
A Compositional Theory for STM Haskell

Johannes Borgström Karthikeyan Bhargavan Andrew D. Gordon
Microsoft Research, Cambridge, UK
{joborg,karthb,adg}@microsoft.com

Abstract
We address the problem of reasoning about Haskell programs that
use Software Transactional Memory (STM). As a motivating exam-
ple, we consider Haskell code for a concurrent non-deterministic
tree rewriting algorithm implementing the operational semantics of
the ambient calculus. The core of our theory is a uniform model, in
the spirit of process calculi, of the run-time state of multi-threaded
STM Haskell programs. The model was designed to simplify both
local and compositional reasoning about STM programs. A sin-
gle reduction relation captures both pure functional computations
and also effectful computations in the STM and I/O monads. We
state and prove liveness, soundness, completeness, safety, and ter-
mination properties relating source processes and their Haskell im-
plementation. Our proof exploits various ideas from concurrency
theory, such as the bisimulation technique, but in the setting of a
widely used programming language rather than an abstract process
calculus. Additionally, we develop an equational theory for reason-
ing about STM Haskell programs, and establish for the first time
equations conjectured by the designers of STM Haskell. We con-
clude that using a pure functional language extended with STM
facilitates reasoning about concurrent implementation code.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Correctness Proofs; D.3.1 [Formal Definitions and
Theory]: Syntax and Semantics; D.3.3 [Language Constructs and
Features]: Concurrent Programming Structures—Software Trans-
actional Memory.

General Terms Theory, verification

Keywords Transactional memory, compositional reasoning, am-
bient calculus

1. Introduction
Software Transactional Memory (STM), introduced by Shavit and
Touitou [31], is a promising programming abstraction for shared-
variable concurrency. Shared variables may only be accessed
within transactions. Ingenious software techniques allow transac-
tions to run in parallel while their semantics is as if they run in se-
ries. There is a good deal of promising research on efficient imple-
mentations, in the context of various languages [9, 10, 27]. More-
over, several formal techniques have been applied to verifying the
underlying algorithms [30] and their implementations [22, 8, 20, 1].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’09, August 30, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-508-6/09/09. . . $5.00

In this paper, we explore the prospects for reasoning about soft-
ware written using the STM abstraction. Transactional semantics
undoubtedly simplifies the reasoning task compared to say lock-
based concurrency [18, 23], but is no panacea.

We pursue the idea that theories of concurrency developed in ab-
stract process calculi can fruitfully be recast in the concrete setting
of transactional programming languages. We consider programs
written in STM Haskell [10, 11], an embedding of transactional
concurrency within the pure functional language Haskell.

As a concrete programming task, we investigate programming,
specifying, and reasoning about an STM Haskell implementation
of ambients. The ambient calculus [5] is a formalism for express-
ing and reasoning about mobile computation, more recently applied
to biological systems [26]. An ambient process has a hierarchical
structure that mutates over time, as ambients within the structure
move inside and outside other ambients. Hence, an implementation
of the ambient calculus amounts to a concurrent tree rewriting algo-
rithm. The first concurrent implementation, by Cardelli in Java [4],
was lock-based; here, we give a lock-free implementation of a pro-
gramming API for the ambient calculus in STM Haskell.

As a basis for reasoning about this code, we present a core
calculus for STM Haskell: a concurrent non-strict lambda calcu-
lus with transactional variables and atomic blocks. The syntax of
lambda calculus expressions provides a compositional and uniform
formalism for both source programs and their run-time states.

The original presentation of STM Haskell separated the trans-
actional heap, its latest checkpoint and the currently running code.
In contrast, our syntax uniformly represents all of these as expres-
sions, hence facilitating compositional reasoning by allowing mul-
tiple threads with associated pieces of the heap to be composed us-
ing a parallel operator and rearranged using structural congruence.

We develop a formal semantics and type system for the calcu-
lus. Our semantics is based on a reduction relation → on expres-
sions, which range over both effect-free functional computations
and effectful concurrent computations. It facilitates local reason-
ing by having transactions run against a part of the heap, making
it easy to exhibit the smallest heap allowing a given transaction to
make progress. On the other hand, we can show a precise corre-
spondence with the original (but syntactically more complex) oper-
ational semantics of STM Haskell.

We import into STM Haskell behavioural equivalences and
proof techniques that originate in process calculi. Notably, in our
proofs, the notion of bisimulation up to a relation [19, 28] permits
significant reductions in the size of the state space that needs to
be considered when reasoning equationally about a program. This
state space reduction comes beyond the already significant reduc-
tion afforded by the atomicity and serializability guarantees of the
STM abstraction.

Using these proof techniques, our first result, Theorem 1, di-
rectly relates the operational semantics of ambient processes with
expressions representing the run time states of their Haskell im-
plementation. More specifically, Theorem 1 establishes liveness,

soundness, completeness, safety, and termination properties. Build-
ing on the first theorem, our second result, Theorem 2, is a concise
statement of full correctness of our implementation in terms of a
bisimulation between the source process and its Haskell translation.
The use of transactions makes the Haskell code rather simpler than
Cardelli’s original Java program; still, it is non-trivial but feasible
to establish the intended correspondences between the implemen-
tation code and the formal specification of ambients.

Finally, we adopt the standard definition of Morris-style con-
textual equivalence of expressions, and develop a sound equational
theory. We show the monad laws of the STM monad hold, and
also establish some equations proposed by the designers of STM
Haskell [10].

Our main contributions are the following:

• We use notions of behavioural equivalence and proof tech-
niques from process calculi to specify and prove STM Haskell
code for a complex concurrent tree rewriting algorithm (an im-
plementation of the ambient calculus).

• We develop uniform syntax and reduction semantics, in the
style of process calculi, for STM Haskell. The uniformity of the
syntax facilitates compositional reasoning over multiple threads
with associated pieces of the heap.

• We prove soundness of an equational theory for STM Haskell,
including monad laws and properties of operators for transac-
tional control flow.

Outline of the Paper Section 2 introduces the formal syntax of
core STM Haskell, and reviews the programming model. (Since our
motivating example does not use exceptions, we omit them from
the core calculus. The extended version of the paper shows how
to extend our core calculus with exceptions.) Section 3 describes
our code and data structures for programming ambients in Haskell.
Section 4 completes our formalization of STM Haskell; we define
the operational semantics and type system, and compare with the
original semantics. Section 5 recalls the semantics of the ambient
calculus, and states and proves the expected correctness properties;
the proof depends on a detailed correspondence between ambient
processes and expressions representing the corresponding states
of our implementations. Section 6 develops an equational theory
based on our operational semantics. Section 7 describes related
work, and Section 8 concludes, and discusses potential future work.

An extended version of this paper, with additional explanations
and proofs, and code listings, is available [3].

2. A Core Calculus for STM Haskell
The GHC implementation of STM [10] uses a monad to encapsu-
late all accesses to shared transactional variables (TVars). To exe-
cute an STM transaction we use the function atomically , which
has type STM t → IO t. If the execution of a transaction returns
a result, the run-time system guarantees that it executed indepen-
dently of all other transactions in the system. An STM expression
can also retry, which may cause the transaction to be rolled back
and run at some later time.

The original definition of STM Haskell made use of an implicit
functional core language. For verification purposes, and in order
to make this paper self-contained, we formalize STM Haskell as a
concurrent non-strict lambda calculus, with memory cells (TVars)
and atomic blocks.

2.1 Syntax
Our syntax treats source programs, heaps made up of transactional
variables (TVars), and concurrent threads uniformly as expressions
in the calculus, similarly to Concurrent Haskell [24].

We assume denumerable distinct sets X of (lambda calculus)
variables and N of (TVar) addresses; we let x,y,z range over X, and
a,b range over N. We let f range over ADT constructors.
Expressions of Core STM Haskell:
M,N ∈M ::= expression

x (x ∈ X) variable (value)
a (a ∈ N) address (value)
λx.M lambda abstraction (value)
f M construction (value)

M N application
case M of f x→ N case expression
Y M fixpoint
equal M N address equality

readTVar M STM read variable
writeTVar M N STM write variable
returnSTM M STM return
retry STM retry transaction
M�=STM N STM bind
orElse M N STM prioritized choice
or M N STM erratic choice

atomically M IO execute transaction
returnIO M IO return
M�=IO N IO bind

a 7→M transactional variable (TVar)
(νa)M restriction (a bound in M)
M | N parallel composition
emp empty heap

Our syntax is close to STM Haskell, but with minor differences.
The STM Haskell functions newTVar and fork are not primitive
expressions in our calculus, but are derived forms, explained below.
In actual source programs, the monadic bind and return operators
do not have the subscripts IO and STM; instead, the monads
are inferred by the typechecker. The syntax a 7→ M, (νa)M, M |
N, emp, and addresses a exist as expressions only to represent
run-time state, and cannot be written directly in source programs.
Actual Haskell includes various abbrevations such as recursive
definitions, pattern matching, and do-notation for monads, which
can be reduced in standard ways to our core syntax.

We introduce some notational conventions. We write M as
shorthand for a possibly empty sequence M1 · · · Mn (and sim-
ilarly for x, t, etc.) and f x→ N for a non-empty sequence
f1 x1 → N1 | · · · | fm xm → Nm where the fi as well as the xi j are
assumed to be pairwise different (and similarly for f t). We write
the empty sequence as ◦ and denote concatenation of sequences
using a comma. The length of a sequence x is written |x|. If φ is
a phrase of syntax (such as an expression), we let fv(φ) and fn(φ)
be the sets of variables and names occuring free in φ . We write
φ

{M/x
}

for the outcome of the capture-avoiding substitution of M
for each free occurrence of x in φ .

We let g M range over the builtin applications, which are
the expressions listed above starting with Y M and ending with
M�=IO N. (This notation is particularly useful in the typing rule
(T BUILTIN) in Section 4.2.) If g M is a builtin application, we say
g is a builtin function; Y and�=IO are examples. To simplify our
reduction semantics, builtin functions are not themselves expres-
sions, and only occur fully applied to their arguments. As usual,
we can use lambda abstraction to represent unapplied or partially
applied builtin functions as expressions.

2.2 Informal Semantics
Our uniform syntax for expressions covers single-threaded func-
tional computations, as well as heaps, imperative transactions, and

concurrent computations. We describe each of these in turn, to-
gether with their semantics.

Functional Computations The core of our expression language
is a call-by-name lambda calculus with algebraic data types. The
simplest expressions are values, which return at once. As well as
variables x, there are three kinds of value: names a representing
the address of a mutable variable in the heap, lambda abstractions
λx.M, and constructions f M representing data tagged with the
algebraic type constructor f . For example, True, False, Nil, and
Cons M1 M2 are constructions. Since we describe a non-strict
language, constructor arguments M may be general expressions and
not just values.

The other expressions of the lambda calculus core are as fol-
lows. An application expression M N evaluates to M′

{N/x
}

, if
evaluation of M returns a function λx.M′. A case expression
case M of f x→ N attempts to match one of the clauses f x→ N
against M. If f j x j → N j is the first of these clauses such that the
value of M is f j M for some M, the whole expression behaves
as N j{M/x j}; if there is no such clause, the whole expression is
stuck. A builtin application Y M evaluates to M (Y M). (We use
Y to explain recursive definitions in the standard way.) A builtin
application equal M N evaluates both M and N, and returns True
if they evaluate to the same address, and False otherwise.

Heaps Next, we describe heap-expressions, which consist of a
possibly empty composition of transaction variables, or TVars, for
short. An expression a 7→M denotes a heap consisting of a single
TVar, with address a and current content M. The expression emp
represents the empty heap, and the composition M | N represents
the concatenation of heaps M and N.

More generally, parallel composition M | N represents M and
N running in parallel, where M and N may be a mixture of heaps,
STM-expressions, and IO-expressions. Unusually, the | operator is
not fully commutative; the result of M | N, if any, is the result of
N. To evaluate a restriction (νa)M one creates a fresh address a
and then evaluates M; as in process calculi, a restriction may also
be read declaratively as meaning that the address a is known only
within its scope M.

Imperative Transactions An STM-expression typically has the
form H | M, where H is a heap-expression and M is a running
(single-threaded) transaction. Transactions are composed from
reads (readTVar a) and writes (writeTVar a M) to TVars. In
source programs, we create TVars by the following abbreviation:

newTVar M := (νa)(a 7→M | returnSTM a) where a 6∈ fn(M)

A transaction may returnSTM a result M (to commit), or retry (to
roll back any updates and restart). There are two different kinds of
choice. Prioritized choice M orElseN behaves as M unless M does
a retry (in which case it behaves as N). Erratic choice or M N
behaves as M or as N nondeterministically.

Concurrency Finally, an IO-expression typically has the form
H | M1 | . . . | Mn, where H is a heap-expression and M1, . . . , Mn
are threads running in parallel. A thread Mi may run a transaction to
have side-effects on the shared heap H. Each thread may eventually
terminate by returning a result. In our source programs, we create
parallel threads using the abbreviation:

fork M := (M | returnIO ())

A thread atomically M behaves as if the transaction M executes
in isolation against the heap, in one big atomic step. There are two
possibilities to consider. If M returns a result M′, the updates to
the heap are committed, and the whole expression returns M′. If
M retries, any updates to the heap are rolled back, and the whole
expression snaps back to atomically M, ready to try again.

Both IO and STM computations can be sequenced using the
bind operator M�=IO N, which behaves as N M′ if M returns M′,
and otherwise as M.

For an example, consider a function swap that swaps the values
of two TVars:

swap := λxa.λxb.readTVar xa�=STM λy.readTVar xb�=STM

λ z.writeTVar xa z�=STM λw.writeTVar xb y

Here, swap takes two TVar arguments xa and xb and calls the
builtin function readTVar to read their values. As discussed (infix)
function�=STM binds the return value of the expression to its left
to the function on its right. Hence, y and z get the values of xa
and xb, respectively; swap then calls the function writeTVar to
write xa and xb with z and y, respectively, thus completing the
swap. To call the function with two TVars a, b, we can write
swap a b. However, two parallel executions of swap could yield an
inconsistent state. Instead, we call the function and have it execute
atomically, by writing atomically (swap a b).

3. Application: An API for Managing Ambients
As a verification challenge, we consider a sizeable program written
in STM Haskell. Our target application is an API that implements
the mobility primitives of the ambient calculus [5]. Programs that
use this API spawn multiple threads that concurrently modify a
shared data structure. We consider such programs to be exemplary
applications of STM Haskell.

Our implementation is inspired by Cardelli’s earlier implemen-
tation in Java using locks [4], which, although carefully specified,
was never proved correct. A more recent programming comparison
between a lock-based and STM-based implementation of ambients
finds the “STM implementation to be much easier to reason about
and much faster to implement” [32]. We seek to evaluate whether
an STM implementation is also easy to verify, by developing the
first proof for an implementation of the ambient calculus.

A Tree of TVars. The underlying data structure is a tree of named
ambients, implemented as follows. The figure on the right depicts
an example tree with a node named a that has two children named
b and c.

type Ambient = TVar AmbData
data AmbData =

AD (Name,
Maybe Handle,
[Handle],
[(Name, Ambient)])

type Name = TVar String
type Handle = TVar Ambient

An Ambient (depicted as a named rectangle in the figure) is a
TVar containing an AmbData, which consists of four items: a Name,
a Handle pointing to its parent node (if it has one), a list of all
incoming handles pointing to the current node, and an assocation
list of child nodes, mapping node names to Ambients. A Name is
an identifier (depicted as an italicized variable), implemented as a
transactional variable (TVar) containing a string; the same Name
may appear on multiple nodes. A Handle (depicted as a circle) is a
pointer to an Ambient; in the figure, such pointers are depicted as
dashed arrows. The additional level of indirection using Handles
is used when merging a child node with its parent; all handles
pointing to the child can then simply be pointed over to its parent.

We illustrate this data structure through a few simple functions
that are used in our subsequent development. These functions can
only be called from within STM atomic blocks.

readAmb :: Handle -> STM AmbData
readAmb h = do { a <- readTVar h;

ad <- readTVar a;
return ad}

The function readAmb takes a Handle h and returns the AmbData
it points to (through two levels of indirection). Since readAmb
reads transactional variables using readTVar, the result is an STM
action.

writeAmb :: Handle -> AmbData -> STM ()
writeAmb h ad = do { a <- readTVar h;

writeTVar a ad }

The function writeAmb both reads and writes transactional vari-
ables; it writes an AmbData to the location pointed to by a handle.

parentOf :: Handle -> STM Handle
parentOf a = do { AD (_,p,_,_) <- readAmb a;

case p of
Nothing -> retry;
Just ph -> return ph}

The function parentOf takes a Handle h pointing to a node and
returns a handle to the parent of the node; if there is no parent (that
is, h points to the root node), then it calls the STM retry function
to rollback the transaction and restart.

Mobile Agents. An agent represents an IO thread that is initial-
ized with a handle to an ambient. We say that the agent executes
within that ambient.

data AGENT a = Agent (Handle -> IO a)
type Agent = AGENT ()
nil :: Agent
root :: Agent -> IO ()
new :: String -> AGENT Name
amb :: Name -> Agent -> Agent

The simplest agent is nil, which denotes an inactive agent that
has finished its computation. The function root creates a fresh
(unnamed) root node and attaches an agent A to this node. The
agent A can then create subtrees by calling new to generate fresh
node names, and calling amb to create new child nodes.

Using these functions, we can now create our example tree and
attach agents to each node:

ex = root $ do {
a <- new "a";
b <- new "b";
c <- new "c";
amb a (do
amb b (into c);
amb c nil)}

Here, the agent attached to b uses a new function into:

into :: Name -> Agent

The figure treats the more general case when the agent performs
other actions e after calling into. However, for simplicity, it does
not depict nil processes or back pointers to handles.

When the agent into c is
executed, it has the effect of
moving the (subtree rooted at)
node b to become a child of
node c. The resulting tree is
depicted on the right. If there is
no neighbouring tree labelled
c, the operation blocks until
one becomes available.

As usual, when concurrent threads modify the tree in this way,
there is a risk of the tree ending up in an inconsistent state. Our
implementation of into in STM Haskell below uses the STM
construct atomically to avoid inconsistency:

into c = Agent $ \bHandle -> atomically $ do {
bAmbient <- readTVar bHandle;
AD (b,bp,bh,bc) <- readAmb bHandle;
aHandle <- parentOf bHandle;
AD (a,ap,ah,ac) <- readAmb aHandle;
let bSiblings = delete (b,bAmbient) ac in do
cAmbient <- lookup’ c bSiblings;
AD (_,cp,ch,cc) <- readTVar cAmbient;
let cHandle = head ch in do
writeAmb cHandle (AD (c, cp, ch,

(b,bAmbient):cc));
writeAmb aHandle (AD (a, ap, ah, bSiblings));
writeAmb bHandle (AD (b,Just cHandle,bh,bc))}

The function into takes as argument the name c of the target
ambient and creates an agent parameterized by a handle bHandle
to the source ambient named b. The function proceeds in two
phases. First, it reads the values of three ambient nodes: b, b’s
parent a, and some sibling of b named c. Then, it writes updated
values to all three nodes.

The function begins by reading the ambient at b, bAmbient, and
calls readAmb to read its contents. It calls parentOf to find the par-
ent ambient at a and reads its contents, including the list of its chil-
dren ac. It computes the siblings of b by deleting (b,bAmbient)
from the association list ac. It then finds a target ambient cAmbient
by calling lookup’ which non-deterministically chooses some sib-
ling ambient with name c. (This non-determinism is motivated by
the desired correctness properties of Section 5.) It reads the con-
tents of cAmbient, including its children cc and one of its handles,
cHandle.

Finally, the function updates the ambient at c by adding a child
(b,bAmbient) to ch, it updates the ambient at a by deleting the
child b from ac, and it updates the ambient at b by changing its
parent to c.

Note that into is a local operation that only modifies three
nodes of the tree; Agents manipulating other parts of the tree can
be scheduled to run in parallel without causing any conflicts.

The Full API. The full Ambient API consists of several other
functions:

out :: Name -> Agent
open :: Name -> Agent
fork :: Agent -> Agent

The agent out c is the inverse of into c; it moves an ambient out
of its parent (if the parent is named c). The agent open c deletes
a child node named c and swings all handles of c to point to its
parent. This has the effect of causing all of c’s children to become
children of the parent; all agents running on c are similarly affected.
The figure below depicts its effect on an example graph.

The agent fork A forks off a new thread running the agent A
within the same ambient.

Programmatically, agents form a Reader monad, where the
value read is a handle to the location in which the agent is run-
ning1. The �= and � operators have their standard definition:
(Reader f)�= g running at a location with handle h evaluates
f h to some v, evaluates g v to some Reader g′, and then evalu-
ates g′ h. Similarly, (Reader f) � (Reader g) reading handle h
evaluates f h, discards the result, and then evaluates g h.

instance Monad AGENT where
return a = Agent $ \s -> return a
a >>= g = Agent $ \s -> case a of Agent f -> f s

>>= \v -> case (g v) of Agent ff -> (ff s)
a >> b = Agent $ \s -> case a of Agent f -> f s

>>= \v -> case b of Agent ff -> (ff s)

When verifying the ambient API, we are interested in establish-
ing full functional correctness, not only the preservation of certain
invariants of the location tree. To do this, we need to give a formal
account of the semantics of our core calculus for STM Haskell.

4. The Core Calculus, Concluded
This section concludes the definition of our core calculus, begun
in Section 2. We define the operational semantics and type system,
and make a comparison with the original semantics. In the next sec-
tion, we apply the calculus to specifying and verifying the Haskell
code from Section 3.

4.1 Operational Semantics
We define a reduction relation, M → M′, which specifies the run
time behaviour of STM programs. A single reduction relation cap-
tures pure functional computation, imperative transactions, and
concurrency. We rely on some auxiliary notions to define reduc-
tion. First, we define three kinds of evaluation contexts.

Contexts: Pure (Rβ), parallel (R|), and transactional (R7→)

Rβ ::= [·] |Rβ M | case Rβ of f x→ N | equal Rβ M
| equal a Rβ | readTVar Rβ | writeTVar Rβ M

R| ::= [·] | (νa)R| | (R| |M) | (M |R|) |
(R|�=IO M) | (R|�=STM M)

R7→ ::= [·] | (νa)R7→ | (a 7→M |R7→)

The second auxiliary notion is structural equivalence, M ≡M′.
The purpose of this relation is to re-arrange the structure of an
expression—for example, by pulling restrictions to the top, or by
moving TVars beside reads or writes—so as to enable reduction
steps. Structural equivalence is the least equivalence relation closed
under the following rules. Let bn(R|) be the names bound by the
context R|, and let n(R|) = bn(R|)∪ fn(R|).

Structural Equivalence: M ≡ N

M ≡ emp |M (STRUCT EMP)
M |R|[N]≡R|[M | N] if bn(R|)∩ fn(M) = ∅ (STRUCT FLOAT)
R|[(νa)M]≡ (νa)R|[M] if a /∈ n(R|) (STRUCT RES CTX)
M ≡ N⇒R|[M]≡R|[N] (STRUCT CTX)

Let reduction, M → M′, be the least relation closed under the
rules in groups (R1), (R2), and (R3) displayed below. The first
group consists of standard rules for functional and concurrent com-
putation.

1 The Haskell programmer familiar with monad transformers will notice
that it is effectively a ReaderT Handle IO a.

(R1) Reductions without Side-Effects: M→M′

(λx.M) N→M{N/x} (BETA)
case f j(M) of f x→ N→ N j{M/x j} (CASE)
Y M→M (Y M) (FIX)

equal a a→ True (EQUAL TRUE)
equal a b→ False if a 6= b (EQUAL FALSE)

(returnIO M�=IO N)→ N M (IO BIND RETURN)

(PURE CTX)
M→M′

Rβ [M]→Rβ [M′]

(RED CTX)
M→M′

R|[M]→R|[M′]

(STRUCT)
M ≡ N
N→ N′
N′ ≡M′

M→M′

The second group of reduction rules concerns the core be-
haviour of STM-expressions. A heap-expression H is a parallel
composition of transactional variables

Πi(ai 7→Mi) := a1 7→M1 | · · · | an 7→Mn | emp
where the ai are pair-wise distinct. We write→∗ for the transitive
closure of→.
(R2) Core Reductions for STM Transactions: M→M′

(STM READ TVAR)
(a 7→M) | readTVar a→ (a 7→M) | returnSTM M

(STM WRITE TVAR)
(a 7→M) | writeTVar a M′→ (a 7→M′) | returnSTM ()

(returnSTM M�=STM N)→ N M (STM BIND RETURN)
(retry�=STM N)→ retry (STM BIND RETRY)

(ATOMIC RETURN)
H |M→∗ R 7→[returnSTM N]

H | atomically M→R 7→[returnIO N]

(STM READ TVAR) and (STM WRITE TVAR) allow transac-
tional variable to be read and written within a transaction.

(STM BIND RETURN) allows return values to propagate
through the STM bind operator, much as through the IO bind oper-
ator, while (STM BIND RETRY) allows retry to propagate directly
through the bind operator, much like an exception.

The rule (ATOMIC RETURN) turns a successful many-step
transaction of an STM-expression H |M into a single-step compu-
tation of the IO-expression H | atomically M. If the transaction
yields retry then (ATOMIC RETURN) is not applicable, so there
is no transition in this case. In the STM Haskell implementation,
a transaction that retrys is aborted by the run-time system and
queued for later execution.

The final group of rules concerns choices within transactions.

(R3) Reductions for OrElse and Or: M→M′

(STM ORELSE RETURN)
H | N1→∗ R7→[returnSTM N′1]

H | (N1 orElse N2)→R7→[returnSTM N′1]

(STM ORELSE RETRY)
H | N1→∗ R 7→[retry]

H | (N1 orElse N2)→ H | N2

M or N→M (STM OR LEFT)
M or N→ N (STM OR RIGHT)

Rules (STM OrElse Return) and (STM OrElse Retry) formalize
the idea that N1 orElse N2 behaves as N1 if N1 terminates with
returnSTM N′1. If N1 terminates with retry then its effects are
discarded, and we instead run N2 on the original heap H.

Rules (STM Or Left) and (STM Or Right) define M or N
as making a nondeterministic choice within a transaction. Such
choices may be derived at the level of the IO monad, but this oper-
ator introduces nondeterminism into transactions (which otherwise
are deterministic). Nondeterminism is used in our programming ex-
ample only to ensure completeness with respect to its specification;
without nondeterminism we would still have soundness.

4.2 Type System
We complete our formalization of STM Haskell by defining a
simple type system that prevents ill-formed expressions, such as
the inappropriate mixing of pure, STM and I/O expressions.

The type system only permits the reading and writing of transac-
tional variables inside transactions, which a fortiori enforces static
separation [1] and permits us to reason about transactions as if they
occur in a single step.

Let the domain, dom(M), of an expression M be the set of
(free) addresses of the transactional variables at top level in the
expression. We have dom(a 7→ M) = {a}, dom(M �=IO N) =
dom(M), dom(M�=STM N) = dom(M), dom(M |N) = dom(M)∪
dom(N) and dom((νa)M) = dom(M)\{a}. Otherwise, dom(M) =
∅. In particular, expressions that are not in a top-level evaluation
context should have no free transactional variables, so the type
system enforces that their domain is empty.

Here is the syntax of types. For the sake of simplicity, we
formalize only a monomorphic type system. We make the standard
assumption that uses of Hindley-Milner style polymorphism may
be represented by monomorphising via code duplication.

Types:
u ::= t | T type
t ::= t→ t | X | TVar t | IO ∅ t | STM ∅ t expression type
T ::= IO a t | STM a t | heap a | proc a Configuration type

An expression type t describes the eventual value of a pure func-
tional computation. They are either function types (t → t), alge-
braic datatypes (X), TVar reference types (TVar t), IO computation
types (IO∅ t) or STM transaction types (STM∅ t). We usually write
IO t for IO ∅ t, and STM t for STM ∅ t.

A configuration type T describes the structure, heap and poten-
tial return value (if any) of imperative and concurrent expressions.
Heap-expressions with domain a have type heap a. Both running
transactions and STM-expressions with domain a have type STM a t
for some t. Both threads and IO-expressions with domain a have
type IO a t for some t.

Finally, the type proc a consists of concurrent expressions with
domain a that are executed in the background for their effects, but
whose results will be discarded. Given T , we write dom(T) for its
domain.

We assume that all polymorphic algebraic datatypes X and their
constructors f have been monomorphized by instantiating each of
their occurrences. For instance, the type Maybe a is instantiated
at the unit type () as data Maybe() = Nothing() | Just() (). We
assume a set of predefined algebraic types (), Error, Listt ,Bool,
and Maybet , with constructors (), Nilt , Const , True, False,
Nothingt , and Justt .

The return type of an expression is the type of its rightmost
thread. The typing rule for parallel composition guarantees that
an expression consists of some transactional variables together
with either several IO threads or a single rightmost STM thread
(currently running a transaction). Moreover, it ensures that there
is at most one transactional variable at each location a. It uses
the partial non-commutative operation T ⊗T ′, defined as follows,
where a]b is a∪b if a and b are disjoint.

heap a⊗heap b := heap a]b
proc a⊗heap b := proc a]b
heap a⊗STM b t := STM a]b t
IO a t⊗heap b := proc a]b

T ⊗proc a := proc dom(T)]a if T 6= STM b t ′

T ⊗IO a t := IO dom(T)]a t if T 6= STM b t ′

In particular, note that STM a t ⊗ STM b t ′ is undefined, and hence
the type system does not allow two transactions to run at once.

Lemma 1. (T1 ⊗ T2)⊗ T3 = T1 ⊗ (T2 ⊗ T3) = T2 ⊗ (T1 ⊗ T3) =
(T2⊗T1)⊗T3.

A typing environment E ∈ E is a finite mapping from X∪N to
types. Each individual map is written as a :: TVar t or x :: t. We
write x :: t for the environment x1 :: t1, . . . ,xn :: tn where n is the
length of x and t. We write E,E ′ for the union of E and E ′ when
E and E ′ have disjoint domains. The full typing rules are given in
Figure 1 on page 7.

The rule (T BUILTIN) appeals to a relation g :: u1→ ···→ un→
u′, defined as follows, which gives a type for each application of a
builtin function g. In the following, all types t, t ′ and domains a are
universally quantified, and u→ u′ stands for u′ when |u| = 0, and
otherwise for u1→ ··· → un→ u′.

Types for Builtin Functions: g :: u→ u′

Y :: (t→ t)→ t
equal :: TVar t ′→ TVar t ′→ Bool
readTVar :: TVar t→ STM t
writeTVar :: TVar t→ t→ STM ()
returnSTM :: t→ STM t
retry :: STM t
�=STM :: STM a t ′→ (t ′→ STM t)→ STM a t
orElse :: STM t→ STM t→ STM t
or :: STM t→ STM t→ STM t
atomically:: STM t→ IO t
returnIO :: t→ IO t
�=IO :: IO a t ′→ (t ′→ IO t)→ IO a t

For example, the function swap has type TVar t → TVar t →
STM () for each t. Hence, the expression a 7→M | b 7→N | swap a b is
well-typed, by (T PAR), (T CELL), and (T APP). But the expression
a 7→ M | b 7→ N | swap a b | swap a b is not well-typed, since it
has two STM threads and STM t⊗STM t ′ is undefined. As a second
example, the expression λx.(x | x) (a 7→ ()) is not well-typed since
the transactional variable a 7→ () has type heap a; heap a is not
an expression type, so we cannot derive any valid function type
t → t ′ for the lambda-expression. Indeed, this expression would
yield a 7→ () | a 7→ (), which has two transactional variables with
the same location. Such ill-formed expressions are untypable, due
to the disjointness conditions of ⊗ (see (T PAR)). Similarly, the
expression λx.(x | x) (a 7→ () | returnIO ()) is not well-typed since
x must have an expression type, which always has empty domain.
However, λx.(x | x) has type IO t → IO t for each t, by (T PAR)
and (T LAMBDA). Thus, the expression λx.(x | x) (νa)(a 7→ () |
returnIO ()) is well-typed.

For example, for a well-typed application of swap, we have the
expected result,

a 7→M | b 7→ N | swap a b →∗ a 7→ N | b 7→M | returnSTM ()

but an ill-typed application may have an undesirable outcome.

a 7→M | b 7→ N | swap a b | swap a b→∗

a 7→ N | b 7→ N | returnSTM () | returnSTM ()

(T VAR)

E,x :: t ` x :: t

(T ADDR)

E,a :: TVar t ` a :: TVar t

(T EMP)

E ` emp :: heap ∅

(T LAMBDA)
E,x :: t `M :: t ′

E ` λx.M :: (t→ t ′)

(T APP)
E `M :: t→ t ′ E ` N :: t

E `M N :: t ′

(T BUILTIN) (g :: u→ u′)
E `M1 :: u1 . . . E `Mn :: un

E ` g M1 · · · Mn :: u′

(T ADT)
(
data X = f1 t1 | · · · | fm tm, |ti|= |M|

)
E `M1 :: t1

i . . . E `Mm :: tm
i

E ` fi M :: X

(T CASE) (data X = f1 t1 | · · · | fm tm)
E `M :: X E,x1 :: t1 ` N1 :: t ′ · · · E,xm :: tm ` Nm :: t ′

E ` case M of f x→ N :: t ′

(T CELL)
E,a :: TVar t ` N :: t

E,a :: TVar t ` a 7→ N :: heap a

(T PAR)
E `M :: TM E ` N :: TN

E `M | N :: TM⊗TN

(T RES)
E,b :: TVar t `M :: heap b⊗T

E ` (νb)M :: T

Figure 1. Type system

Lemma 2 (Subject Reduction).
If E `M :: u and M→M′ then E `M′ :: u.

From this point, we only consider well-typed processes (that is,
such that there is a typing environment under which they have a
type). This is motivated by Lemma 2. Moreover, due to the struc-
tural definition of the type system, every subexpression of a well-
typed process is well-typed. In order to reason compositionally
about multi-step reductions, we develop some simple conditions for
when two reductions are independent. We use these conditions in
our correctness proofs, where we often consider only transactions
and reason up to β -equivalence. We begin by dividing reductions
into pure→β and impure→ST M . (This distinction is different from
the one in [10], where the transition relation is stratified and there
is only one kind of top-level transition.)

Definition 3. We write M →β N if M → N can be derived using
only the rules in group (R1). We write→ST M for (→\→β) and �
for→∗

β
→ST M (the composition of→∗

β
and→ST M). We let =β be

the smallest equivalence relation containing→β and ≡.

Using Lemma 2, we can show that the pure reductions of a sin-
gle thread are deterministic, and that they commute with reductions
in other threads. β -reduction thus enjoys the diamond property.

Lemma 4. If M→M1 and M→β M2 with M1 6≡M2 then M1→β

M′ and M2→M′ for some M′.

4.3 Comparison with the Original Semantics
The original STM Haskell semantics [10] is based on three differ-
ent transition relations: I/O transitions, administrative transitions,
and STM transitions. These are defined on structures built from ex-
pressions, heaps, and multiple threads. In contrast, our semantics of
STM Haskell is in the style of a process calculus (like the semantics
of Concurrent Haskell [24], for example) and consists of a single
reduction relation defined on expressions, whose syntax subsumes
heaps and concurrent threads.

The difference in styles, though, is essentially syntactic. We
can show that our reduction relation is equivalent to the original se-
mantics. In the extended version of this paper we show a straight-
forward translation between our syntax and the original run-time
syntax, which yields a strong operational correspondence.

Having finished the development of our theory, we suspect it
would be quite possible to recast it directly on top of the original
semantics.

Still, we contend that our use of a uniform syntax of expressions
is better suited to the development of theories for reasoning about
STM Haskell programs. One reason is because it allows us to define
contextual equivalence (in Section 6) in the standard way, and to
import ideas from process calculus, such as bisimulation, directly.
Another reason is that our STM reduction rules (in groups (R2) and
(R3)) operate on the adjacent piece H of the heap, as opposed to the
full heap; this facilitates reasoning about the part of the heap that is
actually used by a transaction. Moreover, we can easily represent
parts of the run-time state, such as a thread together with a small
piece of the heap. The syntax also allows multiple threads with
local state to be composed using the parallel operator.

On the other hand, although our expression syntax is uniform,
we need to introduce configuration types, as well as conventional
types, to rule out certain ill-formed expressions. This is certainly a
cost we must pay for the uniform syntax, but we have not found it
so onerous; we need a type system anyway, and the additional rules
are not hard to work with.

5. Verifying the Ambient API
We are now in a position to specify the expected behaviour of the
Haskell code for the ambient API in Section 3, and to verify it. We
do so by showing that the API is a fully abstract implementation
of the ambient calculus, a small calculus of tree-manipulating pro-
cesses. Theorem 1, below, shows soundness and completeness of
the API, while Theorem 2 shows that ambient processes and their
Haskell implementations are in fact bisimilar.

Although the high-level statement of correctness is fairly intu-
itive, the definitions of correspondence between the run time states
of our Haskell code and the ambient calculus are rather detailed
and technical. The proofs themselves, in the long version of this pa-
per, are also rather complicated. Still, the theorems and their proofs
show the viability of our theory for reasoning about STM Haskell
code. To the best of our knowledge, ours is the first theory for equa-
tional reasoning about concurrent Haskell programs (as opposed to
say the correctness of implementations).

5.1 An (Imperative) Ambient Calculus
Our Haskell API is intended to implement the primitives of an
ambient calculus, defined as follows. calculus [5]. Readers familiar
with the ambient calculus will notice that every syntactic form of
the original calculus also exists as an imperative operation in iAmb.

Syntax of the Ambient Calculus:
π ::= simple capability

into a enter a
out a leave a
open a open a
amb a C create ambient a[C]
fork C fork thread C
new(a) C a fresh in C

C ::= π | nil |C.C capabilities
P ::= Process

0 inactivity
| a[P] ambient
|C.P prefixed thread
| (νa)P restriction
| P | P parallel

R ::= [·] | a[R] | (νa)R | R | P | P |R Reduction context

We often omit the 0 in C.0 and a[0]. Free and bound names of
capabilities and processes are defined as expected. The scope of the
bound name a extends to P in (νa).P and to C in new(a) C.

The reduction semantics of the ambient calculus are defined
as follows. Structural equivalence ≡ is the least congruence on
processes, with respect to the reduction (R) contexts, that satisfies
commutative monoid laws for | with 0 as unit and the rules below.

Structural Equivalence for Ambient Processes: P≡ Q

nil.P≡ P (A EPS)
(C1.C2).P≡C1.(C2.P) (A ASSOC)
R[(νa)P]≡ (νa)R[P] if n 6∈ n(R) (A RES)

Reduction → of processes is the least relation satisfying the
following rules.

Reduction for Ambient Processes: P→ Q

b[into a.P | Q] | a[R]→ a[b[P | Q] | R] (A IN)
a[b[out a.P | Q] | R]→ b[P | Q] | a[R] (A OUT)
open a.P | a[Q]→ P | Q (A OPEN)
(new(a) C).P→ (νa)C.P if a 6∈ fn(P) (A NEW)
amb a C.P→ a[C.0] | P (A AMB)
fork C.P→C.0 | P (A FORK)
P→ P′ =⇒ R[P]→R[P′] (A R CTX)
P≡→≡ P′ =⇒ P→ P′ (A STRUCT)

The first three rules specify how the tree structure can be modified.
If into a is executed inside a location b that has a sibling a, then b is
moved inside a. Conversely, if out a is executed inside a location b
that is a child of a, then b is moved outside a. Finally, open a opens
a single child named a of the ambient it is running in.

As a simple example, we take the ambient tree a[p[out a.into b]] |
b[], where the ambient p represents a packet that intends to move
from a to b: a[p[out a.into b]] | b[]→ a[] | p[into b] | b[]→ a[] |
b[p[]]. We define the delay operator τ as τ.P := aτ [] | open aτ .P for
some distinguished aτ .

In this setting, processes such as C.a[P] are ill-formed, since
they have no direct correspondent in the API. We instead use
C.amb a P. Formally, we treat only the following subcalculus;
processes that result from the execution of a closed process C.0.

Normal form for a subcalculus of iAmb
PN ::= a[PN] | (νa)PN | (PN | PN) |C.0 | 0

We write PN for the set of all PN . As an example, (out a.into b).0∈
PN , but out a.(into b.0) 6∈ PN. Note that PN is not closed un-
der structural equivalence, although it is closed (modulo structural
equivalence) under reduction. We write →N for → restricted to

PN×PN. In the remainder of the paper, we only consider processes
P ∈ PN. Continuing the running example:

amb a (amb p (out a.into b)).amb b nil.0
→N a[amb p (out a.into b).0] | amb b nil.0
→N a[p[out a.into b.0]] | amb b nil.0

→N a[p[out a.into b.0]] | b[]

5.2 Statement of Correctness
Cardelli [4] defined a notion of correctness for implementations of
the ambient calculus, which we quote here:

The problem. We want to find a (nondeterministic)
implementation of the reduction relation→∗, such that each
Pi in an ambient is executed by a concurrent thread (and so
on recursively in the subambients m j[...]).
Desirable properties of the implementation are:
• Liveness: If P → Q then the implementation must re-

duce P.
• Soundness: If the implementation reduces P to Q, then

we must have P→∗ Q.
• Completeness: If P→∗ Q, then the implementation must

be able (however unlikely) to reduce P to some Q′ ≡ Q.

Additional Properties. In addition to the three properties pro-
posed by Cardelli, we formalize the following two, and establish
all five as Theorem 1.

• Safety: If the implementation reduces P to M then M can reduce
further to some Q.

• Termination: If the implementation of P has an infinite reduc-
tion, then P also does.

Compared to [4], we additionally treat the open capability (and in
an extended version of this paper, communication of both names
and capabilities).

The proof of Theorem 1 proceeds as follows: We begin by giv-
ing a simple correspondence between ambient capabilities and their
Haskell implementation. In Definition 5, we define how an ambient
process is implemented as a Haskell expression, including heap and
running capabilities. Definition 6 bridges the gap beween this inten-
sional specification and the expressions that arise when executing
the expressions; the main difference is due to the lack of garbage
collection in our semantics. Then, Lemma 7 guarantees that the
correspondence does not confuse unrelated ambient processes.

With the static correspondence in place, we can then show how
it is preserved by execution. Lemma 8 details how the execution
of the implementation of a prefix corresponds to its semantics in
the ambient calculus. Finally, in the proof of Theorem 1 we close
the result of Lemma 8 under contexts, yielding a strong operational
correspondence.

5.3 Correspondence between Haskell Code and Ambients
The encoding [[C]] into Haskell of imperative ambient capabilities
is homomorphic, except for two cases:

[[new(a) C]] := (new [])�= λa→ [[C]]
[[C′.C]] := [[C′]] � [[C]]

Continuing the running example, we have:

[[amb a (amb p (out a.into b)).amb b nil]]
= amb a (amb p (out a � into b)) � amb b nil

We can then give a compositional definition of what it means for the
run-time state of a Haskell program to correspond to (the structure

of) a given iAmb process. This definition encapsulates both the
heap shape invariant preserved by the functions of the API, and
how a given ambient calculus process is represented in the heap.
The definition has two levels. At the inner level (Definition 5),
we inductively match the structure of an ambient process against
a structured decomposition of a process term. At the outer level
(Definition 6), we perform sanity checks, open restrictions, discard
unused heap items and identify the root ambient.

Definition 5. We identify association lists with the corresponding
binary relations, that must be injective. We identify other lists with
multisets. We then say that (Dn,Dp,Dh,Dc) ∈ (Dn,Dp,Dh,D′c)⊕
(Dn,Dp,Dh,D′′c) if Dc ∈D′c∪D′′c . We write D for an AD(Dn,Dp,Dh,Dc).
An agent C at location h is [[C.0]]h := case [[C]] of Agent x→ x h.

Informally, we write (a 7→ D,Hh,H,M) ∈ M(P) if a 7→ D is
the current ambient, Hh its handles, H the data and handles of
all its subambients and M the running capabilities in P. M(P) is
inductively defined as follows:

(Completed agent)
(a 7→ (Dn,Dp,Dh, []),Πh∈Dh h 7→ a,emp,returnIO ()) ∈M(P)
if P≡ 0.

(Agent running in the current ambient)
(a 7→ (Dn,Dp,Dh, []),Πh∈Dh h 7→ a,emp, [[C]]h) ∈M(P) if P ≡
C.0 and h ∈ Dh

(Child of the current ambient)
(a 7→ (Dn,Dp,Dh, [(b,c)]),Hh,H,M) ∈M(P) if P ≡ b[Q] and
H ≡ c 7→ D′ | Πh∈D′h

h 7→ c | H ′ where (c 7→ D′,Πh∈D′h
h 7→

c,H ′,M) ∈M(Q), D′n = b and D′p = Some h′ with h′ ∈ Dh
(Parallel decomposition)

(a 7→ D,Hh,H,M) ∈M(P) if P ≡ Q1 | Q2, H ≡ H1 | H2, M ≡
M1 |M2, D ∈D1]D2 with (a 7→D1,Hh,H1,M1) ∈M(Q1) and
(a 7→ D2,Hh,H2,M2) ∈M(Q2).

We can then define what it means for M to be a run-time state
corresponding to an ambient process P0.

Definition 6. M ∈M (P0) iff

1. There are P,e such that P0 ≡ (νe)P and P is not a R[(νa)Q]
(the top-level restrictions of P0 are e);

2. fn(P0)⊆ dom(M) and E `M :: IO a () for E := {ai :: TVar [Char] |
ai ∈ dom(M)}
(M has the free names of P0 in its domain, and is well-typed);

3. M ≡ (νabce)(a 7→ [] | b 7→ (a,None,Dh,Dc) |H0 |H1 |H2 |H3 |
M′) (we can split M into the root ambient, some heaps and some
running code);

4. H0 = Πidi 7→ Ni with d ∩ fn(Dh | Dc | H1 | H2 | H3 | M′) = ∅.
Moreover, if Ni = D′ then D′p 6= None
(H0 is unreachable garbage not containing a root ambient);

5. H1 = Πn∈fn(P)n 7→ sn with ∅ ` sn :: String
(H1 is the free names of P, and is well-typed);

6. H2 = Πh∈Dh h 7→ b
(H2 is the handles of the root ambient);

7. There are no R|,a,M′′ such that H3 |M′ ≡R|[(νa)M′′]
(there are no further restricted heap cells at the top level); and

8. (a 7→ D,H2,H3,M′) ∈M(P).

Both M and M characterize PN modulo structural equivalence.

Lemma 7. If P ≡ Q then M (P) = M (Q) and M(P) = M(Q).
Conversely, if M(P) ∩M(Q) 6= ∅ or M (P) ∩M (Q) 6= ∅ then
P≡ Q.

5.4 Operational Semantics of the Implementation
The transactions of the implementations of prefixes exactly corre-
spond to the axioms of the ambient calculus operational semantics,

lifted to Haskell using the M function. We show the case of the into
prefix.

Lemma 8. If C.0 ≡ into a.P and (d 7→ D,H2,H3,M) ∈M(a[Q] |
b[C.0 | R1] | R2), M = R|[[[C.0]]h3], {(a,d2),(b,d3)} ∈ Dc with
d2 6= d3, H3≡ d2 7→D2 | h3 7→ d3 | d3 7→D3 |H ′3 with D3p = just h
and H2 ≡ h 7→ d | H ′2, then
d 7→ D | H2 | H3 |M �=β d 7→ D′ | H2 | d2 7→ D2′ | h3 7→ d3 |
d3 7→ D3′ | H ′3 |R|[[[C′.0]]h3] where C′.0≡ P and
(d 7→ D′,H2,d2 7→ D2′ | h3 7→ d3 | d3 7→ D3′ | H ′3,R|[[[C′.0]]h3]) ∈
M(a[Q |C′.0 | R1] | R2).

5.5 Main Results About the Haskell Code
Our first correctness result establishes direct correspondences
between ambient processes and the states of the Haskell im-
plementation; the different properties in this theorem generalize
the properties sought by Cardelli [4]. Recall the definition of
� :=→∗

β
→ST M , intuitively “performing a transaction”.

Theorem 1.

• Liveness, Completeness:
If P→N Q and M ∈M (P) then M �=β∈M (Q).

• Safety, Soundness:
If M ∈M (P) and M � M′ then P→N Q with M′ =β∈M (Q).

• Termination:
If M ∈M (P) and M has an infinite reduction then P has an
infinite reduction.

Proof sketch.

1. Assume that M � M′ and that M ∈M (P) where P ≡ (νe)P0
such that P0 does not have any top-level restrictions. By as-
sumption, M ≡ (νabce)(a 7→ ”” | b 7→ (a,None,Dh,Dc) | H0 |
H1 | H2 | H3 | N) such that H1 | H2 | H3 | N � H ′1 | H ′2 | H ′3 | N′
and A := (b 7→ (a,None,Dh,Dc),H2,H3,N) ∈ M(P0). By in-
duction on the derivation of A ∈M(P0), N = ΠiNi is a parallel
composition of several Ni = [[Ci]]hi . Then there is j such that
H1 |H2 |H3 | [[C j]]h j � H ′1 |H ′2 |H ′3 |N′j with N′=β N′j |Πi6= jNi.

As shown in Lemma 8 for the in prefix, and in the ex-
tended version for the other prefixes, we then have H1 | H2 |
H3 ≡ HR | d 7→ D | Hh | HS such that P0 ≡ R[R2[C′j.Q]],
(d 7→ D,Hh,HS) ∈ M(R2[C j]) and H ′1 | H ′2 | H ′3 ≡ HR | d 7→
D′ | H ′h | H ′S such that (d 7→ D′,H ′h,H

′
S) ∈ M(R′2[Q]) where

C j.0 ≡C′j.Q
′ and R2[C′j.Q

′]→R′2[Q
′] is an axiom. By induc-

tion on the derivation of A ∈M(P0), M′ =β (νabce)(a 7→ ”” |
b 7→ (a,None,Dh,Dc) | H0 | H ′1 | H ′2 | H ′3 | N′j |Πi 6= jNi).
M′

β
∈M (R[R′2[Q]]) follows by Lemma 7.

2. Assume that P → P′. Let e be the top-level restrictions of
P. If the reduction occured inside an ambient, then there are
a, Q, R and contexts R1,R2 where P ≡ (νe)R1[a[R2[π.Q] |
R]], R2[π.Q] → R′2[Q] is an instance of an axiom and P′ ≡
(νe)R[a[R′2[Q] | R]].
By assumption M ∈ M (P), so N ≡ R|[d 7→ D | Hh | H |
N] such that (d 7→ D,Hh,H,N) ∈ M(a[R2[π.Q] | R]). Thus,
H ≡ c 7→ D′ | H1 | H2 | Πh∈D′h

h 7→ c and N ≡ N1 | N2 with
D′n = b, D′p = Some h′, h′ ∈ Dh and D ∈ D′1]D′2 with A :=
(c 7→ D′1,Πhi∈D′h

hi 7→ c,H1,N1) ∈ M(R2[π.Q]) and (c 7→
D′2,Πh∈D′h

h 7→ c,H2,N2) ∈M(R).

By induction on the derivation of A ∈ M(R2[π.Q]), we have
N1 ≡ [[C′]]hi | N′1 with C′.0 ≡ π.Q. We treat the case where
π is not new(a)C. As shown in Lemma 8 for the into prefix,
and in the extended version for the other prefixes, c 7→ D′1 |

Πhi∈D′h
hi 7→ c | H1 | [[C′]]hi � c 7→ D′′1 | H ′h | H

′
1 | [[CQ]]hi with

CQ.0≡ Q and (c 7→ D′′1 ,H ′h,H
′
1, [[CQ]]hi) ∈M(R′2[CQ.0]).

If the reduction occurs at top level, we have P ≡ (νe)(Q | R),
and N ≡R|[d 7→ D | Hh | H | N] such that (d 7→ D,Hh,H,N) ∈
M(Q | R). The rest of the proof proceeds analogously.

3. This follows from the completeness above and the fact that
M (P) is→β -convergent (modulo ≡).

The proof of this theorem uses Lemma 8 to prove that an agent can
progress whenever the corresponding ambient process does and to
get the shape of the result of the transition. The proof also uses the
compositionality of the calculus; specifically in order to separate an
agent (running as part of an expression in the IO monad) and the
heap it needs to progress.

Next, we define a notion of bisimulation between ambient pro-
cesses and STM Haskell expressions.

Definition 9. R ⊆M×PN is a bisimulation iff for all (M,P) ∈ R
• If M � M′ then P→N P′ with (M′,P′) ∈ R; and
• If P→N P′ then M � M′ with (M′,P′) ∈ R.

The expression M is bisimilar to the process P if there is some
bisimulation R with M R P.

Theorem 2. HC | root [[C]] is bisimilar to τ.C.0,
where Hc := Πai∈fn(C)ai 7→ ””.

Bisimulation between the expressions of our calculus and pro-
cesses of the ambient calculus allows a succinct statement of the
theorem. The proof relies on the soundness of bisimulation up to
=β . We could probably replicate this definition using the original
semantics of STM Haskell, but it would require many cases; our
reformulated semantics allows a simple and direct definition.

6. Equational Reasoning
One of the nice things about functional programming is that we can
hope for two expressions to be equivalent, in the sense that they can
be substituted for each other in any context. In this section, we de-
velop a proof technique for a Morris-style contextual equivalence.
In particular, we prove a number of equations asserted in [10].

6.1 Contextual Equivalence
We begin by defining a notion of a typed relation, stating that two
terms are related at a given type under a typing environment.

Definition 10 (Typed Relation). R ⊂ E×M×M×T is a typed
relation if whenever (E,M1,M2,u) ∈ R) we have E ` M1 :: u and
E `M2 :: u. We write E ` M1 R M2 :: u for (E,M1,M2,u) ∈ R).

An expression M has terminated, written M ↓, if its rightmost
thread returns. Termination is our only top-level observation.
Termination
(TERM RETURN)

returnIO M ↓

(TERM RES)
M ↓

(νa)M ↓

(TERM PAR)
M ↓

N |M ↓

An expression M terminates, written M ⇓, if M→∗ N such that N ↓.
Definition 11. Contextual equivalence, written ', is the typed
relation such that E ` M1 ' M2 :: u if and only if for all contexts
C such that ◦ ` C [M1] :: IO a () and ◦ ` C [M2] :: IO a () we have
C [M1] ⇓ if and only if C [M2] ⇓.

6.2 STM Expressions as Heap Relations
Because of the isolation between different transactions provided by
the run-time systems, STM expressions are completely defined by

their effect on the transactional heap. For simplicity (cf. [16, 17,
29]), we work with a pure heap, where the types of elements in the
heap do not mention the STM or IO monads.

Definition 12. A type t is pure if it is either t1 → t2 where t1 and
t2 are pure, if it is TVar t ′ where t ′ is pure, or if it is X such that
data X = f1 t1 | · · · | fm tm where all t i

m are pure. An environment
E is a pure store environment if E is of the form ∪ibi :: TVar ti
where all ti are pure.

A derivation E ` M :: u is pure, written E `p M :: u, if E is a
pure store environment and t is pure in all occurrences of TVar t in
the derivation. We then say that M uses only pure heap.

Two STM threads that only use pure heap are equivalent if they
modify the heap in the same way and return the same result.

Definition 13. Heap transformer equivalence, written =HT , is de-
fined by E ` M =HT N :: u if and only if u = STM t, E `p M :: u,
E `p N :: u, M and N are β -threads, and for all STM contexts
R7→,R′7→, and heaps H such that E ` H :: heap a we have
H |M→∗ R7→[returnSTM M′] iff H | N→∗ R 7→[returnSTM M′];
and H |M→∗ R7→[retry] iff H | N→∗ R′7→[retry].

Theorem 3. The relation =HT is sound, that is, =HT ⊆'.

Proof. We let =C
HT be the smallest typed congruence containing

=HT . We prove that =C
HT ⊆'. The proof has three parts:

1. If E `P M :: t and E `H :: heap a then reductions of H |M only
depend on the pure cells in H.

2. Let ∼=C
HT be the smallest typed congruence such that E `

M =C
HT N :: t with t pure and M,N closed implies E ` M ∼=C

HT
N :: t.
If E `P M :: t, and G and H are pure heaps related by∼=C

HT , then
derivatives of G |M and H |M are related by ∼=C

HT .

3. We can then derive that =C
HT is a barbed bisimulation, so it is

contained in '. The interesting case is as follows:

Assume that E ` M =HT N :: STM t, E ` H =C
HT G :: heap c

and H |M→∗R7→[B]. To prove that G |N→∗R′7→[B′] such that
E `R 7→[B] =C

HT R′7→[B′] :: STM c t we first use 1. and 2. to prove
that G | M →∗ R′′7→[B′′] such that E ` R7→[B] =C

HT R′′7→[B′′] ::
STM c t.
Then G | N→∗ R′7→[B′] such that E ` R′′7→[B′′] =C

HT R′7→[B′] ::
STM c t by the definition of =HT . By transitivity, E `R7→[B] =C

HT
R′7→[B′] :: STM c t.

We write M↔ N if for all pure store environments E and types t
such that E `p M :: STM t and E `p N :: STM t we have E ` M =HT
N :: STM t. We can now use Theorem 3 to prove classic equations
between expressions.

6.3 Proving the Monad Laws
To be a proper monad, the returnSTM and �=STM functions must
work together according to three laws:

Lemma 14.

1. ((returnSTM M)�=STM N)↔ NM.
2. (M�=STM λx.returnSTM x)↔M
3. ((M�=STM f)�=STM g)↔ (M�=STM (λx. f x�=STM g))

Proof.

1. The only transition of H | (returnSTM M)�=STM N is
H | (returnSTM M)�=STM N→≡ H | NM

2. Take M′ ∈ {retry,returnSTM M′′}.
We then have H |M→∗ R 7→[M′] iff

M�=STM →∗ R7→[M′]�=STM λx.returnSTM x
≡R 7→[M′�=STM λx.returnSTM x]

.

We proceed by case analysis on M′.
• M′ = retry iff, using (STM BIND RETRY),

R7→[M′�=STM λx.returnSTM x]→R 7→[retry].
• M′= returnSTM M′′ iff R7→[M′�=STM λx.returnSTM x]→
→ R7→[returnSTM M′′], using (STM BIND RETURN) and
(BETA).

3. as 2.

6.4 Proving Other Equations
We prove classical single-threaded imperative equivalences, such
as the commutativity of accesses to independent memory cells.

Lemma 15.
• (readTVar a�=STM λx.writeTVar a x)↔ returnSTM ().
• (writeTVar a M�STM writeTVar b N)↔

(writeTVar b N�STM writeTVar a M) if a 6= b.
• (readTVar a�=STM λx.writeTVar b M�=STM returnSTM x)
↔ (writeTVar b M�STM readTVar a) if a 6= b

We also prove absorption and associativity laws for orElse, as
proposed in [10], and associativity and commutativity laws for or.

Lemma 16.

1. orElse retry M↔M
2. orElse M retry↔M
3. orElseM1 (orElseM2 M3)↔ orElse (orElseM1 M2) M3
4. or M N↔ or N M
5. or M1 (or M2 M3)↔ or (or M1 M2) M3

7. Related Work
Prior semantics for languages with STM, such as STM Haskell [10],
were developed with an aim to specify and compare transaction
models [33] and their implementations [30, 14, 1], or to study
the interaction of transactions with other language features [20].
Hu and Hutton [13] show correctness for a compiler for a small
transaction language, inspired by STM Haskell. In contrast, our
semantics is designed to enable equational reasoning about source
programs. In this respect, the development closest to ours is of an
equational theory for a process algebra with STM [2]; this work is
not about actual code, and includes no substantial example.

Proof techniques for STM programs have focused on checking
invariants of shared transactional state, not on equational reason-
ing. An extension of STM Haskell with run time invariant check-
ing [12] defines a semantics and implementation but does not at-
tempt program verification. A program logic [21] allows invariants
to be specified as pre- and post-conditions within a dependent type
system and proofs are by typechecking; unlike STM Haskell, this
system has no explicit transaction abort or retry.

Our main case study is a verification of a centralized shared-
memory implementation of ambients. There are several distributed
implementations of ambients described in the literature [6, 25, 7].
These have also been verified using techniques from process cal-
culus, but the algorithms are based on message-passing rather than
transactional memory. We recently learnt of an independent, but
unverified, implementation of ambients within STM Haskell [32].
We intend to investigate whether our verification techniques also
apply to this code.

8. Conclusions
It has been prominently argued that functional progamming in
pure languages like Haskell facilitates equational reasoning [15]

and that transactional memory enables compositional reasoning
about concurrent programs [11]. Here we realize this promise in
the context of STM Haskell and show how to verify equational
properties of a sizeable STM program.

As future work, we want to extend our proof techniques to stat-
ically check invariants, and to investigate connections between our
model of heaps and concurrency, spatial logics for process calculi,
and separation logics for imperative programming languages. A
possible further case study to exercise our theory would be to verify
an STM implementation of the join calculus.

Acknowledgements Discussions with Cédric Fournet, Tim Har-
ris, Simon Peyton Jones, and Claudio Russo were useful.

A. Source code
This appendix contains the remainder of the source code for the
ambient API of Section 3.

Ambient Functions

nil = Agent $ \s -> return ()

new arg = Agent $ \s ->
atomically $ newTVar arg

root agent = do
rHandle <- (atomically $

do rName <- newTVar "root";
newAmb Nothing rName);

case agent of Agent f -> f rHandle

amb a agent = Agent $ \bHandle -> do {
aHandle <- atomically $ do {
aHandle <- newAmb (Just bHandle) a;
aAmbient <- readTVar aHandle;
AD (n,p,h,c) <- readAmb bHandle;
writeAmb bHandle (AD (n,p,h,(a,aAmbient):c));
return aHandle};

forkIO $ case agent of Agent f -> f aHandle
;return ()}

out c = Agent $ \bHandle -> atomically $ do {
bAmbient <- readTVar bHandle;
AD (bn,bp,bh,bc) <- readAmb bHandle;
cHandle <- parentOf bHandle;
AD (cn,cp,ch,cc) <- readAmb cHandle;
aHandle <- if (cn == c)

then parentOf cHandle
else retry;

AD (an,ap,ah,ac) <- readAmb aHandle;
writeAmb aHandle (AD (an,ap,ah,

(bn,bAmbient):ac));
writeAmb cHandle (AD (cn,cp,ch,

delete (bn,bAmbient) cc));
writeAmb bHandle (AD (bn,Just aHandle,bh,bc))}

open c = Agent $ \aHandle -> atomically $ do {
aAmbient <- readTVar aHandle;
AD (an,ap,ah,ac) <- readAmb aHandle;
cAmbient <- lookup’ c ac;
AD (cn,cp,ch,cc) <- readTVar cAmbient;
rePoint aAmbient ch;
writeAmb aHandle

(AD (an, ap, ah++ch,
(delete (cn,cAmbient) ac)++cc))}

fork agent = Agent $ \s -> do {
atomically $ return ();

; forkIO $ case agent of
Agent f -> f s

; return ()}

Helper Functions

newAmb :: (Maybe Handle) -> Name -> STM Handle
newAmb p n = do {
me <- newTVar (AD (n, p, [], []));
pMe <- newTVar me;
writeTVar me (AD (n, p, [pMe], []));
return pMe}

rePoint :: Ambient -> [Handle] -> STM ()
rePoint a [] = return ()
rePoint a (x:xs) = do writeTVar x a;

rePoint a xs

Non-deterministic Lookup

choose :: [a] -> STM a
choose [] = retry
choose (x:[]) = return x
choose (x:xs) = or (return x) (choose xs)

assoc :: Name -> [(Name,Ambient)] -> [Ambient]
assoc f [] = []
assoc f ((a,x):xs) =

if f==a then (x:assoc f xs)
else assoc f xs

lookup’ x l = choose (assoc x l)

References
[1] ABADI, M., BIRRELL, A., HARRIS, T., AND ISARD, M. Semantics

of transactional memory and automatic mutual exclusion. In Proc.
POPL’08 (2008), pp. 63–74.

[2] ACCIAI, L., BOREALE, M., AND DAL-ZILIO, S. A concurrent
calculus with atomic transactions. In Proc. ESOP’07 (2007), R. D.
Nicola, Ed., vol. 4421 of LNCS, Springer, pp. 48–63.

[3] BORGSTRÖM, J., BHARGAVAN, K., AND GORDON, A. D. A
compositional theory for STM Haskell. Tech. Rep. MSR-TR-2009-
66, Microsoft Research, 2009.

[4] CARDELLI, L. Mobile ambient synchronization. Technical Note
1997-013, Digital Equipment Corporation, Systems Research Center,
1997.

[5] CARDELLI, L., AND GORDON, A. D. Mobile ambients. Theoretical
Computer Science 240 (2000), 177–213.

[6] FOURNET, C., LÉVY, J.-J., AND SCHMITT, A. An asynchronous,
distributed implementation of mobile ambients. In Proc. TCS’00
(2000), Springer, pp. 348–364.

[7] GIANNINI, P., SANGIORGI, D., AND VALENTE, A. Safe ambients:
Abstract machine and distributed implementation. Science of
Computer Programming 59, 3 (2006), 209–249.

[8] GUERRAOUI, R., HENZINGER, T. A., AND SINGH, V. Complete-
ness and nondeterminism in model checking transactional memories.
In Proc. CONCUR’08 (2008), F. van Breugel and M. Chechik, Eds.,
vol. 5201 of LNCS, Springer, pp. 21–35.

[9] HARRIS, T., AND FRASER, K. Language support for lightweight
transactions. In Proc. OOPSLA’03 (2003), pp. 388–402.

[10] HARRIS, T., MARLOW, S., PEYTON JONES, S., AND HERLIHY,
M. Composable memory transactions. In Proc. PPOPP’05 (2005),
K. Pingali, K. A. Yelick, and A. S. Grimshaw, Eds., ACM, pp. 48–60.

[11] HARRIS, T., MARLOW, S., PEYTON JONES, S., AND HERLIHY, M.
Composable memory transactions. Communications of ACM 51, 8
(2008), 91–100.

[12] HARRIS, T., AND PEYTON JONES, S. Transactional memory with
data invariants. In Proc. TRANSACT’06 (2006).

[13] HU, L., AND HUTTON, G. Towards a verified implementation of
software transactional memory. In The Symposium on Trends in
Functional Programming (2008). To appear.

[14] HUCH, F., AND KUPKE, F. A high-level implementation of
composable memory transactions in Concurrent Haskell. In Proc.
Implementation and Application of Functional Languages (2005),
vol. 4015 of LNCS, Springer, pp. 124–141.

[15] HUGHES, J. Why functional programming matters. Computer
Journal 32, 2 (Apr. 1989), 98–107.

[16] JEFFREY, A., AND RATHKE, J. A theory of bisimulation for a
fragment of concurrent ML with local names. Theoretical Computer
Science 323, 1–3 (2004), 1–48.

[17] KOUTAVAS, V., AND WAND, M. Small bisimulations for reasoning
about higher-order imperative programs. In Proc. POPL ’06 (2006),
ACM, pp. 141–152.

[18] LEE, E. The problem with threads. COMPUTER (2006), 33–42.

[19] MILNER, R. Communication and Concurrency. Prentice Hall, 1989.

[20] MOORE, K. F., AND GROSSMAN, D. High-level small-step
operational semantics for transactions. In Proc. POPL’08 (2008),
pp. 51–62.

[21] NANEVSKI, A., GOVEREAU, P., AND MORRISETT, G. Type-
theoretic semantics for transactional concurrency. Tech. Rep. TR-
08-07, Harvard University, July 2007.

[22] O’LEARY, J., SAHA, B., AND TUTTLE, M. R. Model checking
transactional memory with Spin. In Proc. PODC’08 (2008), R. A.
Bazzi and B. Patt-Shamir, Eds., ACM, p. 424.

[23] OUSTERHOUT, J. Why threads are a bad idea (for most purposes). In
Presentation given at the 1996 Usenix Annual Technical Conference,
January (1996).

[24] PEYTON JONES, S., GORDON, A., AND FINNE, S. Concurrent
Haskell. In Proc. POPL’96 (1996), pp. 295–308.

[25] PHILLIPS, A., YOSHIDA, N., AND EISENBACH, S. A distributed
abstract machine for boxed ambient calculi. In Proc. ESOP’04 (2004),
D. A. Schmidt, Ed., vol. 2986 of LNCS, Springer, pp. 155–170.

[26] REGEV, A., PANINA, E. M., SILVERMAN, W., CARDELLI, L.,
AND SHAPIRO, E. BioAmbients: An abstraction for biological
compartments. Theoretical Computer Science 325, 1 (2004), 141–
167.

[27] RINGENBURG, M. F., AND GROSSMAN, D. AtomCaml: first-class
atomicity via rollback. In Proc. ICFP ’05 (2005), ACM, pp. 92–104.

[28] SANGIORGI, D. On the bisimulation proof method. Mathematical
Structures in Computer Science 8 (1998), 447–479.

[29] SANGIORGI, D., KOBAYASHI, N., AND SUMII, E. Environmental
bisimulations for higher-order languages. In Proc. LICS’07 (2007),
IEEE Computer Society, pp. 293–302.

[30] SCOTT, M. L. Sequential specification of transactional memory
semantics. In Proc. TRANSACT’06 (2006).

[31] SHAVIT, N., AND TOUITOU, D. Software transactional memory.
Distributed Computing 10, 2 (1997), 99–116.

[32] SUNSHINE-HILL, B., AND ZARKO, L. STM versus locks, ambiently,
May 2008. CIS 552 Final Project, University of Pennsylvania.

[33] VITEK, J., JAGANNATHAN, S., WELC, A., AND HOSKING, A. L.
A semantic framework for designer transactions. In Proc. ESOP’04
(2004), D. A. Schmidt, Ed., vol. 2986 of LNCS, Springer, pp. 249–
263.

