proposition 5,Ldispose[l](σ) = dispose[l](σ).

Example 3 (AD command).The AD (Allocate-Deallocate) command was defined on
the heap and stack model in example 1.2. We have the followingcases forσ.

1. σ 6� x 7→v1 for somev1 is not a footprint, sinceLAD(σ) = ⊤ = AD(σ).
2. σ = x 7→ v1 for somev1 is a footprint sinceLAD(σ) = ⊤ (by case (1)) and
AD(σ) = {x 7→w | w ∈ L} ⊏ LAD(σ).

Footprints in Local Reasoning 17

3. σ = l 7→v1 • x 7→v2 for somel, v1, v2 is a footprint.

LAD(σ) = {l 7→v1} ∗AD(x 7→v2)
(AD faults on all other elements strictly smaller thanσ)

= {l 7→v1} ∗ {x 7→w | w ∈ L}
= {l 7→v1 • x 7→w | w ∈ L}

AD(σ) = {l 7→v1 • x 7→w | w ∈ L,w 6= l} ⊏ LAD(σ)

4. σ = h • x 7→v1 for somev1, and where|loc(h)| > 1, is not a footprint.

LAD(σ) ⊑
l

h≻l7→v

{(h− l 7→v} ∗AD(l 7→v • x 7→v1)

= {h • x 7→w | w 6∈ loc(h)} = AD(σ)

By proposition 5 we getLAD(σ) = AD(σ).

Our footprint definition therefore works properly for thesespecific examples. Now
we give the formal general result which captures the underlying intuition of local rea-
soning that the footprints of a local function are the only essential elements for a com-
plete specification of the function.

Theorem 2 (Essentiality).The footprints of a local function are the essential domain
elements for any complete specification of that function, that is,

Ff (σ) ⇔ ∀φ ∈ Φcomp(f). σ ∈ D(φ)

Proof: Assume some fixedf andσ. We establish the following equivalent statement :

¬Ff (σ) ⇔ ∃φ ∈ Φcomp(f). σ 6∈ D(φ)

We first show the right to left implication. So assumeφ is a complete specification off
such thatσ 6∈ D(φ). Sincecomplete(φ, f), by proposition 2, we havef = bla[φ]. So

f(σ) =
l

σ1�σ,σ1∈p,(p,q)∈φ

{σ − σ1} ∗ q

Now for any set{σ−σ1}∗q in the above intersection, we have thatσ1 ∈ p, and(p, q) ∈
φ for somep. σ1 ∈ p impliesf(σ1) ⊑ q, and therefore{σ−σ1}∗f(σ1) ⊑ {σ−σ1}∗q.
Also, σ1 6= σ, because otherwise we would haveσ ∈ p, which would contradict the
assumption thatσ /∈ D(φ). Soσ1 ≺ σ and we have

Lf(σ) ⊑ {σ − σ1} ∗ f(σ1) ⊑ {σ − σ1} ∗ q

So the local limit is smaller than each set{σ− σ1} ∗ q in the intersection, and therefore
it is smaller than the intersection itself:Lf (σ) ⊑ f(σ). We know from proposition 5
thatf(σ) ⊑ Lf(σ), so we getf(σ) = Lf (σ) and therefore¬Ff (σ).

18 Mohammad Raza and Philippa Gardner

We now show the left to right implication. Assume thatσ is not a footprint of
f . We shall use the big specification,φbig(f), to construct a complete specification
of f the domain of which does not containσ. If f(σ) = ⊤ then the big specifica-
tion itself is such a specification, and we are done. Otherwise assumef(σ) ⊏ ⊤. Let
φ = φbig(f)/{({σ}, f(σ))}. It can be seen thatσ /∈ D(φ). Now we need to show that
φ is complete forf . For this it is sufficient to showφ ⊣⊢ φbig(f) because we know that
φbig(f) is complete forf . ⊣ is trivial.

For⊢, we just need to showφ ⊢ ({σ}, f(σ)). We have the following derivation:

φ

({σ′}, f(σ′)) for all σ′ ≺ σ, f(σ′) ⊏ ⊤

({σ − σ′} ∗ {σ′}, {σ − σ′} ∗ f(σ′)) for all σ′ ≺ σ, f(σ′) ⊏ ⊤

({σ},
l

σ′≺σ,f(σ′)⊏⊤

{σ − σ′} ∗ f(σ′))

({σ}, Lf(σ))

The intersection rule can be safely applied as there is at least oneσ′ ≺ σ such that
f(σ′) ⊏ ⊤. This is becausef(σ) ⊏ ⊤, so if there were no suchσ′ thenσ would be a
footprint, which is a contradiction. Note that the last stepuses the fact that

l

σ′≺σ,f(σ′)⊏⊤

{σ − σ′} ∗ f(σ′) =
l

σ′≺σ

{σ − σ′} ∗ f(σ′) = Lf(σ)

because adding the top element to an intersection does not change its value. Sinceσ is
not a footprint,f(σ) = Lf(σ), and soφ ⊢ ({σ}, f(σ)).

5 Sufficiency and Small Specifications

We know that the footprints are the only elements that areessentialfor a complete spec-
ification of a local function in the sense that every completespecification must include
them. Now we ask when a set of elements issufficientfor a complete specification of
a local function, in the sense that there exists a complete specification of the function
that only includes these elements. In particular, we wish toknow if the footprints alone
are sufficient. To study this, we begin by identifying the notion of thebasisof a local
function.

5.1 Bases

In the last section we defined the local limit of a functionf on a stateσ as the constraint
imposed onf by all the strict substates ofσ. This was used to identify the footprints
as those states on which the action off cannot be determined by just its action on the
smaller states. We are now addressing the question of when a set of states issufficient

Footprints in Local Reasoning 19

to determine the behaviour off on any state. We shall do this by identifying a fixed
set of states, which we call abasis for f , such that the action off on any stateσ
can be determined by just the substates ofσ taken from this set (rather than all the
strict substates ofσ). Thus we first generalise the local limit definition to consider the
constraint imposed by only the substates taken from a given set.

Definition 19 (Local limit imposed by a set).For a subsetA of a separation algebra
Σ, thelocal limit imposed byA on the action off onσ is defined by

LA,f (σ) =
l

σ′�σ,σ′∈A

{σ − σ′} ∗ f(σ′)

Sometimes, the local limit imposed byA is enough to completely determinef . In this
case, we callA abasisfor f .

Definition 20 (Basis).A ⊑ Σ is abasisfor f , writtenbasis(A, f), iff LA,f = f .

This means that, when given the action off on elements in A alone, we can determine
the action off on any element inΣ by just using the locality property off . Every
local function has at least one basis, namely the trivial basisΣ itself. We next show the
correspondence between the bases and complete specifications of a local function.

Lemma 7. LetφA,f = {({σ}, f(σ)) | σ ∈ A, f(σ) ⊏ ⊤}. Then we havebasis(A, f) ⇔
complete(φA,f , f).

Proof: We haveLA,f = bla[φA,f] by definition. The result follows by proposition 2
and the definition of basis.

For every canonical complete specificationφ ∈ Φcan(f), we haveφ = φD(φ),f . By the
previous lemma it follows thatD(φ) forms a basis forf . The lemma therefore shows
that every basis determines a complete canonical specification, and vice versa. This
correspondence also carries over to all complete specifications for f by the fact that
every domain-equivalent class of complete specifications for f is represented by the
canonical complete specification with that domain (corollary 1). By the essentiality of
footprints (theorem 2), it follows that the footprints are present in every basis of a local
function.

Lemma 8. The footprints off are included in every basis of f.

Proof: Every basisA of f determines a complete specification forf the domain of
which is a subset ofA. By the essentiality theorem (2), the domain includes the foot-
prints.

The question of sufficiency is about how small the basis can get. Given a local
function, we wish to know if it has a smallest basis.

20 Mohammad Raza and Philippa Gardner

5.2 Well-founded Resource

We know that every basis must contain the footprints. Thus ifthe footprints alone form
a basis, then the function will have asmallestcomplete specification whose domain are
just the footprints. We find that, for well-founded resourcemodels, this is indeed the
case.

Theorem 3 (Sufficiency I).If a separation algebraΣ is well-founded under the� re-
lation, then the footprints of any local function form a basis for it, that is,f = LF (f),f .

Proof: Assume thatΣ is well-founded under�. We shall show by induction that
LF (f),f(σ) = f(σ) for all σ ∈ Σ. The induction hypothesis is that for allσ′ ≺ σ,
LF (f),f(σ′) = f(σ′)

case 1:Ff (σ). We havef(σ) = {u} ∗ f(σ) is in the intersection in the definition of
LF (f),f(σ), and soLF (f),f(σ) ⊑ f(σ). We have by locality thatf(σ) ⊑ LF (f),f(σ),
and sof(σ) = LF (f),f(σ).

case 2:¬Ff (σ). We have

f(σ) = Lf (σ) (becauseσ is not a footprint of f)

=
l

σ′≺σ

{σ − σ′} ∗ f(σ′)

=
l

σ′≺σ

(

{σ − σ′} ∗
l

σ′′�σ′,Ff (σ′′)

{σ′ − σ′′} ∗ f(σ′′)
)

(by the induction hypothesis)

=
l

σ′≺σ,σ′′�σ′,Ff (σ′′)

{σ − σ′} ∗ {σ′ − σ′′} ∗ f(σ′′) (by the precision of{σ − σ′})

=
l

σ′′≺σ,Ff (σ′′)

{σ − σ′′} ∗ f(σ′′)

=
l

σ′′�σ,Ff (σ′′)

{σ − σ′′} ∗ f(σ′′) (becauseσ is not a footprint of f)

= LF (f),f(σ)

In section 3, the notions of big and small specifications wereintroduced (definition 16),
and the existence of a big specification was shown (proposition 4). We are now in a
position to show the existence of the small specification forwell-founded resource. If
Σ is well-founded, then every local function has a small specification whose domain is
the footprints of the function.

Corollary 2 (Small specification).For well-founded separation algebras, every local
function has a small specification given byφF (f),f .

Proof: φF (f),f is complete by theorem 3 and lemma 7. It has the smallest domain by
the essentiality theorem.

Footprints in Local Reasoning 21

Thus, for well-founded resource, the footprints are alwaysessential and sufficient,
and specifications need not consider any other elements. In practice, small specifica-
tions may not always be in canonical form even though they always have the same
domain as the canonical form. For example, the heap dispose command can have the
specification{({l 7→ v | v ∈ V al}, {uH})} rather than the canonical one given by
{({l 7→v}, {uH}) | v ∈ V al}.

Although well-founded resource is usually the case in practice, a notable exception
is the fractional permissions model [4] in which the resource includes permissions that
can be indefinitely divided.

5.3 Non-well-founded Resource

If a separation algebra is non-well-founded under the� relation, then there is some
infinite descending chain of elementsσ1 ≻ σ2 ≻ σ3.... From a resource-oriented point
of view, there are two distinct ways in which this could happen. One way is when it
is possible to remove non-empty pieces of resource from a state indefinately, as in the
separation algebra of non-negative real numbers under addition. In this case any infinite
descending chain does not have more than one occurrence of any element. Another way
is when an infinite chain may exist because of repeated occurrences of some elements.
This happens when there isnegativitypresent in the resource: some elements have in-
verses in the sense that adding two non-unit elements together may give the unit. An
example is the separation algebra of integers under addition, where1 + (−1) = 0, so
adding -1 to 1 is like adding negative resource. Also, since1 = 0 + 1, we have that
1 ≻ 0 ≻ 1... forms an infinite chain.

Definition 21 (Negativity). A separation algebraΣ hasnegativity iff there exists a
non-unit elementσ ∈ Σ that has an inverse, that is,σ 6= u andσ • σ′ = u for some
σ′ ∈ Σ. We say thatΣ is non-negativeif no such element exists.

All separation algebras with negativity are non-well-founded, because for elements
σ andσ′ such thatσ •σ′ = u, the set{σ, u} forms an infinite descending chain (there is
no least element). All well-founded models are therefore non-negative. For the general
non-negative case, we find that either the footprints form a basis, or there is no smallest
basis.

Theorem 4 (Sufficiceny II). If Σ is non-negative then, for any localf , either the foot-
prints form a smallest basis or there is no smallest basis forf.

Proof: LetA be a basis forf (we know there is at least one, which is the trivial basis
Σ itself). If A is the set of footprints then we are done. So assumeA contains some
non-footprintµ. We shall show that there exists a smaller basis forf , which isA/{µ}.
So it suffices to showf(σ) = LA/{µ},f (σ) for all σ ∈ Σ. We have

f(σ) = LA,f(σ) =
l

σ′�σ,σ′∈A

{σ − σ′} ∗ f(σ′)

22 Mohammad Raza and Philippa Gardner

case 1:µ 6� σ. We havef(σ) =
l

σ′�σ,σ′∈A/{µ}

{σ − σ′} ∗ f(σ′) = LA/{µ},f (σ)

case 2:µ � σ. In this case

f(σ) =
(

l

σ′�σ,σ′∈A/{µ}

{σ − σ′} ∗ f(σ′)
)

⊓ ({σ − µ} ∗ f(µ)) (1)

Consider the right hand side of the intersection in(1):

{σ − µ} ∗ f(µ)
= {σ − µ} ∗ Lf(µ) (becauseµ is not a footprint of f)

= {σ − µ} ∗
l

σ′≺µ

{µ− σ′} ∗ f(σ′)

= {σ − µ} ∗
l

σ′≺µ

{µ− σ′} ∗
l

σ′′�σ′,σ′′∈A/{µ}

{σ′ − σ′′} ∗ f(σ′′)

(case 1 applies becauseΣ is non-negative, soσ′ ≺ µ⇒ µ 6� σ′)

=
l

σ′≺µ

l

σ′′�σ′,σ′′∈A/{µ}

{σ − µ} ∗ {µ− σ′} ∗ {σ′ − σ′′} ∗ f(σ′′) (by precision)

=
l

σ′≺µ

l

σ′′�σ′,σ′′∈A/{µ}

{σ − σ′′} ∗ f(σ′′)

=
l

σ′′≺µ,σ′′∈A/{µ}

{σ − σ′′} ∗ f(σ′′)

⊒
l

σ′′�σ,σ′′∈A/{µ}

{σ − σ′′} ∗ f(σ′′)

This is the left hand side of the intersection in(1), and thus we have

f(σ) =
l

σ′�σ,σ′∈A/{µ}

{σ − σ′} ∗ f(σ′)

Corollary 3 (Small Specification).If Σ is non-negative, then every local function ei-
ther has a small specification given byφF (f),f or there is no smallest complete specifi-
cation for that function.

Example 4 (Permissions).The fractional permissions model [4] is non-well-founded
and non-negative. It can be represented by the separation algebraHPerm = L ⇀fin

V al × P whereL andV al are as in example 1, andP is the interval (0, 1] of rational
numbers. Elements ofP represent ‘permissions’ to access a heap cell. A permission
of 1 for a cell means both read and write access, while any permission less than 1
is read-only access.• joins disjoint heaps and adds the permissions together for any
cells that are present in both heaps only if the resulting permission for each heap cell
does not exceed 1, and the operation is undefined otherwise. In this case, the write
function that updates the value at a location requires a permission of at least 1 and

Footprints in Local Reasoning 23

faults on any smaller permission. It therefore has a small specification with precondition
being the cell with permission 1. The read function, however, can execute safely on
any positive permission, no matter how small. Thus this function can be completely
specified with a specification that has a precondition given by the cell with permission
z, for all 0 < z ≤ 1. However, this is not asmallestspecification, as a smaller one can
be given by further restricting0 < z ≤ 0.5. We can therefore always find a smaller
specification by reducing the value ofz but keeping it positive.

For resource with negativity, we find that it is possible to have small specifications
that include non-essential elements (which by theorem 2 arenot footprints). These el-
ements are non-essential in the sense that complete specifications exist that do not in-
clude them, but there is no complete specification that includes only essential elements.

Example 5 (Integers).An example of a model with negativity is the separation algebra
of integers(Z,+, 0). In this case there can be local functions which can have small
specifications that contain non-footprints. Letf : Z → P(Z)⊤ be defined asf(n) =
{n+ c} for some constantc, as in example 1.f is local, but it has no footprints. This is
because for anyn, f(n) = 1 + f(n− 1), and son is not a footprint off . However,f
does have small specifications, for example,{({0}, {c})}, {({5}, {5 + c})}, or indeed
{({n}, {n + c})} for anyn ∈ Z. So although every element is non-essential, some
element is required to give a complete specification.

6 Regaining Safety Footprints

In the introduction we discussed how the notion of footprints as the smallest safe states
- thesafety footprint- is inadequate for giving complete specifications, as illustrated by
theADexample. For this reason, so far in this paper we have investigated the general no-
tion of footprint for arbitrary local functions on arbitrary separation algebras. Equipped
with this general theory, we now investigate how the regaining of safety footprints may
be achieved with different resource modelling choices. We start by presenting an alter-
native model of RAM, based on an investigation of why theAD problem occurs in the
standard model. We then demonstrate that the footprints of theAD command in this
new model do correspond to the safety footprints. In the finalsection we identify, for
arbitrary separation algebras, a condition on the primitive commands of the program-
ming language which guarantees safety footprints for all programs, and then show that
the safety footprints are in fact regained for all programs in our new RAM model.

6.1 An alternative model

In this section we explore the possibility of an alternativeheap model in which the
safety footprints do correspond to the actual footprints. We begin by taking a closer

24 Mohammad Raza and Philippa Gardner

look at why theAD anomaly occurs in the standard heap and stack model described in
example 1.2. Consider an application of the allocation command in this model:

new [x](42 7→ v • x 7→ w) = {42 7→ v • x 7→ l • l 7→ r | l ∈ L\{42}, r ∈ V al}

The intuition of locality is that the initial state42 7→ v • x 7→ w is only describing
a local region of the heap and the stack, rather than the wholeglobal state. In this
case it says that the address 42 is initially allocated, and the definition of the allocation
command is that the resulting state will have a new cell, the address of which can
be anything other than 42. However, we notice that the initial state is in fact not just
describing only its local region of the heap. It does state that 42 is allocated, but it also
implicitly states a very global property: thatall other addresses are not allocated. This
is why the allocation command can choose to allocate any location that is not 42. Thus
in this model, every local state implicitly contains some global allocation information
which is used by the allocation command. In contrast, a command such as mutate does
not require this global ‘knowledge’ of the allocation status of any other cell that it is not
affecting. Now the global information of which cells are freechangesas more resource
is added to the initial state, so this can lead to program behaviour being sensitive to the
addition of more resource to the initial state, and this sensitivity is apparant in the case
of theAD program.

Based on this observation, we consider an alternative model. As before, a state will
represent a local allocated region of the heap. However, unlike before, a given state will
say nothing about the allocation status of any other locations. This information will be
represented explicitly in afreeset, which will contain all the locations that are not al-
located in theglobal heap. The model can be interpreted from an ownership point of
view, where the free set is to be thought of as a unique, atomicpiece of resource that
commands involving allocation need ownership of. An analogy is with the permissions
model: a command that wants to read or write to a cell needs ownership of the appropri-
ate permission on that cell. In the same way, in our new model,a command that wants
to do allocation or deallocation needs to have ownership of the free set: the ‘permis-
sion’ to see which cells are free in the global heap so that it can choose one of them to
allocate, or update the free set with the address that it deallocates. On the other hand,
commands that only read or write to cells shall not require ownership of the free set.

Formally, we work with a separation algebra(H, •, uH). Let L, V ar andV al be
locations, variables and values, as before. The statesh ∈ H are given by the grammar:

h ::= uH | l 7→v | x 7→v | F | h • h

wherel ∈ L, v ∈ V al, x ∈ V ar andF ∈ P(L). As before,• is undefined for states
with overlapping locations or variables. Letloc(h) andvar(h) be the set of locations
and variables in stateh respectively. The setF carries the information of which loca-
tions are free. Thus we allow at most one free set in a state, and the free set must be
disjoint from all locations in the state. Soh • F is only defined whenloc(h) ∩ F = ∅
andh 6= h′ • F ′ for anyh′ andF ′. Associativity and commutativity of• is imposed,
anduH is defined as the identityuH • h = h • uH = h.

In this setting, the allocation command requires ownershipof the free set for safe
execution, since it chooses the location to allocate from this set. It removes the chosen

Footprints in Local Reasoning 25

address from the free set as it allocates the cell. It is defined as

new[x](h) =

{

{h′ • x 7→ l • l 7→w • F\{l} | w ∈ V al, l ∈ F} h = h′ • x 7→v • F
⊤ otherwise

Note that the output statesh′ • x 7→ l • l 7→ w • F\{l} are defined, since we have
l 6∈ F\{l} and the input stateh′ • x 7→ v • F implies thatloc(h′) is disjoint from
F\{l}. The deallocation command also requires the free set, as it updates the set with
the address of the cell that it deletes:

dispose[x](h) =

{

{h′ • x 7→ l • F ∪ {l}} h = h′ • x 7→ l • l 7→v • F
⊤ otherwise

Again, the output states are defined, since the input state implies thatloc(h′) ∪ {l} is
disjoint fromF , and soloc(h′) is disjoint fromF ∪ {l}. Notice that in this model,
only the allocation and deallocation commands require ownership of the free set, since
commands such as mutation and lookup are completely independent of the allocation
status of other cells, and they are defined exactly as in example 1.2:

mutate[x, v](h) =

{

{h′ • x 7→ l • l 7→v} h = h′ • x 7→ l • l 7→w
⊤ otherwise

lookup[x, y](h) =

{

{h′ • x 7→ l • l 7→v • y 7→v} h = h′ • x 7→ l • l 7→v • y 7→w
⊤ otherwise

Lemma 9. The functionsnew[x], dispose[x], mutate[x, v] and lookup[x, y] are all
local in the separation algebra(H, •, uH).

Proof: Letf = new[x] and assumeh′#h. We want to showf(h′ • h) ⊑ {h′} ∗ f(h).
Assumeh = h′′ • x 7→v • F for someh′′, x, l, v andF , because otherwisef(h) = ⊤
and we are done. So we have

f(h′ • h) = {h′ • h′′ • x 7→ l • l 7→w • F\{l} | w ∈ V al, l ∈ F}
= {h′} ∗ {h′′ • x 7→ l • l 7→w • F\{l} | w ∈ V al, l ∈ F}
= {h′} ∗ f(h)

The other functions can be checked in a similar way.

6.2 Safety footprints for AD

We consider the footprint of theAD command in the new model. In this model the
sequential compositionnew[x]; dispose[x] gives the function

AD(h) =

{

{h′ • x 7→ l • F | l ∈ F} h = h′ • x 7→v • F
⊤ otherwise

26 Mohammad Raza and Philippa Gardner

The smallest safe states are given by the set{x 7→ v • F | v ∈ V al, F ∈ P(L)}. By
lemma 6, these smallest safe states are footprints. However, unlike before, in this model
these are theonly footprints of theAD command. To see this, consider a larger state
h • x 7→v • F for non-emptyh. We have

AD(h • x 7→v • F) = {h • x 7→ l • F | l ∈ F}
= {h} ∗ {x 7→ l • F | l ∈ F}
= {h} ∗AD(x 7→v • F)

Since the local limitLAD(h•x 7→v•F) ⊑ {h}∗AD(x 7→v•F) by definition, we have
by proposition 5 thatLAD(h • x 7→v • F) = AD(h • x 7→v • F), and soh • x 7→v • F
is not a footprint ofAD.

Thus the footprints ofAD in this model do not include any non-empty heaps. By
corollary 2, in this model theAD command has a smallest complete specification in
which the pre-condition only describes the empty heap. Thisspecification is

{({x 7→v • F}, {x 7→ l • F}) | v ∈ V al, F ∈ P(L), l ∈ F}

Intuitively, it says that if initially the heap is empty, thevariablex is present in the
stack, and we know which cells are free in the global heap, then after the execution,
the heap will still be empty, exactly the same cells will still be free, andx will point to
one of those free cells. This completely describes the behaviour of the command for all
larger states using the frame rule. For example, we get the complete specification on the
larger state in which 42 is allocated:

{({42 7→w} ∗ {x 7→v • F}, {42 7→w} ∗ {x 7→ l • F}) | v, w ∈ V al, F ∈ P(L), l ∈ F}

In the pre-condition, the presence of location 42 in the heapmeans that 42 is not in
the free setF (by definition of∗). Therefore, in the post-condition,x cannot point to
42.

Notice that in order to check that we have ‘regained’ safety footprints, we only
needed to check that the footprint definition (definition 18)corresponds to the smallest
safe states. The desired properties such as essentiality, sufficiency, and small specifica-
tions then follow by the results established in previous sections.

6.3 Safety footprints for arbitrary programs

Now that we have regained the safety footprints forAD in the new model, we want to
know if this is generally the case forany program. We consider the abstract imperative
programming language given in [9]:

C ::= c | skip | C;C | C + C | C⋆

wherec ranges over an arbitrary collection of primitive commands,+ is nondeterminis-
tic choice,; is sequential composition, and(·)⋆ is Kleene-star (iterated;). As discussed
in [9], conditionals and while loops can be encoded using+ and(·)⋆ and assume state-
ments. The denotational semantics of commands is given in Figure 2.

Footprints in Local Reasoning 27

JcK ∈ LocFunc JskipK(σ) = {σ}

JC1; C2K = JC1K; JC2K JC1 + C2K = JC1K ⊔ JC2K JC⋆K =
F

n
JC nK

Fig. 2. Denotational semantics for the imperative programming language

Taking the primitive commands to benew[x], dispose[x],mutate[x, v], andlookup[x, y],
our original aim was to show that, for every commandC, the footprints ofJCK in the
new model are the smallest safe states. However, in attempting to do this, we identified
a general condition on primitive commands under which the result holds for arbitrary
separation algebras.

Let f be a local function on a separation algebraΣ. If, for A ∈ P(Σ), we define

f(A) =
⊔

σ∈A

f(σ), then the locality condition (definition 5) can be restated as

∀σ′, σ ∈ Σ. f({σ′} ∗ {σ}) ⊑ {σ′} ∗ f({σ})

As discussed before, the⊑ ordering allows local functions to be more deterministic
on larger states. This sensitivity of determinism to largerstates is apparant in theAD
command in the standard model from example 1.2. On the empty heap, the command
produces an empty heap, and reassigns variablex to anyvalue, while on the singleton
cell 1, it disallows the possibility thatx = 1 afterwards. In the new model, theAD
command does not have this sensitivity of determinism in theoutput states. In this case
the presence or absence of the cell 1 does not affect the outcomes of theAD command,
since the command can only assignx to a value chosen from the free set, which does
not change no matter what additional cells may be framed in. With this observation, we
consider the general class of local functions in which this sensitivity of determinism is
not present.

Definition 22 (Determinism Constancy).Let f be a local function andsafe(f) the
set of states on whichf does not fault.f has the determinism constancy property iff for
everyσ ∈ safe(f),

∀σ′ ∈ Σ. f({σ′} ∗ {σ}) = {σ′} ∗ f({σ})

Notice that the determinism constancy property by itself implies that the function is
local, and it can therefore be thought of as a form of ‘strong locality’. Firstly, we find
that local functions that have determinism constancy always have footprints given by
the smallest safe states.

Lemma 10. If a local functionf has determinism constancy then its footprints are the
smallest safe states.

Proof: Letmin(f) be the smallest safe states off . These are footprints by lemma 6.
For any larger stateσ′ • σ whereσ ∈ min(f), σ′ ∈ Σ andσ is non-empty, we have

f(σ′ • σ) = f({σ′} ∗ {σ}) = {σ′} ∗ f(σ)

28 Mohammad Raza and Philippa Gardner

SinceLf (σ′ •σ) ⊑ {σ′} ∗ f(σ), by proposition 5 we have thatLf (σ′ •σ) = f(σ′ •σ),
and soσ′ • σ is not a footprint off .

We now demonstrate that the determinism constancy propertyis preserved by all
the constructs of our programming language. This implies that if all the primitive com-
mands of the programming language have determinism constancy, then the footprints
of every program are the smallest safe states.

Theorem 5. If all the primitive commands of the programming language have deter-
minism constancy, then the footprint of every program is given by the smallest safe
states.

Proof: Assuming all primitive commands have determinism constancy, we shall show
by induction that every composite command has determinism constancy and the result
follows by lemma 10. So for commandsC1 andC2, let f = JC1K andg = JC2K and
assumef andg have determinism constancy. For sequential composition, we have for
σ ∈ safe(f ; g) andσ′ ∈ Σ,

(f ; g)({σ′} ∗ {σ})

= g(f({σ′} ∗ {σ}))

= g({σ′} ∗ f({σ}))

(f has determinism constancy andσ ∈ safe(f) sinceσ ∈ safe(f ; g))

= g(
⊔

σ1∈f(σ)

{σ′} ∗ {σ1})

=
⊔

σ1∈f(σ)

g({σ′} ∗ {σ1})

=
⊔

σ1∈f(σ)

{σ′} ∗ g(σ1)

(g has determinism constancy andσ1 ∈ safe(g) sinceσ ∈ safe(f ; g) andσ1 ∈ f(σ))

= {σ′} ∗
⊔

σ1∈f(σ)

g(σ1) (distributivity)

= {σ′} ∗ (f ; g)(σ)

For non-deterministic choice, we have forσ ∈ safe(f + g) andσ′ ∈ Σ,

(f + g)({σ′} ∗ {σ})

= f({σ′} ∗ {σ}) ⊔ g({σ′} ∗ {σ})

= {σ′} ∗ f({σ}) ⊔ {σ′} ∗ g({σ})

(f andg have determinism constancy andσ ∈ safe(f) andσ ∈ safe(g) sinceσ ∈ safe(f + g))

= {σ′} ∗ (f({σ}) ⊔ g({σ})) (distributivity)

= {σ′} ∗ (f + g)({σ})

Footprints in Local Reasoning 29

For Kleene-star, we have forσ ∈ safe(f⋆) andσ′ ∈ Σ,

(f⋆)({σ′} ∗ {σ})

=
⊔

n

fn({σ′} ∗ {σ})

=
⊔

n

{σ′} ∗ fn({σ})

(determinism constancy preserved under sequential composition andσ ∈ safe(fn))

= {σ′} ∗
⊔

n

fn({σ}) (distributivity)

= {σ′} ∗ (f⋆)({σ})

Now that we have shown the general result, it remains to checkthat all the primitive
commands in the new model of section 6.1 do have determinism constancy.

Proposition 6. LetH1 be the stack and heap model of example 1.2 andH2 be the alter-
native model of section 6.1. The commandsnew[x], mutate[x, v] and lookup[x, y] all
have determinism constancy in both models. Thedispose[x] command has determinism
constancy inH2 but not inH1.

Proof: We give the proofs for the new and dispose commands in the two models, and
the cases for mutate and lookup can be checked in a similar way. Fordispose[x] in H1,
the following counterexample shows that it does not have determinism constancy.

dispose[x]({l 7→v} ∗ {x 7→ l • l 7→w})
= dispose[x](∅)
= ∅
⊏ {l 7→v • x 7→ l}
= {l 7→v} ∗ dispose[x](x 7→ l • l 7→w)

Fornew[x] in H1, any safe state is of the formh • x 7→v. For anyh′ ∈ H1, we have

{h′} ∗ new[x](h • x 7→v) = {h′} ∗ {h • x 7→ l • l 7→w | w ∈ V al, l ∈ L\loc(h)} (†)

If h′ • h • x 7→v is undefined thenh′ shares locations withloc(h) or variables with
var(h) ∪ {x}. This means that the RHS in† is the empty set. We havenew[x]({h′} ∗
{h•x 7→v}) = new[x](∅) = ∅ = {h′}∗new[x](h•x 7→v). If h′ •h•x 7→v is defined,
then

new[x]({h′} ∗ {h • x 7→v})
= new[x](h′ • h • x 7→v)
= {h′ • h • x 7→ l • l 7→w | w ∈ V al, l ∈ L\loc(h′ • h)}
= {h′} ∗ {h • x 7→ l • l 7→w | w ∈ V al, l ∈ L\loc(h′ • h)}
= {h′} ∗ {h • x 7→ l • l 7→w | w ∈ V al, l ∈ L\loc(h)}
= {h′} ∗ new[x](h • x 7→v)

30 Mohammad Raza and Philippa Gardner

Fordispose[x] in H2, any safe state is of the formh • x 7→ l • l 7→v • F . Leth′ ∈ H2.
We have

{h′} ∗ dispose[x](h • x 7→ l • l 7→v • F) = {h′} ∗ {h • x 7→ l • F ∪ {l}} (††)

If h′•h•x 7→ l• l 7→v•F is undefined then eitherh′ contains a free set or it contains
locations inloc(h) ∪ {l} or variables invar(h) ∪ {x}. If h′ contains a free set or it
contains locations inloc(h) or variables invar(h)∪{x}, then the RHS in†† is the empty
set. Ifh′ contains the locationl then also the RHS in†† is the empty set since the free set
F ∪ {l} also containsl. Thus in both cases the RHS in†† is the empty set, and we have
dispose[x]({h′}∗{h•x 7→ l•l 7→v•F}) = ∅ = {h′}∗dispose[x](h•x 7→ l•l 7→v•F).

If h′ • h • x 7→ l • l 7→v • F is defined then we have

dispose[x]({h′} ∗ {h • x 7→ l • l 7→v • F})
= dispose[x](h′ • h • x 7→ l • l 7→v • F)
= {h′ • h • x 7→ l • F ∪ {l}}
= {h′} ∗ {h • x 7→ l • F ∪ {l}}
= {h′} ∗ dispose[x](h • x 7→ l • l 7→v • F)

Fornew[x] in H2, any safe state is of the formh • x 7→v • F . Leth′ ∈ H2. We have

{h′}∗new[x](h•x 7→v•F) = {h′}∗{h•x 7→ l•l 7→w•F\{l} | w ∈ V al, l ∈ F} (†††)

If h′ • h • x 7→ v • F is undefined then eitherh′ contains a free set or it contains
locations inloc(h) or variables invar(h)∪{x}. In all these cases the RHS in††† is the
empty set, and so we havenew[x]({h′}∗{h•x 7→v•F}) = ∅ = {h′}∗new[x](h•x 7→
v • F).

If h′ • h • x 7→v • F is defined then we have

new[x]({h′} ∗ {h • x 7→v • F})
= new[x](h′ • h • x 7→v • F)
= {h′ • h • x 7→ l • l 7→w • F\{l} | w ∈ V al, l ∈ F}
= {h′} ∗ {h • x 7→ l • l 7→w • F\{l} | w ∈ V al, l ∈ F}
= {h′} ∗ new[x](h • x 7→v • F)

Thus theorem 5 and proposition 6 tell us that in the alternative model of section
6.1, the footprint of every program is given by the smallest safe states, and hence we
have regained safety footprints for all programs. In fact, the same is true for the original
model of example 1.2 if we do not include the dispose command as a primitive com-
mand, since all the other primitive commands have determinism constancy. This, for
example, would be the case when modelling a garbage collected language [16].

7 Conclusions

In this work we have developed a general theory of footprintsfor the abstract notion
of local functions on separation algebras. Based on an analysis of the definition of

Footprints in Local Reasoning 31

locality introduced in [9], we have introduced the definition of the footprint of a local
function, and have demonstrated that according to this definition, the footprints are
the only essential elements necessary to obtain complete specifications for local Hoare
reasoning about such functions. For well-founded resourcemodels, we have shown
that the footprints are also sufficient, and we have also presented results for non-well-
founded models.

The final section demonstrates how this theory of footprintshas been applied to
resolve the safety footprint problem discussed in the introduction. We have introduced
an alternative heap model in which safety footprints are regained for all programs, and
have presented a general condition on primitive commands under which safety foot-
prints are regained for all programs in arbitrary models. The theory of footprints has
proven very useful in exploring such situations in which safety footprints could be re-
gained, as one only needs to check that the smallest safe states correspond to the foot-
print definition 18. This automatically gives the required properties such as essentiality
and sufficiency, which, without the footprint definition andtheorems, would need to be
explicitly checked in the different cases.

Finally, we comment on some related work. The discussion in this paper has been
based on the static notion of footprints asstatesof the resource on which a program acts.
A different notion of footprint has recently been describedin [10], where footprints are
viewed astracesof execution of a computation. O’Hearn has described how theAD
problem is avoided in this more elaborate trace semantics, as the allocation of cells in
an execution prevents the framing of those cells. Interestingly, however, our example
model from section 6.1 illustrates that it is not essential to move to this more elaborate
setting and incorporate dynamic, execution-specific information into the footprint in
order to resolve theAD problem. In our model, with the explicit representation of free
cells in states, one can remain in an extensional semantics and have a purely static,
resource-based (rather than execution-based) view of footprints.

References

1. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’ Hearn, T. Wies and H. Yang. Shape
Analysis for Composite Data Structures. InCAV, 2007.

2. J. Berdine, C. Calcagno, and P. O’Hearn. Smallfoot: Automatic modular assertion checking
with separation logic. In4th FMCO, 2006.

3. L. Birkedal and H. Yang. Relational parametricity and separation logic. In10th FOSSACS,
2007.

4. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in separation
logic. In 32nd POPL, 2005.

5. R. Bornat, C. Calcagno, and H. Yang. Variables as resourcein separation logic. In21st
MFPS, 2005.

6. S. D. Brookes. A semantics for concurrent separation logic. In Proceedings of the 15th
CONCUR, 2004.

7. C. Calcagno, P. Gardner, and U. Zarfaty. Context logic andtree update. In32nd POPL,
2005.

8. C. Calcagno, P. Gardner, and U. Zarfaty. Local Reasoning about Data Update. InGordon
Plotkin’s festschrift, ENTCS, 2007.

9. C. Calcagno, P. O’Hearn, and H. Yang. Local Action and Abstract Separation Logic. In
LICS, 2007.

32 Mohammad Raza and Philippa Gardner

10. T. Hoare and P. O’Hearn. Separation Logic Semantics of Communicating Processes. In
FICS, 2008.

11. S. Isthiaq and P. O’Hearn. BI as an assertion language formutable data structures. In28th
POPL, 2001.

12. C. C. Morgan. The specification statement.ACM Transactions on Programming Languages
and Systems, 1988.

13. P. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer Science,
2007. Preliminary version appeared in CONCUR’04.

14. P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter data struc-
tures. In15th CSL, 2001.

15. P. W. O’Hearn and D. J. Pym. The logic of bunched implications. InBulletin of Symbolic
Logic, 1999.

16. M. Parkinson. Local Reasoning for Java. Ph.D. Thesis (University of Cambridge), 2005.
17. M. Parkinson, R. Bornat, and C. Calcagno. Variables as resource in Hoare logics. In21st

LICS, 2006.
18. D. Pym, P. O’Hearn, and H. Yang. Possible worlds and resources: the semantics of BI. In

Theoretical Computer Science, 2004.
19. D.J. Pym.The Semantics and Proof Theory of the Logic of Bunched Implications. Applied

Logic Series. Kluwer Academic Publishers, 2002.
20. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In17th LICS,

2002.
21. H. Yang and P. O’Hearn. A semantic basis for local reasoning. In5th FOSSACS, 2002.

