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Abstract. We review the definition of differential privacy and briefly
survey a handful of very recent contributions to the differential privacy
frontier.

1 Background

Differential privacy is a strong privacy guarantee for an individual’s in-
put to a (randomized) function or sequence of functions, which we call
a privacy mechanism. Informally, the guarantee says that the behavior
of the mechanism is essentially unchanged independent of whether any
individual opts into or opts out of the data set. Designed for statistical
analysis, for example, of health or census data, the definition protects the
privacy of individuals, and small groups of individuals, while permitting
very different outcomes in the case of very different data sets.
We begin by recalling some differential privacy basics. While the frontier
of a vibrant area is always in flux, we will endeavor to give an impression
of the state of the art by surveying a handful of extremely recent advances
in the field.
Formally, The degree of privacy offered is described by a parameter, ε.

Definition 1. A randomized function K gives ε-differential privacy if
for all data sets D and D′ of Hamming distance d(D, D′) ≤ 1 and all
S ⊆ Range(K),

Pr[K(D) ∈ S] ≤ eε × Pr[K(D′) ∈ S] (1)

The probability is taken is over the coin tosses of K.

The definition represents a paradigm shift: instead of a simulation-style
definition, in which we compare what an adversary can learn about an
individual with, versus without, access to the outputs of the privacy
mechanism, differential privacy focuses on limiting the additional risk
– of anything! – incurred by an individual as a consequence of opting
into (or opting out of) a data set. This is no accident, as any “with vs.
without access” definition is doomed to fail [5, 9]. The defintion is suited
to the real world because it is a property of the mechanism alone, and
has no bearing on what the consumer of information produced in a dif-
ferentially private fashion might or might not know. In consequence the
outputs of a differentially private mechanism preserve differential privacy
independent of the information and computational power available to an
adversary, now or in the future.



Two principal techniques for ensuring differential privacy have appeared,
one for the case of (vectors of) real-valued outputs and the other for
outputs of arbitrary types [7, 20]; the former is efficient, the latter may
not be [10]. These positive results and a key precursor [11] (which used a
cumbersome definition now known to imply a natural, mild relaxation of
pure differential privacy and which showed that if the number of queries
is sublinear in the size of the data set then privacy can be obtained
“for free,” i.e., with noise smaller than the sampling error) have been
used to obtain highly accurate differentially private solutions to a host
of problems in datamining, statistics, and learning (see, e.g., [2, 1, 19, 3]).
A central concept is the sensitivity of a real-valued function mapping
data sets to (vectors of) reals:

Definition 2. Let D denote the space of all databases. For f : D → Rd,
the sensitivity of f is

∆f = max
D,D′

‖f(D)− f(D)‖1

for all D, D′ of distance at most 1.

Roughly speaking, real-valued data analyses that have low sensitivity
permit highly accurate differentially private mechanisms [7]. The true
answer is computed and Lapalacian (symmetric exponential) noise is
added with variance depending on ε and the sensitivity of the query. For
analyses whose outcome need not be real (it might be the choice of a
color, or a set of locations, or a string), or in cases where the output
is real-valued but adding noise makes no sense (the output might be a
price when the data set is a collection of bids in an auction), if there is an
insensitive function for evaluating the quality of an output (for example,
revenue, in the case of an auction), then again high-quality outputs can
be obtained in a differentially private fashion [20]. This is done using the
exponential mechanism which, roughly speaking, weights each possible
answer with a density that falls exponentially with its (in)utility, again
depending on ε and also the sensitivity, this time, of the utility function1.

Very recently Ghosh et al. considered the question of what it means
for a privacy mechanism to be optimal [14]. Intuitively, different users
may have different preconceptions before seeing the output of a privacy
mechanism, and therefore two users might place different values on the
same piece of information. In such a setting what sort of utility function
should the mechanism employ? Using a very general notion of utility,
and permitting each user to have her own utility function, Ghosh et al.
show that a discretized version of the Laplace distribution used in [7]
simultaneously maximizes utility for all users for the case of counting
functions (“How many rows in the data set satisfy predicate P?”).

1 The addition of Laplacian noise to a real-valued output is a special case of the
exponential mechanism: the (in)utility of an output is its L1 distance from the true
answer.



2 Differentially Private Synthetic Data Sets
and Coresets

A series of negative results concerning privacy, says, roughly, that there
is a class of queries with the property that it is blatantly non-private (al-
lowing almost full reconstruction) if “too many” queries receive “overly
accurate” responses [4, 8, 12]. These results have been viewed as saying
that, in contrast to the sublinear queries work discussed above, one can-
not privately answer a small polynomial number of queries, say, n3 or
even n2, with reasonably small noise (here, n is the number of elements
in the data set).
The idea of creating a synthetic data set whose statistics closely mirror
those of the original data set, but which preserves privacy of individuals,
was proposed in the statistics community as far back as 1993 [24]. How-
ever, the negative results imply that no such data set can safely provide
very accurate answers to too many questions, motivating the interac-
tive approach to private data analysis ([11] et sequelae). Intuitively, the
advantage of the interactive approach is that only the questions actu-
ally asked receive responses, while to offer the same utility in the non-
interactive approach all, or at least most, questions must receive very
accurate responses, leading to blatant non-privacy.
Against this backdrop, Blum, et al. revisited the non-interactive case
from a learning theory perspective, and challenged the above interpre-
tation about the necessity of limiting the number of queries [3]. Let X
be a universe of data items and C be a “concept” class consisting of ef-
ficiently computable functions c : X → {0, 1}. Given a sufficiently large
database x ∈ Xn, Blum et al. inefficiently, but with differential privacy,
obtain a synthetic database that maintains approximately correct frac-
tional counts for all concepts in C. That is, letting y denote the synthetic
database produced, with high probability over the choices made by the
privacy mechanism, for every concept c ∈ C, the fraction of elements in
y that satisfy c is approximately the same as the fraction of elements in
x that satisfy c.2

This remarkable result has rekindled interest in synthetic databases in
particular and non-interactive solutions in general. When can differen-
tially private synthetic databases be constructed efficiently? Very roughly,
if either the universe X of data items or the concept class C is of size
superpolynomial in a computation parameter κ, then, under standard
computational assumptions, there exists a distribution on databases and
a concept class C for which there is no efficient (in κ) mechanism for pri-
vately generating synthetic databases. In contrast, if both the concept
class and the data universe are of size polynomial in κ then not only is
there an efficient mechanism, but the size of the input database can be

surprisingly small, namely |C|o(1)·log |X| (or even O(2
√

log |C| log |X|)) [10].
Thus C can be very large, as a function of n (while still polynomial in
κ).

2 This does not contradict the negative results because of the size of the error in
the case of attacks using a polynomial number of queries, or the size of the input
database in the case of attacks using an exponential number of queries.



Interestingly, for the potentially easier problem of privately generating
a data structure (as opposed to a synthetic data set) from which it is
possible to approximate counts, there is a tight “if and only if” connec-
tion between hardness of sanitization and the existence of traitor tracing
schemes in cryptography [10].

2.1 Coresets

In computational geometry a coreset for a point set P is a small, weighted,
point set C that is useful in computing approximate solutions of prob-
lems for P . For example, the queries might consist of a set of k points
(not necessarily related to P ), and the exact answer to the query might
be the sum of the distances from each point p ∈ P to its closest point
in the query set Q; this is a k-median query. Coresets enjoy an extensive
literature; different techniques are used for creating coresets appropriate
for different sorts of queries.
Feldman et al. define private coresets. These are coresets in the tradi-
tional sense, but they are generated from P in a differentially private
fashion [13]. Thus, the private coreset problem is similar to the problem
of private generation of a synthetic data set, where the class of queries
to be handled by the coreset plays a role analagous to the fractional
concept class counts. Using similar techniques to those in [3], Feldman
et al. show how any coreset construction can (ineffeciently) be modified
to yield differentially private coresets, and using new techniques they
obtain an efficient construction of coresets for k-median queries.

3 Connections to Other Fields of Study

As the study of privacy broadens, differential privacy productively blends,
Zelig-like, with a surprising variety of concepts3. We have already seen
this in the connection between traitor-tracing and non-interactive sani-
tization. Here we offer four additional examples.

Truthful Mechanisms for Strategic Agents. In a truthful mecha-
nism, reporting one’s true value is a dominant strategy. Designing mech-
anisms to be truthful simplifies their analysis, making truthful mecha-
nisms a widely studied solution concept in economics. One way of en-
suring truthfulness is to arrange that the price paid by an individual is
independent of his or her reported value. Analogously, if a price is set by
a differentially private mechanism, then the price paid by an individual is
“almost” independent of her bid. This intuition has been validated: dif-
ferential privacy can be used to obtain “approximate truthfulness” [20],
yielding the first collusion-resilient mechanism; it can also be used to bet-
ter approximately solve combinatorial public project problems than can
be done with any efficient truthful solution (unless NP ⊆ BPP ) [15]. In
each case an agent can gain only slightly by lying.

3 The Internet Movie Database summarizes Woody Allen’s Zelig: “Fictional docu-
mentary about the life of human chameleon Leonard Zelig, a man who becomes a
celebrity in the 1920s due to his ability to look and act like whoever is around him.”



Additive Combinatorics and Dense Model Theorems. Reingold
et al. [23] give (almost) the following definition of density: Consider dis-
tributions X and Y over a set R. X is eε-dense in Y if for all x ∈ R,
Pr[X = x] ≤ eεPr[Y = x]. Thus, a randomized mechanism f is ε-
differentially private if and only if f(D) is eε-dense in f(D′) for all
D, D′ such that d(D, D′) ≤ 1. This connection between differential pri-
vacy and (mutually) dense distributions has been exploited in an in-
vestigation of computational differential privacy, i.e., differential privacy
against a computationally bounded adversary. [21], which extends the
dense model theorem in [23] to demonstrate equivalence between two
definitions (indistinguishability-based and simulatability-based, respec-
tively) of computational differential privacy,

Robust Statistics and the Influence Function. Robust statistics is
the subfield of statistics that attempts to cope with outliers. In con-
sequence, in a robust analysis the specific data for any one individual
should not greatly affect the outcome of the analysis, suggesting a con-
nection to differential privacy. Indeed, independently of our community
and unknown to us, as early as 2005 Heitzig [17] proposed adapting,
for the sake of privacy, a specific robust technique for reducing bias and
estimating variance, known as the Jackknife [22, 25].
The Jackknife is related to the the influence function IF(x, T ; F ), which
describes how an estimator T applied to samples from distribution F
changes if we replace F by a distribution G with an infinitesimal con-
tamination at x: G = (1 − t)F + t∆x, for very small t. (See [18, 16].)
This, in turn, is related to sensitivity “in a statistical setting” (that is,
whp over samples from the distribution F ). Typically, robust estimators
are designed to have bounded influence function, implying vanishing sen-
sitivity in a statistical setting. Heitzig’s intuition, supported by detailed
statistical insight but not made rigorous, was that it should be possible
to ensure privacy by reporting an interval for the results of an analysis,
rather than the exact value, where the size of the interval is determined
by his (randomized) Jackknife-like procedure. Independently of Heitzig,
but later, Dwork and Lei were also inspired by the implications of van-
ishing sensitivity offered by bounded influence functions. They adapted
several robust algorithms, for varying statistical tasks, to provably (and
always) yield differential privacy, with excellent accuracy whenever cer-
tain mild statistical assumptions hold [6].

4 Concluding Remarks

We have surveyed at least six very recent contributions on the differential
privacy frontier. In several cases the work has forged links with other
fields and communities: statistics, cryptography, complexity, geometry,
mechanism design, and optimization. The plethora of new techniques, the
formulation of new problems, and the fruitful interplay with other fields
provides fertile ground for ebullient growth in an intellectually exciting
and socially valuable endeavor.
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