
An Abductive Protocol for Authorization Credential
Gathering in Distributed Systems

Moritz Y. Becker Jason F. Mackay1

Blair Dillaway1

1Microsoft Corporation, One Microsoft Way, Redmond, WA 98052

{moritzb,jmackay,blaird}@microsoft.com

February 2009

Technical Report
MSR–TR–2009–19

Microsoft Research
Roger Needham Building
7 J.J. Thomson Avenue
Cambridge, CB3 0FB

United Kingdom

An Abductive Protocol for Authorization Credential
Gathering in Distributed Systems

Moritz Y. Becker Jason F. Mackay1

Blair Dillaway1

1Microsoft Corporation, One Microsoft Way, Redmond, WA 98052

{moritzb,jmackay,blaird}@microsoft.com

February 2009

Abstract

The problem of authorization in large-scale decentralized systems has been addressed by
a number of logic-based policy languages utilizing delegation of authority and distributed
security credentials. A central task in this context is that of gathering a set of credentials
for a given access request. Previous approaches have focused on methods in which creden-
tials are pulled on-demand from credential providers during authorization. These methods
may result in multiple, and potentially futile, costly queries to the same remote credential
provider, and require that providers be known and available to the resource guard at access
time. A novel decentralized protocol is presented in this paper to address these shortcom-
ings. The approach uses logical abduction to statically and locally compute a specification
of credentials needed to satisfy a given query against a policy. Based on such a specification,
credentials are gathered using a single-pass protocol that queries each provider only once
and does not involve any communication with the resource guard. The credentials gathered
thus are then pushed to the resource guard at authorization time. This approach decouples
authorization from credential gathering, and, in comparison to server-side pull methods,
reduces the number of messages sent between participants, and allows for communication
topologies in which some credential providers are unknown or unavailable to the resource
guard at authorization time.

1 Introduction

Large-scale decentralized systems present unique challenges for authorization and access con-
trol. Several logic-based authorization policy languages specialized for such environments have
emerged which leverage the concept of delegated authority in order to remove the need for cen-
tralized control (e.g. [10, 15, 4, 2]). Credentials in these systems are not stored in a central
location but rather in a distributed manner; in fact they may be stored anywhere as long as they
are made available to the resource guard at the time of authorization. Requiring that users gather
the credentials themselves and push them to the resource guard has been considered problematic

2

[8], because the expressiveness of policy languages can make it difficult for a human to under-
stand precisely what kinds of credentials are required. Furthermore, the user generally does not,
should not need to, know the policy. An automated method for distilling such requirements from
a policy and an access request and then gathering the right credentials is therefore desirable.

Previous work in this area has focused on server-side on-demand pull methods [8, 1, 17,
10, 4, 13] to take the burden off the user. In these approaches, the resource guard attempts to
construct a proof for the access request based on local policy and a set of provided credentials.
Whenever a required credential is not locally available during the proof process, an attempt is
made to retrieve it from some remote credential provider. Consider the following schematic
example (written in SecPAL [2]):

Srv says : x can read f if x is a Mgr in dept, dept owns f

Srv says : Bob can say0 x is a role in dept

When Alice requests to read a file foo, the proof process first tries to prove that she is a manager
of some arbitrary department dept. Authority over role memberships has been delegated to Bob
(by the second assertion), so in the absence of any relevant local information, the resource guard
attempts to pull all credentials of the form Bob says Alice is a Mgr in dept from a suitable remote
credential provider (e.g. Bob). When the credentials have arrived, the proof can proceed with the
second condition, dept owns foo. There are two problems with the pull-based approach:

1. Communication cost. The proof of the second condition may fail based on local information,
in which case the costly communication with the credential provider was futile. Similarly,
the second condition may turn out to force a constraint on dept, which could have made
the remote query narrower and more efficient, if the constraint had been known in advance.
Finally, the proof of the second condition may itself require missing credentials from the
same provider, resulting in multiple, separate message exchanges.

2. Connectivity requirements. The proof process fails (or becomes inaccurate) if any of the
credential providers required during the proof happens to be unavailable to the resource guard
at authorization time, for example due to unexpected downtime, or because the provider is
behind a firewall, or because human interaction is required at the provider’s site. Also, there
are cases where the location of a missing credential is not discoverable by the resource guard,
but is determined by another part of the workflow.

This paper presents a novel push-based method for gathering credentials in distributed sys-
tems that addresses these two problems and yet does not require the user (or any principal other
than the resource guard) to know the policy. To deal with the first problem, we present an
algorithm for statically precomputing a complete specification of missing credentials, without
requiring remote communication. This goal-directed algorithm performs logical abduction over
constrained Datalog, using memoization to improve efficiency. To deal with the second problem,
we present a distributed single-pass protocol for collecting credentials, based on the abductive
specification, that does not involve the resource guard (or any other central pull-mechanism) at
all, and therefore does not require simultaneous availability of providers at access time or at
any other time. In fact, the protocol makes only very weak assumptions on the connectivity of

3

participating parties: arbitrary communication paths through the providers are supported, en-
abling a wider variety of scenarios and minimizing communications overhead compared to the
server-side pull approach. The credentials gathered thus are guaranteed to sufficiently support
the query, as long as the policy is not modified during the run of the protocol, and are pushed to
the resource guard at access time. The algorithms and protocols are described in the context of
SecPAL [2], a highly expressive policy language that can be translated into constrained recursive
Datalog, but are applicable to any similar language of equal or lesser expressiveness, as long as
it supports decentralized delegation.

The organization of the remainder of this paper is as follows. Section 2 defines SecPAL, the
authorization language on which this work is based. Section 3 presents an abductive reasoning
algorithm for computing a complete specification of credentials that would result in success for
a given access request. Section 4 describes a protocol which, given such a specification, incre-
mentally gathers satisfying credentials from a set of credential providers. Section 5 illustrates
the protocol in the context of an example scenario based on electronic health records. Section 6
provides some insights gained through the implementation of a prototype system. Related work
is discussed in Section 7. Section 8 concludes the paper with a discussion of limitations and
future work.

2 Security Policy Assertions

This section defines the core of the Security Policy Assertion Language (SecPAL), an autho-
rization language we are developing for large-scale federated systems. We leave out language
features that are irrelevant to this paper.

Syntax Expressions e are either typed variables (written in lowercase italics in this paper)
or constants (including principal identifiers, resources, role names, date times, etc., written in
typewriter font). We use U as a meta-variable for constant principal identifiers. A syntactic
phrase is ground if it is variable-free.

A fact is a simple sentence consisting of a principal expression (the subject) followed by a
verb phrase. A verb phrase is a typed predicate with parameters, usually written in infix notation
in order to resemble natural language. There are flat and nested verb phrases (and, by extension,
facts). Flat verb phrases can be defined by application writers and do not have any intrinsic
semantics; for example, in the scenario in Section 5 we use four application-specific flat facts

e1 can access e2’s data
e1 is a e2
e1 is treating e2 (from e3 until e4)
e2 has e1’s consent (from e3 until e4)

Nested verb phrases are of the form can sayK fact where K is either 0 or ∞. Note that fact
itself can again be nested, so can sayK can be used to construct arbitrarily long verb phrases.
Nested verb phrases have a built-in semantics defined below.

A constraint is a formula that can be efficiently evaluated to true or false when ground. The
constraint language consists of base constraints and is closed under conjunction, disjunction and

4

negation. Base constraint types can be added depending on application requirements by provid-
ing a procedure for evaluating ground constraints; our implementation has a set of predefined
base constraints including disequality, arithmetic inequalities and regular expression matching.

Assertions α are of the form

e says : fact if fact1, ..., factn where c

The expression e is a principal called the issuer. The fact before the if-clause is the concluding
fact. The facts of the if-clause are the conditional facts and do not mention can sayK . The
formula c inside the where-clause is the constraint of the assertion.

If n = 0, the entire if-clause is omitted; similarly, the where-clause is omitted if c = True.
An assertion with no if-clause and no where-clause is called an atomic assertion.

We impose a safety condition on assertions that guarantee completeness and termination of
SecPAL evaluation: the issuer e must be ground; all variables in c must occur in the rest of the
assertion; and when the concluding fact is flat, all its variables must occur in the conditional
facts. Note that any safe atomic assertion not mentioning can say is always ground. Only safe
assertions will be considered henceforth unless explicitly noted otherwise.

Assertions can be stored in various ways: as parseable text written in the concrete syntax
described above; as objects in main memory; as items stored in a relational database; or as
XML-encoded credentials, signed by the assertion’s issuer. When assertions are sent over the
network, they will usually be in the form of credentials.

An authorization policy is a finite set of assertions. Finally, a query q is a possibly unsafe
atomic assertion.

Semantics We give SecPAL a proof-theoretic semantics that defines proof rules for deriving
ground atomic assertions α from a given policy P . The judgments are of the form P ` α. The
following proof rule schemas are a simpler and more intuitive version of the ones in an earlier
paper [2], but formally equivalent.

The first rule formalizes the intuition that the concluding fact can be deduced if all condi-
tional facts can be deduced in such a way that the constraint is satisfied:

P `U says : γ(facti) for all i ∈ {1..k}
P `U says : γ(fact)

provided that there exists an assertion
〈U says : fact if fact1, ..., factk where c〉

in the policy P , γ is a ground variable substitution (a total mapping from variables to ground
expressions), and γ(c) evaluates to true. Note that this rule reduces to an axiom when k = 0.

The special verbs can say∞ and can say0 express delegation of authority over some fact. In
the following two rules, U1 is the delegator and U2 the delegatee:

P `U1 says : U2 can say∞ fact P `U2 says : fact
P `U1 says : fact

5

For example, if P consists of

Alice says : Bob can say∞ x can read f
Bob says : Charlie can say∞ x can read f
Charlie says : Doris can read file:///foo/

we can deduce
P ` Alice says : Doris can read file:///foo/,

using the above rule. In this example, Alice delegates authority over read access to Bob, and
Bob re-delegates this authority to Charlie.

If delegation is expressed using can say0, the delegatee is prevented from re-delegating to
any other principal. The rule system enforces this by requiring that the delegatee’s statement of
the fact relies solely on assertions said by U2 herself:

P `U1 says : U2 can say0 fact PU2 `U2 says : fact
P `U1 says : fact

where PU2 is the set of assertions in P that are said by U2.

Definition 2.1. The answer to a query e says : fact is the set of all substitutions θ (with domain
restricted to variables occurring in the query) such that P ` θ(e says : fact) is derivable.

Principals offering services via the network control access to these by defining a local Sec-
PAL policy. Users and other services can submit access requests, which may be accompanied by
a set of supporting SecPAL credentials (or other security credentials that can be mapped to Sec-
PAL credentials). When an access request is received, it is mapped to a corresponding SecPAL
query, which is then evaluated against the local policy combined with the supporting credentials.
Access is granted only if the answer to the query is non-empty.

3 Abductive SecPAL Evaluation

Access is denied if the query statement is not provable, indicated by an empty answer to the
corresponding query. The attempted proof may fail for several reasons. It may be the case that
the local policy simply does not permit the specific request, or the requester has not provided
the correct set of supporting credentials. The latter case is common in federated environments
where credentials issued by third parties are used for constructing delegation chains. This section
presents an algorithm that not only decides if a set of submitted SecPAL credentials is sufficient
for authorizing a request, but, in the case of access denial, also computes a complete specification
of which missing credentials would be sufficient. The computation is entirely local, i.e., it does
not require communication with the providers of the missing credentials. As such, it can be run
before access is required, as a preparation step for credential gathering, which is described in
Section 4.

On an abstract level, we reduce the problem of computing the specification of missing cre-
dentials to the problem of abduction. Abduction is a term coined by the philosopher Charles

6

Peirce in the late 19th century, who used it to describe how observations can be explained, given
a set of rules known about the world. More specifically, abduction is the process of finding a
set of facts that, together with the rules, explain the observation. For example, given the rule
“whenever it rains, the grass is wet,” the observation that the grass is wet could be explained by
a hypothetical fact that it has rained. Abduction is thus dual to deduction, where from a given set
of rules and facts, the expected observations (or conclusions) can be logically derived. Logic-
based abduction has been extensively used in fault diagnosis, automated planning, and other AI
applications [12]. Applying these concepts to authorization, rules correspond to the local policy,
facts to submitted credentials, and observations to queries. In this framework, deduction then
corresponds to deciding if access should be granted, and abduction to deciding which missing
credentials would result in access being granted.

Datalog Translation The first step of the evaluation procedure translates the assertions (from
the local policy and supporting credentials) and the query corresponding to the access request
into constrained Datalog. For a detailed introduction to constrained Datalog, see e.g. [9, 18].

In the following, we write A, B, P, Q, R, ... for atoms (positive literals built from predicate
symbols) and c for constraints. We use vector notation to denote a (possibly empty) list of atoms,
e.g. ~P, and write Q0 :: ~Q for a predicate list with head element Q0 and tail list ~Q. An atom P is
an instance of Q if there exists some substitution θ such that P = θ(Q).

In constrained Datalog, clauses are of the form P← ~P,c where the atom P is the head, the
(possibly empty) list of atoms ~P the body, and c the constraint of the clause. A program C is a
finite set of clauses. A constrained Datalog query consists of an atom.

To emphasize the similarity between SecPAL and constrained Datalog, we define the seman-
tics of the latter with a similar proof system, consisting of a single proof rule that resembles the
first SecPAL proof rule in Section 2:

C ` γ(Pi) for all i ∈ {1..k}
C ` γ(P)

provided that there exists a clause 〈P← ~P,c〉 in the program C , γ is a ground variable substitu-
tion, and γ(c) evaluates to true. As for SecPAL, we define the answer to a constrained Datalog
query Q to be the set of all substitutions θ (with domain restricted to variables occurring in Q)
such that C ` θ(Q).

Given an atomic assertion e says : fact and an expression k which may either be a variable
or 0 or ∞, let [[e says : fact]]k denote the Datalog atom where the predicate name is the string
concatenation of all non-parameter strings in fact, and where its parameters are k, followed by e,
followed by the collected expressions between these infix operators. For example, the expression
[[x says : Bob can say0 y can read z]]

∞
denotes the atom can say0 can read(∞,x,Bob,y,z).

(1) An assertion U says fact0 if fact1, ..., factk,c is translated into the clause

[[U says fact0]]x← [[U says fact1]]x, ..., [[U says factk]]x,c

where x is a variable (ranging over 0 and ∞) not occurring in the assertion. This translation step
effectively implements the first proof rule from Section 2.

7

(2) If fact0 is nested, it is of the form e0 can sayK0
... en−1 can sayKn−1

fact, for some n ≥ 1,
where fact is not nested. Let ˆfactn ≡ fact and ˆfacti ≡ ei can sayKi

ˆfacti+1, for i ∈ {0..n−1}.
Note that fact0 = ˆfact0. For each i ∈ {1..n}, we add a clause

[[U says ˆfacti]]∞←[[x says ˆfacti]]Ki−1
,

[[U says x can sayKi−1
ˆfacti]]∞

where x is variable not occurring in the assertion. Note that if Ki−1 = 0, the first body atom [[x
says ˆfacti]]0 can only be proved using clauses from translation step (1), because all clauses from
step (2) have ∞ as their subscript in the head. This effectively implements the second and third
proof rules.

Given a SecPAL policy P , let [[P]] denote the constrained Datalog program obtained by
translating each assertion in P as described above. Similarly, given a SecPAL query e says fact,
let [[e says fact]] = [[e says fact]]

∞
be the translation of the query.

Proposition 3.1. The answer to a SecPAL query q with respect to a policy P is equal to the
answer of the constrained Datalog query [[q]] with respect to [[P]].

Constrained Tabled Abduction Having translated SecPAL into constrained Datalog, we can
reduce the problem of finding a complete specification of missing credentials to an abduction
problem in constrained Datalog. More precisely, we now have to find sets of atoms, each of
which would make the query provable if added to the program.

Our starting point is the deductive evaluation procedure described in [2], a backward-
chaining resolution algorithm that attempts to unify the current goal atom against the head of
some program clause. If unification succeeds, the body atoms of that clause are added as new
goals. The algorithm makes use of tabling, or memoization, to guarantee deduction termination
and to avoid proving goals that have already been proved [5, 19, 7]: a new proof branch is cre-
ated for a goal A only if there is no existing branch for some goal A′ of which A is an instance.
If there already exists such a goal A′, its existing answers, cached in its answer table, are reused
as answers for A; furthermore, the goal A is suspended and put onto a waiting table for A′, and
resumed only when new answers for A′ are found.

To find the atoms that are missing to complete a proof, one might think that the failed resolu-
tion proof graph would contain sufficient information. This is not the case: the points of failure
in a failed proof graph show which missing atoms would have made the proof progress by one
step, but not whether any such progress would eventually lead to a successful proof and which
further missing atoms would be required. However, this observation suggests the basic idea for
an abduction algorithm for translated SecPAL policies: during a proof, whenever an attempt to
prove a goal fails, the corresponding atom is nevertheless assumed to be true (it is then said to
be abduced) and the proof resumes from there. The algorithm keeps track of these assumptions,
so that each subgoal can be associated with a set of abduced assertions its proof depended on.

The algorithm constructs a forest of proof trees. Each tree consists of a root node, interme-
diate goal nodes, and answer nodes as leaf nodes, defined as follows.

Definition 3.2 (Proof nodes). A root node is of the form 〈P〉. A goal node is a quintuple of
the form 〈P;~Q;R;~A;c〉. The atom P is the index of the goal node, ~Q are the subgoals, R is an

8

RESOLVE-CLAUSE(〈P〉)
01 Ans(P) := /0;
02 foreach (Q← ~Q,c) ∈ [[P]] do
03 if nd = resolve(〈P;Q :: ~Q;Q; [];c〉,〈P; [];P; [];True〉)
04 exists then
05 PROCESS-NODE(nd);
06 if P is abducible then
07 PROCESS-ANSWER(〈P; [];P; [P];True〉)

PROCESS-ANSWER(nd)
01 match nd with 〈P; []; ; ;c〉 in
02 if there is no nd0 ∈Ans(P) such that nd � nd0 then
03 Ans(P) := Ans(P)∪{nd};
04 foreach nd′ ∈Wait(P) do
05 if nd′′ = resolve(nd′,nd) exists then
06 PROCESS-NODE(nd′′)

PROCESS-NODE(nd)
01 match nd with 〈P;~Q; ; ;c〉 in
02 if ~Q = [] then
03 PROCESS-ANSWER(nd)
04 else match ~Q with Q0 :: in
05 if there exists Q′0 ∈ dom(Ans)
06 such that Q0 is an instance of Q′0 then
07 Wait(Q′0) := Wait(Q′0)∪{nd};
08 foreach nd′ ∈Ans(Q′0) do
09 if nd′′ = resolve(nd,nd′) exists then
10 PROCESS-NODE(nd′′)
11 else
12 Wait(Q0) := {nd};
13 RESOLVE-CLAUSE(〈Q0〉)

Figure 1: Deductive evaluation algorithm with abductive extension

instance of P called the partial answer, ~A are the abductive assumptions, and c is the constraint
of the goal node. A goal node with an empty list of subgoals is an answer node.

Starting from some root node 〈P〉, resolution with program clauses produces goal nodes with
index P. As the subgoals ~Q are processed one by one, new P-indexed goal nodes are created
with the remaining subgoals and with increasingly instantiated variants of P as partial answer.
A proof branch ends when no subgoals are left, i.e., in the case of an answer node.

An answer node 〈P; [];R;~A;c〉 has the following property for all ground substitutions γ such
that γ(c) is true: if the set of abductive assumptions γ(~A) had been supplied together with [[P]],
a successful proof of γ(R) (which is a ground instance of P) could have been constructed. The
list ~A thus corresponds to a set of missing atomic assertions, constrained by c. In the degenerate
case where ~A is empty, γ(R) can be proved without any abductive assumptions, corresponding
to access granted without any additional credentials.

Fig. 1 shows the pseudocode of the algorithm. Underscores denote distinct anonymous
variables (and can be read as ‘don’t care’). The auxiliary function resolve and the subsumption
relation � are defined below in Definitions 3.3 and 3.4. As in the standard tabled deductive
algorithm, our abductive algorithm utilizes two initially empty tables (i.e., partial functions),
Ans and Wait: Ans(P) holds the set of answer nodes that have so far been found for the goal
indexed by P, and Wait(P) contains the set of goal nodes that are suspended and waiting for
future answers to P.

The algorithm consists of three procedures that each take a proof node as input. The
RESOLVE-CLAUSE procedure takes as input a root node 〈P〉 and creates a new proof tree for it
by initializing an entry in the answer table (Line 1). It then proceeds by resolving P against the
clauses in [[P]] (Line 2−4). The resolved clauses are processed further by PROCESS-NODE (Line
5). Additionally, RESOLVE-CLAUSE implements the abductive base case: it “invents” a trivial
answer for P by simply assuming P to hold; this is tracked by adding P to the list of abductive

9

assumptions of the new answer node, which is then further processed by PROCESS-ANSWER

(Line 6,7).
PROCESS-NODE takes as input a goal node nd and first checks if it is an answer node, in

which case it is further processed by PROCESS-ANSWER Line 1− 3). Otherwise, the leftmost
subgoal Q0 is chosen to be solved next (Line 4). If the answer table already contains an entry for
some Q′0 that is more general than Q0 (Line 5,6), then the currently existing and future answers of
Q′0 are candidates for resolving against nd (Line 7−10). Otherwise, a new root node is spawned
for Q0, whose proof tree should eventually provide answer nodes to be resolved against nd (Line
12,13).

PROCESS-ANSWER takes as input an answer node 〈P; []; ; ;c〉 and adds it to the answers
of P, if it is not subsumed by any already existing answer (Line 1−3). Furthermore, it attempts
to resolve the new answer against all suspended goal nodes waiting for it (Line 4−6).

The algorithm differs from the standard deductive evaluation algorithm in three respects.
Firstly, resolving a goal node against an answer node requires the assumptions and constraints
from both nodes to be merged. Abductive answers may be non-ground and may contain con-
straints, so these have to be combined as well. Formally, the abductive resolve function is defined
as follows.

Definition 3.3 (Resolution). Let mgu(A,B) denote a most general unifier of atoms A and B,
if one exists, and be undefined otherwise. Let nd0 = 〈P0;Q0 :: ~Q;R0; ~A0;c0〉 be a goal node,
and let 〈P1; [];R1; ~A1;c1〉 be a fresh renaming of an answer node nd1. Then resolve(nd0,nd1)
exists iff θ = mgu(Q0,R1) is defined and c = θ(c0 ∧ c1) is satisfiable, and its value is
〈P0;θ(~Q);θ(R0);θ(~A0)∪θ(~A1);c〉.

Secondly, the procedure RESOLVE-CLAUSE is extended by an if-clause (Line 6,7), which
creates a new abductive answer for the subgoal P if P is abducible, i.e., if it is amongst the atoms
that are allowed as an assumption in an abductive answer. For example, in delegation policies,
one is usually only interested in abducing atomic assertions said by someone other than the local
authority; in this case, only atoms corresponding to such assertions would be deemed abducible.
This abducibility filter effectively prunes the space of possible abductive proofs the algorithm
will consider.

The third difference is in PROCESS-ANSWER where a newly found answer is added to the
answer table only if it is not subsumed by an existing answer. Intuitively, an abductive answer is
subsumed by a second answer if providing the missing atoms specified by the former also always
provides those specified by the latter. Having already found the second answer, it is therefore
not desirable to add the first answer, which is harder to satisfy and thus less useful. For example,
an answer node with abductive assumptions

{[[Charlie says : Doris is a user]],
[[Charlie says : Doris is a admin]]}

and constraint True is subsumed by an answer node with abductive assumption {[[Charlie
says : Doris is a r]]} and the constraint 〈r matches adm*〉. Clearly, any set of atoms satisfying
the first set also covers the second set.

Formally, subsumption between answer nodes is defined as follows.

10

Definition 3.4 (Node subsumption). Let nd0 = 〈P0; [];R0; ~A0;c0〉 and nd1 be answer nodes, and
let 〈P1; [];R1; ~A1;c1〉 be a fresh renaming of nd1. Then nd0 is subsumed by nd1 (we write nd0 �
nd1) iff |~A0| ≥ |~A1| and there exists a substitution θ such that R0 = θ(R1) and ~A0 ⊇ θ(~A1) and
σ(θ(c1)) is true for all substitutions σ for which σ(c0) is true.

Running the Algorithm The algorithm takes as input a query q and a (possibly empty) set of
supporting credentials Asup, that is combined with the service’s local policy Ploc to form the input
policy P = Ploc∪Asup. The entry point is a call to RESOLVE-CLAUSE(〈Q〉), where Q = [[q]]. On
termination, Ans(Q) contains a complete set of answers of the form 〈Q; [];R;~A;c〉, where R is
a (not necessarily ground) instance of Q. Such an answer can be interpreted as follows: if some
ground instantiation (satisfying the constraint c) of the atoms in ~A had been in the original set of
clauses [[P]] (or had been derivable from that set), then R, under the same ground instantiation,
could have been proven.

Any atom A occurring in the abductive proof forest can be translated back into the cor-
responding atomic SecPAL assertion ‖A‖ by inverting the function [[]]k (and dropping k). For
example, if A = can say0 can read(∞,x,Bob,y,z) then ‖A‖= x says : Bob can say0 y can read z.

The algorithm returns a set of templates of the form

〈α;Areq;Aacq;c〉,

one for each answer node 〈Q; [];R;{A1, ...,An};c〉 ∈ Ans(Q), where α = ‖R‖, Areq =
{‖A1‖, ...,‖An‖} specifies the requirements, and Aacq = Asup is the set of already acquired cre-
dentials, equal to the set of supporting credentials submitted as part of the input.

Definition 3.5. A set of credentials A satisfies 〈α;Areq;Aacq;c〉 where Areq = {α1, ...,αn} iff
there exists a ground substitution γ such that A ` γ(αi) (for all i = 1...n) and γ(c) is true.

The main correctness property of the algorithm is that any set of credentials that satisfies one
of the returned templates is sufficient for supporting the original access request. Therefore, the
template set is a complete specification of the missing credentials:

Proposition 3.6. Let 〈α;Areq;Aacq;c〉 be one of the return values from the algorithm (with local
policy Ploc and query q). Then α is an instance of q. Furthermore, for all sets of credentials A
that satisfy the template, Ploc∪Aacq∪A ` γ(α) for some ground substitution γ.

The next section shows how the returned template set is used to encode the state of a dis-
tributed protocol which attempts to collect sets of satisfying credentials along a path of credential
providers.

4 Credential Gathering Protocol

Based on the local abductive algorithm described above, we now present a protocol for the
distributed collection of credentials prior to an access request. The protocol does not require
any communication or other involvement of the resource guard from the time after the abduc-
tive answer has been returned, up until the time when the user requests access. When access is

11

requested, the collected credentials are pushed to the resource guard, which can then, again com-
pletely locally, verify that the requested access is permitted. This protocol therefore decouples
the distributed task of collecting credentials (which obviously requires communication, albeit
not with the resource guard) from the local authorization task.

Overview The initial setting is as follows: a user Uini intends to start a workflow which will
eventually require access by some Uacc (which may be identical to Uini) to some resource on ser-
vice Usrv (the resource guard). The access by Uacc will take place at some future time Tacc called
access time. Uini does not know what supporting credentials are required by the policy at Usrv

for this access. Therefore, at some point in time Tabd < Tacc called abduction time, Uini contacts
Usrv in order to receive a complete specification for credentials required for the proposed access
request. If the specification is empty, early failure is reported back to Uini. If the specification
is non-empty, Uini initiates an automated process which visits a number of credential providers
in turn, each of which may provide either stored credentials or new credentials issued on behalf
of some provider-specific set of principals. In practice, credential providers may include Uini’s
local store, public directory services, firewalled security token servers, etc.

Any distributed credential gathering protocol must involve such a set of providers to be con-
sulted for missing credentials. While previous credential retrieval protocols require the existence
of one or more providers which can directly communicate with all other providers, the proto-
col described in this section assumes only that each credential provider is able to decide which
provider should be consulted next and to communicate with that next provider. The protocol
is agnostic as to the method used by each provider to make this decision. (The tradeoffs of
this generalization are discussed in Section 8.) In practice, the next credential provider in the
path may depend on the network topology, the application workflow, and information on where
credentials are stored (e.g. always with the issuer, always with the subject, type-based [17], or
policy-based [10, 4]).

At time step T1 > Tabd, Uini sends the credential specification (from Usrv) to some credential
provider C1. Based on this specification, C1 collects matching local credentials that it is willing
to disclose and generates matching credentials that it is willing to issue. C1 also decides on the
credential provider next on the path, C2. The specification, together with the credentials, is then
sent to C2 at time T2. This is repeated at each step of the protocol, until the last credential provider
CN is reached at step TN < Tacc (for some N ≥ 1), after which either all required credentials have
been successfully collected, or else the protocol reports failure.

Detailed Description At time step Tabd, Uini requests from Usrv a complete specification of
credentials required for the future resource access by Uacc. This specification is the result of
running the abduction algorithm from Section 3. Recall that the algorithm takes as input a
policy P and a query qabd. In this case, P consists of Usrv’s local policy together with a (possibly
empty) set A0 of supporting credentials submitted by Uini. The query qabd is the one associated
with the access request at Tacc and may be provided, for example, manually by Uini, by some
piece of task-specific software, or by the service Usrv when some exposed API is called by Uini.
At time step Tabd, some of the values occurring in the actual access query qacc (run at time Tacc)
may not yet be known, therefore the query qabd given to Usrv at Tabd may contain variables in

12

PROCESS-TEMPLATE-SET(T)
01 T ′ := /0;
02 foreach 〈α;Areq;Aacq;c〉 ∈ T do
03 foreach 〈A ;θ;c′〉 ∈ credsCi(Areq,c) do
04 c′′ := θ(c)∧ c′;
05 A ′req := θ(Areq)\A ;
06 F := instFacts(addInst(A)∪θ(Areq));
07 A ′req := A ′req \ instAssrts(θ(Areq));
08 A ′req := A ′req∪{〈Ci+1 says : fact〉 : fact ∈ F };
09 Ainst := {Ci says : Ci+1 can say∞ fact : fact ∈ F };
10 A ′acq := Aacq∪ issue(addInst(A))∪ issue(Ainst);
11 T ′ := T ′∪{〈θ(α);A ′req;A ′acq;c′′〉};
12 send T ′ to Ci+1;

PROCESS-FINAL-TEMPLATE-SET(T)
01 foreach 〈α;Areq;Aacq;c〉 ∈ T do
02 foreach 〈A ;θ;c′〉 ∈ credsCi(Areq,c) do
03 c′′ := θ(c)∧ c′;
04 A ′req := θ(Areq)\A ;
05 if A ′req \ instAssrts(θ(Areq)) = /0 and ∃ γ such that
06 (γ(c′′) is true and γ(α) is an instance of qacc)
07 then
08 F := instFacts(addInst(A)∪θ(Areq));
09 Ainst := {Ci says : γ(fact) : fact ∈ F };
10 Ares := Aacq∪ issue(addInst(A))∪ issue(Ainst);
11 send Ares to Uacc;
12 return;
13 report failure;

Figure 2: Processing template set information

places where qacc has concrete values; more precisely, qabd must be such that qacc is an instance
of qabd.

Recall that the result of the abduction algorithm is a set of templates of the form
〈α;Areq;A0;c〉. If the set is empty, Uini is notified that the future request will fail, no matter
which additional credentials are provided. Otherwise the set is processed by C1 (which may be
identical to Uini) and subsequently used to encode the state of the protocol.

At each time step Ti (for i = 1, ...,N−1), the credential provider Ci receives a template set T
and executes the procedure PROCESS-TEMPLATE-SET(T) (Fig. 2), which attempts to partially
satisfy as many templates as possible, and send it to the next credential provider. At the final
time step TN , CN receives a template set T and executes PROCESS-FINAL-TEMPLATE-SET(T),
which will finalize the supporting credential set, to be used for the access query qacc.

The procedures in Fig. 2 make use of a number of auxiliary functions and procedures defined
below.

Definition 4.1. Let A be a set of assertions, Aatm a set of possibly unsafe atomic assertions, θ a
substitution, and c a constraint.

• credsCi(Aatm,c) returns a set of triples 〈A ′atm;θ;c′〉 such that A ′atm ⊆ θ(Aatm) and θ(c)∧ c′

is satisfiable. Furthermore, no fact of the form inst(,) occurs in A ′atm.

• addInst(Aatm) is the set of assertions obtained by augmenting each α ∈Aatm with a condi-
tional fact inst(hashx,x) for each distinct variable x occurring in α. The expression hashx

stands for a constant that is unique for every variable x and for this particular run of the
protocol.

• issue(A) is a procedure that issues all assertions in A , i.e., it creates signed credentials
corresponding to those assertions (or retrieves existing credentials from the local store),
and returns them.

13

• instFacts(A) is the set of (concluding or conditional) facts of the form inst(,) occurring
in A .

• instAssrts(A) is the set of assertions in A whose concluding facts are of the form inst(,).

The function credsCi is specific to each credential provider Ci. Given a constrained set of
atomic assertions (Aatm,c) as input, it returns a set of triples 〈A ′atm;θ;c′〉. Each triple represents
a set of credentials that the provider is willing and able to provide and that match a subset
of the input specification (including the constraint c). These credentials may be from a local
store, or freshly issued and may contain variables that are constrained by c′. They may be more
instantiated than the input specification, hence the function also returns a substitution θ that
partially maps the input specification onto the output.

The definition of credsCi is intentionally kept abstract and general to cover a wide range of
possible implementations. In practice, Ci would decide according to a local issuance and disclo-
sure policy which credentials are returned by credsCi . Any authorization mechanism, including
SecPAL, could be used to implement such a policy; in fact, the policy decision may even involve
human interaction (see Section 5). We only assume that the returned triples in credsCi contain the
largest, least instantiated and least constrained assertion sets that conform to the local issuance
and disclosure policy and partially match the input. For example, if the input is

({Alice says : Bob can read f ,
Bob says : Charlie can read f}, True)

and the provider’s policy allows the disclosure of the first assertion in that set without further
constraints, then it should also return it without instantiating the variable f to a more concrete
value than necessary. If the provider returned an assertion with f bound to some concrete value,
then the shared variable f in the remaining second assertion would also be bound to the same
value, and subsequent credential providers may not be willing or able to provide a credential
with that particular value for f . The protocol thus attempts to defer the instantiation of variables
to the latest possible step, when CN , the final provider in the path, has been reached.

This requirement introduces two problems. Firstly, the returned atomic assertions A ′atm may
be unsafe (safe atomic assertions must not contain variables) and hence cannot be directly used
within a SecPAL evaluation. Secondly, it is generally not in Ci’s interest to issue a blanket
assertion with uninstantiated variables; rather, it should be made sure that the variables will be
bound to concrete values by the end of the protocol run, and that these values can only be chosen
by credential providers down the path of this particular protocol run (provided that downstream
providers are trusted by upstream).

Our solution to both of these problems is to guard each variable x occurring in any unsafe
atomic assertion in A ′atm with a conditional fact inst(hashx,x). This makes the assertion safe,
because now all variables in the concluding fact also occur in a conditional fact. The function
addInst is responsible for adding these conditional facts to the assertions returned by credsCi

before they are actually issued by issue and added to the acquired credentials.
To address the second problem, Ci also delegates authority over the fact inst(hashx,x) to

Ci+1 and adds a new requirement that Ci+1 should instantiate the fact. Both the delegation and

14

the requirement are handed down the path, so it is only when CN is reached that concrete values
for the uninstantiated variables are chosen and all outstanding inst facts issued. The details of
this process are described in the following.

The purpose of PROCESS-TEMPLATE-SET(T) is to partially satisfy the templates in T using
locally stored or freshly issued credentials which can then be removed from the set of require-
ments. We assume that when the procedure starts, Ci knows the identity of, and can communicate
with, Ci+1.

First, an empty template set T ′ is initialized which acts as an accumulator for the new tem-
plates to be sent to the next credential provider in the path, Ci+1 (Line 1). The procedure then
loops through all triples 〈A ;θ;c′〉 returned by credsCi that match any template in T (Lines 2,3).
The purpose of the code inside the loop is to construct a new template to be added to T ′. The
constraint c′′ of this new template is the conjunction of the original constraint c (renamed by θ)
and c′ (Line 4). As a first step towards constructing the new set A ′req of requirements, A is re-
moved from the original requirements (Line 5) and in exchange issued and added to the new set
of acquired credentials (augmented by inst-conditions, Line 10). All original inst-requirements
(which, by construction, are of the form Ci says : inst(hashx,x) for some x) are removed as well
(Line 7) and replaced by identical assertions said by Ci+1. Similar inst-requirements are also
added for each inst-condition in addInst(A). This finalizes the new set of requirements (Lines
8). Finally, Ci+1 must also be given authority over these inst-requirements; the corresponding
delegation credentials are issued and added to the set of acquired credentials (Lines 9,10). In
essence, Lines 7− 9 implement the process of deferring instantiation of unsafe variables in A .
The new template is added to T ′ (Line 11), and at the end of the loop, T ′ is sent to Ci+1 at time
step Ti+1.

Each application of PROCESS-TEMPLATE-SET conserves the original property from Propo-
sition 3.6, namely that any set of credentials satisfying a template in T will be a sufficient set
of supporting credentials for an instance of the original query. At time step TN , when the final
credential provider CN is reached (and we assume that CN is aware of this fact), CN executes
PROCESS-FINAL-TEMPLATE-SET(T). We assume that at this point CN knows the identity of
and is able to communicate with Uacc (in most cases, CN and Uacc are in fact identical). Further-
more, we assume that CN knows the final access query qacc.

PROCESS-FINAL-TEMPLATE-SET(T) also starts by partially satisfying the templates in T
(Lines 1− 4). However, the goal now is not to produce a new template set, but to find one
template which can be fully satisfied. This must be a template with requirements Areq which,
after removal of A (Line 4), only contains inst-requirements (Line 5). Moreover, a ground
variable substitution γ has to be found that satisfies the constraint c′′. It must also be ensured that
the resulting instance γ(α) of the original query qabd is an instance of the actual access query
qacc made by Uacc at time step Tacc (Line 6). If these conditions are met, CN can instantiate all
inst-requirements using γ (Lines 8,9) and assemble the final set of acquired credentials Ares (Line
10) that is then sent to Uacc (Line 11). If the conditions are not met by any of the templates, the
protocol fails.

Due to the invariance conserved by the protocol, the resulting set of credentials Ares is guar-
anteed to be a sufficient set of supporting credentials for the access query qacc at time Tacc,
granted that Usrv’s local policy has not changed in the meantime.

15

5 EHR Scenario

This section illustrates the abductive credential gathering protocol in the context of a simple
scenario based on electronic health records (EHR). In this scenario, clinician Alice wishes to
access patient Bob’s sensitive data on the EHR server which holds patient-identifiable health
data of all patients across a community. Alice initiates the credential gathering protocol prior to
her access, to make sure that she will possess all required credentials when she needs them.

EHR policy The EHR service’s policy states that access to a patient y’s sensitive data is
granted to a principal x if x is a clinician, x is treating y, and y has given consent to this ac-
cess. The policy also requires that the validity time span of the consent is contained in the time
span of the clinical relationship.

EHR says : x can access y’s data if
x is a clinician,
x is treating y (from t1 until t2),
x has y’s consent (from t3 until t4)

where t1 ≤ t3 ∧ t4 ≤ t2

EHR delegates authority over role membership definitions (expressed by facts of the form
〈e1 is a e2〉) to the National Health Service (NHS). Thus if the NHS says that a prin-
cipal is e.g. a clinician or a hospital, EHR will say it as well. As clinical relation-
ships (expressed by 〈e1 is treating e2 (from e3 until e4)〉) are not managed centrally, EHR
also delegates this task to individual hospitals. Similarly, patient consent (expressed by
〈e2 has e1’s consent (from e3 until e4)〉) is not managed by the EHR either, but by a separate
patient health portal (PP) at which patients can, among other actions, register their consent for
other people to access their sensitive data. EHR therefore delegates authority over consent facts
to PP but requires that the validity time span be at most one year.

EHR says : NHS can say0 x is a r

EHR says : x can say0 y is treating z (from t1 until t2) if
x is a hospital,
y is a clinician

EHR says : PP can say0
y has x’s consent (from t1 until t2)

where t2− t1 ≤ 365 days

Template Set Generation In this scenario, the initiating party and the accessing party are
identical: Uini = Uacc = Alice. The protocol starts by initiating an abductive query on the EHR
service. The EHR service allows all atomic assertions to be abducible apart from those issued by
EHR itself. This definition of abducibility is useful in the common situation where the principal
performing the abduction has complete local knowledge about all self-issued credentials.

Alice submits the abductive query

q = EHR says : Alice can access Bob’s data

16

together with her NHS-issued clinician credential 〈NHS says : Alice is a clinician〉. The
answer is a template set containing one template 〈q;Areq;Aacq;c〉} where Aacq = {NHS says :
Alice is a clinician}, and Areq consists of

NHS says : x is a hospital

x says : Alice is treating Bob (from u1 until u2)

PP says : Alice has Bob’s consent (from u3 until u4)

The constraint c is equal to u1 ≤ u3 ∧ u4 ≤ u2 ∧ u4−u3 ≤ 365 days.
Since the answer is not empty (which would mean that the access is not supported no matter

which additional credentials were provided), and the missing-credential specification Areq is not
empty (which would mean that Alice already possess all necessary credentials), the protocol
proceeds by gathering credentials matching Areq and the constraint c.

Credential Gathering Alice is treating Bob in a local hospital whose credential providing
service (HOSP) is behind a firewall, and can thus be directly accessed only by staff. In particular,
it cannot be accessed by EHR, so server-side pull-based approaches to credential gathering are
not applicable.

Alice forwards the returned template set to C1 = HOSP which executes
PROCESS-TEMPLATE-SET. The hospital’s credential disclosure policy allows the disclo-
sure of the locally stored NHS-issued credential stating that HOSP is a hospital. Furthermore,
since Alice has started treating Bob on the date 2008-10-07, with the therapy lasting six months,
credsHOSP returns a triple 〈A ;θ;c′〉, where A is the set

{NHS says : HOSP is a hospital,

HOSP says : Alice is treating Bob (from v1 until v2)},

θ is the substitution [u1 7→ v1, u2 7→ v2] and c′ the constraint 2008-10-07 ≤ v1 ∧ v2 ≤
2009-04-06. This gives rise to a new template set T ′ containing a single template
〈q;A ′req;A ′acq;c′′〉. The new set of acquired credentials A ′acq consists of Aacq unioned with

NHS says : HOSP is a hospital

HOSP says : Alice is treating Bob (from v1 until v2) if
inst(hashv1 ,v1),
inst(hashv2 ,v2)

HOSP says : PP can say∞ inst(hashv1 ,v1)

HOSP says : PP can say∞ inst(hashv2 ,v2)

The new set of requirements A ′req consists of

PP says : Alice has Bob’s consent (from u3 until u4)
PP says : inst(hashv1 ,v1)
PP says : inst(hashv2 ,v2)

17

The new constraint c′′ is equal to θ(c) ∧ c′, hence c′′ = v1 ≤ u3 ∧ u4 ≤ v2 ∧ u4−u3 ≤ 365 days
∧ 2008-10-07≤ v1 ∧ v2 ≤ 2009-04-06.

The new template set is sent to PP, which, being the last credential provider in the path,
executes PROCESS-FINAL-TEMPLATE-SET. Assuming that Bob has given consent for Alice
to access his sensitive data without specifying restrictions on the time span, credsPP returns
a triple containing {PP says : Alice has Bob’s consent (from w1 until w2)}, the substitution
[u3 7→ w1, u4 7→ w2], and the constraint True. In the case where Bob has not given consent
yet, the execution of credsPP may involve sending a notification to Bob and waiting for him to
give or deny consent. Again, pull-based approaches do not cope well with such situations where
credentials are not immediately available, or where not all parties are online simultaneously.

Having satisfied the only requirement in A ′req that does not involve inst,
PROCESS-FINAL-TEMPLATE-SET proceeds by attempting to find any ground variable
assignment γ that satisfies the constraint. One such solution gives rise to the final set of acquired
credentials Ares consisting of A ′acq unioned with

PP says : Alice has Bob’s consent (from 2008-10-07
until 2008-11-06)

PP says : inst(hashv1 ,2008-10-07)

PP says : inst(hashv2 ,2008-11-06)

These are sent back to Alice who can eventually use them to support her access query q.
Alternatively, Alice could also have submitted an abductive query with the patient parameter

left uninstantiated: EHR says : Alice can access x’s data. The template set resulting from this
query could then have been reused by Alice for future, similar accesses to patients’ sensitive
data.

6 Implementation

Much of the system described in this paper has been implemented as an extension to the SecPAL
research prototype. SecPAL’s logic engine was extended to support the abductive algorithm
described in Section 3. A grid computation system was then constructed in order to prototype
and test the credential gathering algorithm described in Section 4. The system included an
FTP service, secured using SecPAL, and a matching abductive query service with access to the
FTP service’s policy. A client-side application was then built which interfaces with a compute
cluster scheduler (also secured using SecPAL) in order to schedule a compute job. In our test
scenario, the client application acts as the initiator of the credential gathering process for a
two-level delegation; first to the scheduler and then to the compute node. The compute node
then uses the gathered credentials to access the FTP service to retrieve data for the computation
and later to publish results for pickup. RSA cryptography is used throughout the system for
signing credentials and identifying principals (by public keys). Communication in the system
uses SOAP and XML serialization for credentials and template sets.

Each provider in our prototype distributed system involved in the credential gathering pro-
cess is equipped with a local credential store and an issuance mechanism. The local creds

18

functions are implemented by searching the local store for matching credentials, and issuing any
credentials for which the provider has authority. In a real implementation, credentials should be
returned based on a disclosure and issuance policy (e.g., as in Cassandra [4]).

Aggressive pruning of the proof search space helps to reduce running times of the abduction
algorithm dramatically. The subsumption check (Definition 3.4) is one important place where
such pruning occurs. But there is a tradeoff between the time spent checking subsumption
between nodes (in order to dispose of redundant proof branches) and the time spent comput-
ing redundant answers. In the presence of complex constraints such as regular expressions, a
complete, accurate subsumption check would be both expensive and hard to implement. There-
fore, our implementation opts for an approximate subsumption check that uses a number of fast
heuristics (the details of which are beyond the scope of this paper).

Another useful technique for reducing the search space is the use of the abducibility check in
the RESOLVE-CLAUSE procedure (Line 6). This check defines the class of atomic assertions that
the algorithm may insert into the set of abductive assumptions. Commonly it is useful to exclude
assertions said by the resource guard, based on the premise that the resource guard already has
complete local knowledge of any such assertions. Additionally, our implementation defines as-
sertions involving can say∞ to be non-abducible because the recursive nature of can say∞ causes
the search space to grow rapidly. In general, policies using depth-limited delegation (with
can say0) tend to behave better under abduction than policies using infinite depth-delegation.

A preliminary scalability test was run on a set of scenarios deliberately constructed to pro-
duce an exponentially increasing number of answers. The parameters and computation times
are given in Fig. 3. The underlying policy delegates authority over a number of roles (R) to a
number of certificate authorities (CA). The policy requires that a principal possess all the roles
in order to access some specific resource, resulting in CAR possible ways this query could be
satisfied (“Number of Answers” in the table). In addition to this basic policy, the test context
was populated with policy for 200 irrelevant resources, as well as role membership assertions for
200 irrelevant principals, in order to test if they have any significant impact on evaluation time.
The data indicates that the running time of the abduction algorithm scales roughly quadratically
with the number of possible ways to build a proof for the given query.

7 Related Work

Previous work on credential gathering has focused on server-side pull methods, which are not
always applicable if communication cost is high, or credential providers are unknown or un-
available to the resource guard. This section briefly reviews these works.

QCM [8] and Cassandra [4] are two example of such languages that facilitate on-demand
credential retrieval during the authorization proof. In QCM, credential providers work either in
online or in offline signing mode. In the former, providers create and sign requested credentials
on the fly; in the latter, they return only cached credentials. (Our definition of creds abstracts
away from this distinction.) If a provider is unavailable at access time, QCM and Cassandra
return approximate answers. QCM’s expressiveness is equivalent to non-recursive Datalog. SD3
[10] extends QCM with recursion and has a similar expressiveness to Cassandra’s. In SD3,
credential providers can return intensional answers (policy rules) as opposed to simple facts

19

CA Roles (R) Number of Answers Time (s)
1 1 1 0.01
1 2 1 0.02
1 3 1 0.02
1 4 1 0.05
2 1 2 0.02
2 2 4 0.07
2 3 8 0.19
2 4 16 0.62
3 1 3 0.02
3 2 9 0.16
3 3 27 0.88
3 4 81 6.36
4 1 4 0.03
4 2 16 0.34
4 3 64 3.33
4 4 256 47.06

Figure 3: Abduction scalability test results under Windows Server 2003 on an Intel Pentium 4
at 3.4 GHz with 1 GB of RAM.

[11]. In effect, the provider can tell the requester that the answer depends on certain other facts
issued by other principals.

Our abstract protocol does not specify how to determine where a missing credential is stored.
QCM and SD3 assume credentials to be always stored with the issuer. In Cassandra, facts can
be tagged with any arbitrary location. In RT [17], a type system on role names that constrains
the storage locations of role credentials is used. Well-typedness of credentials guarantees that
the location of any missing credential will be instantiated to concrete values at deduction time,
so it can be fetched on-the-fly from that location.

Bauer et al. [1] present a technique for constructing a distributed authorization proof that
is closely related to our abduction algorithm in Section 3. Their proof technique presupposes
a resource guard that can communicate with all credential providers, but it delays expensive
choice points (for example those requiring remote communication or human interaction) during
the proof, so that these can be fetched collectively at the end of the proof. Their technique
thus addresses one of the shortcomings of previous approaches, namely that providers may have
to be queried multiple times and are asked for credentials that may not lead to a successful
proof. Their techniques are applicable to authorization languages that are at most as expressive
as Datalog without constraints. One of the chief challenges in the current paper was to design
the algorithms in the context of a more expressive language that supports arbitrary constraints.

Abduction has been applied to access control in previous work. Becker and Nanz [3] pro-
pose the use of abduction for generating user-friendly explanations in the case of access denial
and for debugging authorization policies. The algorithm presented in that paper only works with
authorization logics based on Datalog (without constraints), and is therefore considerably sim-

20

pler than the one presented in this paper. They also identify sufficient conditions for finiteness
of abductive answers; it would be interesting to see if their results can be applied to our, more
general, policy language.

Koshutanski and Massacci [13] develop a (centralized, on-demand) abduction-based frame-
work for interactive access control in which the server requests missing credentials from the
client if the ones submitted by the client are not sufficient for granting access. In their frame-
work, clients can define a disclosure policy specifying which credentials they are willing to
submit. This ties in with work on automated trust negotiation [21, 20], where credentials are
exchanged in a multi-step disclosure process. The policies considered in their framework are
written in Datalog without constraints and with variables ranging over a finite domain; this is
too restrictive for decentralized authorization, where constraints and infinite-domain variables
are vital. In contrast, our algorithm could be used with any authorization language that can be
translated into constrained Datalog, including SD3 [10], Binder [6], Cassandra [4], RT [16, 15]
and Delegation Logic [14].

8 Discussion

The credential gathering protocol described in this paper was developed to address some of the
problems related to previous work in which credentials are fetched by the resource guard at
authorization time, whenever the proof process requires a credential that is not locally stored.
This centralized, on-demand approach is communication-intense (because credential providers
may be visited multiple times during the proof), requires connectivity between the resource
guard and relevant credential providers, and requires that all relevant credential providers to be
simultaneously online at authorization time.

In contrast, our protocol makes very weak assumptions on connectivity and requires only
that each credential provider can communicate with the next one along some linear path. It thus
supports scenarios with distributed knowledge of credential locations, or where some credential
providers are behind firewalls or other restrictions prevent a star-shaped connection topology.
Because the protocol proceeds in one single pass without any participating party having to store
any state, the credential gathering process can be done when some providers are intermittently
offline. Communication overhead is minimized, thus the protocol is applicable in environments
where each single credential fetch request may take a long time, for example when human inter-
action is involved.

However, these properties are achieved at the price of higher computational complexity and
algorithms that are harder to implement. There are two sources of potential intractability within
the protocol. Firstly, certain types of policies can cause abduction to be very expensive; future
work may attempt to characterize such policies and to find alternative policy idioms that are
“abduction-friendly”. Secondly, if each credential provider has multiple ways of partially sat-
isfying each template in the template set, the number of templates to be passed along the path
can grow exponentially. In practice, this might not be a problem as credential gathering paths
tend to be very short. Moreover, the template set processing can be optimized by making some
additional assumptions. For example, if the final access query is known by intermediate cre-
dential providers, then a fully satisfiable template may be identified before the end of the path

21

is reached. Also, under the assumption that credentials are always stored with the issuer, early
failure is possible if a credential provider C finds that all templates in the template set require
some credential issued by C which C is not able or willing to provide.

Another potential problem of our approach is the possibility for the requester (and the par-
ticipating credential providers) to gain detailed knowledge about the resource guard’s (Usrv)
policy through the the template set. This is problematic if some part of the policy is consid-
ered to be confidential, but the same level of information could be gained by collaborating
credential providers with the pull-based approach. A related problem is that any credential
provider in the path gets to know all credentials that have been collected so far. But since nei-
ther PROCESS-TEMPLATE-SET nor PROCESS-FINAL-TEMPLATE-SET uses those credentials,
it is possible to encrypt them with Usrv’s public key before they are sent to the next credential
provider.

Conclusions We have presented a novel protocol for gathering authorization credentials in a
distributed system, in the context of constrained authorization and delegation policies written
in SecPAL. The protocol proceeds in two stages: in the first stage, abductive reasoning is used
to distill a SecPAL policy and a generalized query into a template set representing a complete
specification of missing credentials. In the second stage, the template set is passed along a path
of credential providers each of which attempt to partially satisfy the templates by providing
matching credentials. Instantiation of (possibly constrained) parameter variables in the set of
acquired credentials is deferred and delegated down the path using SecPAL’s can say delegation
construct. The protocol is designed for environments in which the relying party cannot directly
and simultaneously communicate with all credential providers, or where each remote credential
request is costly.

Acknowledgements We thank Greg Fee, Jason Hogg, Larry Joy, Brian LaMacchia, and John
Leen for their contributions to the SecPAL libraries and the implementation of the prototype for
the decentralized credential gathering system. We are also grateful for the helpful comments
from the anonymous reviewers of an earlier version of this paper.

References

[1] L. Bauer, S. Garriss, and M. K. Reiter. Efficient proving for practical distributed access-
control systems. In European Symposium on Research in Computer Security, 2007.

[2] M. Y. Becker, C. Fournet, and A. D. Gordon. Design and semantics of a decentralized
authorization language. In IEEE Computer Security Foundations Symposium, 2007.

[3] M. Y. Becker and S. Nanz. The role of abduction in declarative authorization policies.
In 10th International Symposium on Practical Aspects of Declarative Languages, Lecture
Notes in Computer Science, pages 84–99. Springer, 2008.

[4] M. Y. Becker and P. Sewell. Cassandra: Flexible trust management, applied to electronic
health records. In IEEE Computer Security Foundations Workshop, 2004.

22

[5] W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs.
Journal of the ACM, 43(1):20–74, 1996.

[6] J. DeTreville. Binder, a logic-based security language. In IEEE Symposium on Security
and Privacy, pages 105–113, 2002.

[7] S. W. Dietrich. Extension tables: Memo relations in logic programming. In Symposium on
Logic Programming, pages 264–272, 1987.

[8] C. Gunter and T. Jim. Policy-directed certificate retrieval. Software: Practice and Experi-
ence, 30:1609–1640, 2000.

[9] J. Jaffar and M. J. Maher. Constraint logic programming: a survey. Journal of Logic
Programming, 19:503–581, 1994.

[10] T. Jim. SD3: A trust management system with certified evaluation. In Proceedings of the
2001 IEEE Symposium on Security and Privacy, pages 106–115, 2001.

[11] T. Jim and D. Suciu. Dynamically distributed query evaluation. In Proceedings of the 20th
ACM Symposium on Principles of Database Systems, pages 28–39. ACM Press, 2001.

[12] A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduction in logic programming. In
D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors, Handbook of Logic in Artificial
Intelligence and Logic Programming, volume 5, pages 235–324, 1998.

[13] H. Koshutanski and F. Massacci. Interactive access control for web services. In Interna-
tional Information Security Conference, pages 151–166, 2004.

[14] N. Li, B. Grosof, and J. Feigenbaum. A practically implementable and tractable delegation
logic. In IEEE Symposium on Security and Privacy, pages 27–42, 2000.

[15] N. Li and J. C. Mitchell. Datalog with constraints: A foundation for trust management
languages. In Practical Aspects of Declarative Languages, pages 58–73, 2003.

[16] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust management
framework. In Symposium on Security and Privacy, pages 114–130, 2002.

[17] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential chain discovery in
trust management. Journal of Computer Security, 11(1):35–86, 2003.

[18] P. Revesz. Introduction to constraint databases. Springer-Verlag New York, Inc., New
York, NY, USA, 2002.

[19] H. Tamaki and T. Sato. OLD resolution with tabulation. In International Conference on
Logic Programming, pages 84–98. Springer-Verlag, 1986.

[20] W. H. Winsborough and N. Li. Towards practical automated trust negotiation. In IEEE
International Workshop on Policies for Distributed Systems and Networks, 2002.

23

[21] W. H. Winsborough, K. E. Seamons, and V. E. Jones. Automated trust negotiation. In
DARPA Information Survivability Conference and Exposition, volume 1, 2000.

24

