
Fitness-Guided Path Exploration in Dynamic Symbolic Execution

Tao Xie1 Nikolai Tillmann2 Jonathan de Halleux2 Wolfram Schulte2

1 Department of Computer Science, North Carolina State University, NC 27695-8206, USA

2 Microsoft Research, One Microsoft Way, Redmond, WA, 98074, USA

1
xie@csc.ncsu.edu

2
{nikolait, jhalleux, schulte}@microsoft.com

Abstract

Dynamic symbolic execution is a structural testing tech-

nique that systematically explores feasible paths of the pro-

gram under test by running the program with different test

inputs to improve code coverage. To address the space-

explosion issue in path exploration, we propose a novel

approach called Fitnex, a search strategy that uses state-

dependent fitness values (computed through a fitness func-

tion) to guide path exploration. The fitness function mea-

sures how close an already discovered feasible path is to

a particular test target (e.g., covering a not-yet-covered

branch). Our new fitness-guided search strategy is inte-

grated with other strategies that are effective for exploration

problems where the fitness heuristic fails. We implemented

the new approach in Pex, an automated structural testing

tool developed at Microsoft Research. We evaluated our

new approach by comparing it with existing search strate-

gies. The empirical results show that our approach is effec-

tive since it consistently achieves high code coverage faster

than existing search strategies.

1 Introduction

Structural software testing aims at achieving full or at

least high code coverage such as statement and branch cov-

erage of the program under test. A passing test suite that

achieves high code coverage provides high confidence of

the dependability of the program under test. The problem

of testing for finding bugs can also often be reduced to the

problem of structural testing with the goal of covering all

statements as follows. A bug can often be seen as a spe-

cial error statement, which may be guarded by a condi-

tion. For example, when a test oracle is expressed by an

assertion of a condition, then covering the negated condi-

tion witnesses a bug. Note that an assertion is used here in a

general sense; the behavior reflected by the assertion can be

expressed using contracts [12] or as part of parameterized

unit tests [16].

public bool TestLoop(int x, int[] y) {

1 if (x == 90) {

2 for (int i = 0; i < y.Length; i++)

3 if (y[i] == 15)

4 x++;

5 if (x == 110)

6 return true;

}

7 return false;

}

Figure 1. An example method under test.

Random testing [13] is one of the most commonly used

techniques for software testing primarily due to its ease of

implementation and the marginal overhead in choosing in-

puts. However, the random testing technique is not effective

when inputs needed to reach a given statement are very spe-

cific and if there is only little chance of randomly finding

them in the input space. For example, given the method un-

der test shown in Figure 1, to cover the statement in Line

6, the integer value of argument x needs to be exactly 90

and the array elements of argument y needs to include ex-

actly 20 elements whose values are 15 and 0 or more other

elements whose values are not 15. Although the example

method shown in Figure 1 is specifically contrived to illus-

trate the issues, such similar cases commonly occur in real-

world programs under test, posing challenges for automated

test generation.

To address the issues faced by random testing, dynamic

symbolic execution (DSE) [3, 6, 14] (also called directed

random testing [6] or concolic testing [14]) has been re-

cently proposed. DSE is a variation of symbolic execu-

tion [4,10], which leverages observations from concrete ex-

ecutions. It executes the program under test for given in-

puts, while performing a symbolic execution in parallel to

collect symbolic constraints on inputs obtained from pred-

icates in branch statements along the execution. The con-

junction of all symbolic constraints along a path is called

the path condition. DSE is typically performed iteratively

to systematically increase code coverage. In each iteration,

after applying DSE to an already explored path, a search

strategy decides on a branching node in the path to flip1.

1The execution paths span an execution tree, where a branching

Intuitively, flipping a branching node in a path means to

construct a new path that shares the prefix to the node with

the old path, but then deviates and takes a different branch.

Whether such a flipped path is feasible is checked by build-

ing a constraint system representing the flipped path’s feasi-

bility. If a constraint solver can determine that the constraint

system is satisfiable, and if the solver can compute a satisfy-

ing assignment, then, by construction, we have found a new

test input that will execute along the flipped path. For the

example method shown in Figure 1, assuming that the ini-

tial argument values x and y are 0 and an array {0}, respec-

tively, then the false branch of Line 1 is taken and the path

condition is (x != 90). Negating the constraint for the

branching node in Line 1 (i.e., flipping the branching node)

produces a new constraint system: (x == 90). Solving the

constraint system produces a new test input (x as 90 and y

as an array {0}) to cover the true branch of Line 1.

Code inspection reveals that covering the true branch of

Line 5 (called the test target) needs exactly 20 executions of

the true branch of Line 3 inside the loop. However, applying

DSE to hunt for such a case (thus covering the test target)

faces significant challenges. First, the number of loop it-

erations in Lines 2-4 depends on the length of the array y,

which can range from 0 to 231−1. A breadth-first or depth-

first search strategy would not be able to explore and cover

the test target within a reasonable amount of time. Second,

even when we put a bound such as 20 for the loop iterations

(given that we need at least 20 loop iterations to achieve

the test target coverage), the number of paths for the loop

iterations is still 220, which is too large in practice.

The example method in Figure 1 illustrates a general ex-

ploration problem for DSE: to explore and cover a program

that contains one or more branches with relational condi-

tions (here, (x == 110)), where the operands are scalar

values (integers or floating-point numbers) that are com-

puted based on control-flow decisions connected to the test

inputs through data flow (here, if (y[i]==15) x++;).

Such indirect relationships between the program conditions

and the test inputs pose a challenge for search strategies of

exploring relevant paths.

To tackle this exploration problem, we propose a novel

approach called Fitnex for guided path exploration in DSE

to achieve test target coverage quickly. The guided search

provided by our Fitnex approach alleviates issues encoun-

tered by previous DSE approaches with (bounded) exhaus-

tive search [3, 6, 14] or random search [2]. In particular,

our approach assigns to already explored paths fitness val-

ues computed by program-derived fitness functions. (Fit-

ness functions have been traditionally used in search-based

node represents an instance of a conditional branch in the code. An

if-then-else statement in the code can correspond to multiple

branching nodes in the execution tree, and even along a path in the exe-

cution tree. For example, when a loop contains an if-then-else, it

may be executed multiple times in the path.

test generation [11].) A fitness function measures how close

an explored path is in achieving test target coverage. A

fitness gain is also measured for each explored branch: a

higher fitness gain is given to a branch if flipping a branch-

ing node for the branch in the past helped achieve better

fitness values. Then during path exploration, our Fitnex

strategy would prefer to flip a branching node whose cor-

responding branch has a higher fitness gain in a previously

explored path with a better fitness value.

The core Fitnex strategy is effective for only certain ex-

ploration problems — those amenable to fitness functions.

To address the issue, we integrate the Fitnex strategy with

other search strategies, which work well for other types of

exploration problems. Our integration of the Fitnex and

other strategies achieves the effect of getting the best of both

in practice.

This paper makes the following main contributions:

• We propose a fitness-guided strategy for path explo-

ration in (dynamic) symbolic execution. To the best of

our knowledge, our strategy is the first one that uses

fitness values to directly and effectively guide path ex-

ploration.

• We integrate the fitness-guided strategy with other

strategies to address exploration problems where the

fitness heuristic fails.

• We implement the proposed Fitnex strategy in

Pex [15], an automated structural testing tool for .NET

developed at Microsoft Research. The Fitnex imple-

mentation has been released as open source in the Pex

Extensions project webpage2. The Fitnex strategy has

been integrated into the default search strategy in Pex,

which consists of a combination of various individual

strategies. Pex has been previously used internally at

Microsoft to test core components of the .NET archi-

tecture and has found serious bugs [15]. Recent public

releases of Pex [15] (since 17 September 2008, with

thousands of download counts) have incorporated our

new approach as Pex’s default test generation mecha-

nism.

• We evaluate our approach on 30 benchmarks created

to reflect various typical exploration problems encoun-

tered in testing real, complex C# code under test. The

evaluation results show that our new approach consis-

tently achieves higher code coverage faster than other

strategies, including random and breadth-first strate-

gies.

The rest of the paper is organized as follows. Sec-

tion 2 presents our illustrative example. Section 3 presents

dynamic symbolic execution in Pex. Section 4 presents

our new Fitnex strategy for fitness-guided path exploration

and its integration with other search strategies. Section 5

2http://www.codeplex.com/Pex

presents the evaluation results. Section 6 discusses related

work. Section 7 discusses research issues and future work,

and Section 8 concludes.

2 Example

We use the example method shown in Figure 1 to il-

lustrate our Fitnex strategy. In particular, we explain how

our Fitnex strategy helps cover test targets such as the true

branch of Line 5. During DSE’s path exploration [3, 6, 14],

a key decision in each iteration is which branching node to

flip next. Recall that flipping a branching node in a path

means to construct and decide the satisfiability of a con-

straint system that represents all conditions in the path pre-

fix before the branching node to flip, conjuncted with the

negation of the condition of the branching node to flip.

Fitness computation for a path. We introduce fitness

functions to select the most promising path along which a

branching node should be flipped. Our fitness functions are

derived from the boolean binary predicates [18] that appear

in the program under test. Fitness functions compute fitness

values, reflecting how close a path’s execution is to cover-

ing the test target (e.g., a not-yet-covered branch). Explo-

ration then prefers the fittest paths, i.e. paths that are closest

to covering the test target. For example, for the predicate

(x == 110) in Line 5, the fitness function is “if (|110

- x| == 0) then 0 else |110 - x|”. The smaller a

fitness value is, the closer (fitter or better) the path’s exe-

cution is to covering the test target. The fitness value of 0
represents the case where the test target is covered.

Assume that five existing test inputs Tests 0-4 (gener-

ated via five iterations of path exploration) explored Paths

0-4 as listed below.

Test 0:

TestLoop(0, new int[] {0});

Path 0: 1F

Test 1:

TestLoop(90, new int[] {0});

Path 1: 1T, 2T, 3F, 2F, 5F

Test 2:

TestLoop(90, new int[] {15});

Path 2: 1T, 2T, 3T, 2F, 5F

Test 3:

TestLoop(90, new int[] {15, 0});

Path 3: 1T, 2T, 3T, 2T, 3F, 2F, 5F

Test 4:

TestLoop(90, new int[] {15, 15});

Path 4: 1T, 2T, 3T, 2T, 3T, 2F, 5F

A path is denoted by the sequence of line numbers for taken

branches followed by T or F to represent true and false

branches, respectively. Each item in the sequence repre-

sents a branching node.

Recall that the true branch of Line 5 is the test target.

Based on the fitness function for the test target, the fitness

values for Paths 0-4 are the worst (largest) fitness value

(due to not even reaching the location of the test target),

20 (|110 - 90|), 19 (|110 - 91|), 19 (|110 - 91|),

and 18 (|110 - 92|). Because the fitness value of Path

4 (being 18) is better (e.g., smaller) than those of Paths

0-3, in the subsequent iteration, Path 4 is given higher

priority over the other four paths for branching-node flip-

ping.

Fitness-gain computation for a branch. We next de-

scribe how we give higher flipping priority to a more

promising branching node in a path. We first compute the

fitness gain of a branch. The fitness gain reflects how much

the fitness value has improved across paths after a branching

node for the branch was flipped in the past. For example,

when we flipped the branching node for the false branch

of Line 3 (y[i] == 15) in Path 1 to the true branch,

we derive Path 2, whose fitness value has improved from

20 to 19, i.e., the fitness gain is 1. The same fitness gain,

namely 1, is achieved if flipping a branching node for the

same branch from Path 3 to Path 4. Therefore, the com-

puted fitness gain for the false branch of Line 3 is 1 (on

average). Note that a fitness gain can be negative indicat-

ing undesirable consequence. For example, the computed

fitness gain for the true branch of Line 3 is -1, because flip-

ping a branching node for this branch to the false branch

could lead to fitness gain of -1 (on average).

When we flip the branching node for the false branch of

Line 2 (loop predicate) of Path 2 to the true branch, we

unfold the loop, deriving Path 3 or Path 4 (depending

on whether the constraint solver assigns the additional array

element with 15). Assuming that Path 4 is derived, since

Path 4’s fitness value is 18 (with a fitness gain of 1), the

computed fitness gain for the false branch of Line 2 is 1.

We assign a composite fitness value to each branch-

ing node for a branch b in an explored path p as (F (p)
- FGain(b)), where F (p) is the fitness value for p and

FGain(b) is the fitness gain for b. We prioritize branching

nodes for flipping among all the branching nodes (from the

explored paths) based on these nodes’ composite fitness val-

ues: the lower a node’s composite fitness value is, the higher

priority the node has. For example, we give the highest pri-

ority to flip the branching node for the false branch of Line 2

in Path 4 since this node has the lowest composite fitness

value 17, being (18 - 1). Such a node flipping unfolds

the loop, helping get closer to the coverage of the test target.

Eventually, after a relatively small number n of more iter-

ations3 beyond the five iterations/paths (i.e., Paths 0-4),

our path exploration leads to a path that has fitness value 0,

i.e., covers the test target. Such a small number n of iter-

3
n ranges from 18 to 36 depending on whether the additional array

element after each iteration of loop expansion is assigned the value of 15

by the constraint solver (causing to cover the true branch of Line 3). A

“smart” constraint solver can potentially assign a historically rewarding

value (e.g., 15) to new array elements due to loop-iteration expansion; in

this case, n is 18.

/*intuitively, J is the set of already analyzed program inputs*/

Set J := ∅
loop

Choose program input i such that i /∈ J
stop if no such i can be found

Output i
Execute i; record path condition C /*C(i) holds*/

J := J ∪ C /*viewing C as the set {i | C(i)}*/

end loop

Figure 2. General iterative DSE algorithm

ations in addition to the five iterations is in sharp contrast

to 220, the bounded search space for path exploration, high-

lighting the benefits brought by our Fitnex strategy.

3 Dynamic Symbolic Execution

Dynamic symbolic execution (DSE) [3, 6, 14] is a vari-

ation of conventional static symbolic execution [4, 10].

DSE executes the program starting with arbitrary inputs,

while performing a symbolic execution in parallel to collect

symbolic constraints on inputs obtained from predicates in

branch statements along the execution. Then a constraint

solver is used to compute variations of the previous inputs

in order to steer future program executions along different

execution paths. In this way, all feasible execution paths

will be exercised eventually through such iterations of in-

put or path variations. Figure 2 shows the general iterative

DSE algorithm implemented by Pex [15]. A crucial aspect

of the iterative DSE algorithm is the choice of the new pro-

gram inputs i in each loop iteration. This choice decides in

which order the different execution paths of the program are

enumerated.

When enumerating paths of the example method in Fig-

ure 1, one strategy could always choose to unroll the loop

further, and never, not even eventually, visit the true branch

inside the loop. This observation illustrates the need for

a fair choice between different branches when enumer-

ating execution paths. Furthermore, this observation il-

lustrates the need for a guided choice between different

branches when enumerating execution paths since both the

true branch inside the loop and the loop-unrolling branch

are most desirable to explore among different branches.

In practice, it turns out that this choice should not be left

to the constraint solver, but that it is more appropriate to

leverage structural information about the program and pre-

viously executed paths to guide the search, and to provide a

fair and guided choice.

To this end, Pex implements a variation of the algorithm

in Figure 2. All execution paths of the program belong to

its execution tree. Each node of this tree, called branch-

ing node, is an instance of a control-flow point of the pro-

gram. If the program has loops or nested branches, a single

control-flow point (such as a branch) of the program might

have several instances (branching nodes) in the execution

tree.

Through DSE, Pex explores the reachable portion of this

tree one path at a time.4 In each iteration of Pex’s explo-

ration, it selects (for flipping) a branching node from the

explored portion of the execution tree where at least one

of the node’s immediate outgoing branches is not explored.

In the process of flipping the selected branching node, Pex

forms the next constraint system to solve as

• the conjunction of the constraints leading to the se-

lected branching node,

• conjuncted with the negation of the disjunctions of the

constraints of the already explored immediate outgo-

ing branches of the selected branching node.

If the constraint system turns out to be infeasible, the se-

lected branching node is marked as exhausted and dis-

carded.

To guarantee that our algorithm will visit all reachable

control-flow points eventually, we need a search strategy

that performs a fair and guided choice among all control-

flow points. Our new approach described in the next sec-

tion provides a fitness-guided search strategy in combina-

tion with other strategies.

4 Approach

The core of our approach is the Fitnex search strat-

egy guided by fitness values computed with a fitness func-

tion (Section 4.1). To deal with program branches not

amenable to a fitness function, our approach includes in-

tegration of the Fitnex strategy with other search strategies

(Section 4.2).

4.1 Fitness-Guided Search Strategy

A fitness function (Section 4.1.1) gives a measurement

on how close an explored path is to achieving a test tar-

get (e.g., covering a not-yet-covered branch). We compute

a fitness value for each already explored path and priori-

tize these known paths based on their fitness values (Sec-

tion 4.1.2). We compute a fitness gain for each branch in the

program under test and prioritize branching nodes based on

their corresponding branches’ fitness gains (Section 4.1.3).

During path exploration, we give higher priority to flipping

a branching node with a better (higher) fitness gain in a path

with a better (lower) fitness value (Section 4.1.4).

4.1.1 Fitness Functions for Target Predicates

A common type of test targets can be to satisfy a target pred-

icate in the program under test. For example, we may want

4Using summarization techniques [5], it is possible to collapse subtrees

into nodes.

Table 1. Fitness functions of predicates
Predicate Fitness function

True False

F (a == b) 0 |a − b|
F (a > b) 0 (b − a) + K
F (a >= b) 0 (b − a)
F (a < b) 0 (a − b) + K
F (a <= b) 0 (a − b)

to satisfy the predicate (or its negation) in a conditional so

that the not-yet-covered true (or false) branch of the condi-

tional can be covered. Given a target predicate, we measure

how close its evaluation at runtime is to covering the tar-

get predicate with fitness functions [18] as listed in Table 1

(these fitness functions are commonly used in search-based

test generation [11]). Column 1 shows the form of a target

predicate. Columns 2 and 3 show the fitness function for

the target predicate. In particular, the fitness value shown in

Column 2 is 0 when the predicate in Column 1 evaluates to

true. When the predicate in Column 1 evaluates to false, the

expression shown in Column 3 computes the fitness value.

In the fitness functions, K is a failure constant (such as 1)

and is added when the predicate is false. For example, for a

predicate (a > b), if (a > b) evaluates to true, then the fitness

value is 0; otherwise, the fitness value is (b − a) + K .

Our path-exploration process tries to minimize the fit-

ness values computed by the fitness function for paths be-

ing explored. If the fitness value computed for a path is 0,

then we cover the target predicate (e.g., covering the target

branch). Our approach implemented in Pex does not need

to deal with composite predicates (e.g., predicates includ-

ing logical operator && or ||), because Pex operates at the

.NET instruction level where composite predicates in condi-

tionals are typically decomposed into multiple conditionals

with simple predicates at the .NET instruction level.

Besides target predicates for branches (in the program

under test) that are not yet covered, we also associate fitness

values with non-branching target predicates for boolean bi-

nary expressions (in the program under test) whose true or

false values have not yet been exercised. The motivating

case for covering these target predicates is illustrated below:
bool b = (x > y); if (b) { ... }

Suppose that the true branch of the conditional “if

(b)” is our test target and thus (b) is our target predicate.

However, there exists no good fitness function for a predi-

cate in the form of (bool) where bool is a boolean variable;

that is why we do not list such a predicate type in Table 1.

That is, we do not have a good way to measure how close

the evaluation of (bool) is to cover (bool) since there are

only two outcomes: either covering it (i.e., bool being true)

or not covering it (i.e., bool being false). Our preceding

technique addresses this issue by associating a fitness value

with the target predicate for the binary boolean expression

(x > y). Such fitness guidance helps the exploration to

exercise the true value of the expression and subsequently

cover the true branch of the conditional.

If a test requirement such as (x < 0) at a program exe-

cution point is to be satisfied but (x < 0) does not appear

in a conditional or even a boolean expression in the pro-

gram, we still can insert an auxiliary statement if (x <

0) {} else {}, which simply induces a case split for the

search, allowing Fitnex to be applied.

4.1.2 Fitness-Value Computation for Paths

This section presents our technique for computing and as-

signing a fitness value to a path based on the fitness function

for a given target predicate.

Fitness-value computation in dynamic symbolic exe-

cution. Computing fitness values in the context of symbolic

execution is complicated since the fitness function may be

applied on symbolic values and thus the fitness value would

be symbolic. Comparing symbolic fitness values is expen-

sive, requiring pairwise comparison and invocations of a

constraint solver. To reduce analysis cost, taking advantage

of dynamic symbolic execution (the context where our ap-

proach is applied), our technique uses concrete variable val-

ues (collected at runtime) to compute fitness values based

on fitness functions.

Fitness-value assignment to a path. Given a target

predicate and an explored path, we assign a fitness value

to the path with the following procedure. We first collect

all the occurrences of the target-predicate evaluation (when

a target branch is within a loop, the branch’s target predi-

cate can be encountered and evaluated multiple times in the

explored path). We then compute the fitness value for each

occurrence of the target-predicate evaluation, and assign the

best (lowest) fitness value among these fitness values to the

path. When there is no occurrence of the target-predicate

evaluation in the path, we assign the worst fitness value

(e.g., the maximum 32-bit integer) to the path. Intuitively,

we would give higher priority to flipping a branching node

in a path with a better (lower) fitness value. The next section

describes a technique for further helping determine flipping

priority for branching nodes in a path.

4.1.3 Fitness-Gain Computation for Branches

Selecting a branching node in a path to flip can be reduced

to selecting a branching node that (1) has at least one imme-

diate outgoing branch not explored yet and (2) once flipped

has the best potential for improving the path’s fitness value.

To measure the potential of each branching node, we first

compute the fitness gain for each branch in the program un-

der test as illustrated next.

In each iteration of path exploration, assume that a

branching node bn (whose corresponding branch is b) in

path pi (with fitness value as fvi) is flipped and a new path

pi+1 (with fitness value as fvi+1) is produced. Then the

fitness improvement from pi to pi+1 is (fvi − fvi+1). That

is, the fitness gain for flipping the branching node of b is

(fvi − fvi+1). We finally compute the fitness gain for b
as the average of all the fitness gains for flipping branching

nodes of b in the past. (Note that a fitness gain can be neg-

ative when (fvi − fvi+1) is negative, indicating that such

flipping is not desirable.) Intuitively, we would give higher

priority to flipping a branching node (in a path) for a branch

with a better (higher) fitness gain.

4.1.4 Fitness-Guided Exploration

To help prioritize branching nodes for flipping among all

the branching nodes (from the explored paths), we compute

a composite fitness value for each branching node as below.

A composite fitness value of a branching node (for a branch

b) in an explored path p is computed as (F (p)−FGain(b)),
where F (p) is the fitness value of p and FGain(b) is the fit-

ness gain of b. We give higher flipping priority to a branch-

ing node with a better (lower) composite fitness value.

The prioritization of branching nodes produced by our

Fitnex search strategy basically implements the first line of

the loop body in Figure 2: in each iteration, the branching

node with the highest priority is flipped to form a new pro-

gram input (exploring a new path). Once a branching node

has been flipped, our strategy removes it from the priori-

tized list of branching nodes, to avoid it from being flipped

again in the future.

The next section describes how we integrate our Fitnex

search strategy with other search strategies to effectively ad-

dress exploration problems (in one program under test or

across different programs under test), each of which may be

amenable to only one or a few specific strategies (including

the Fitnex strategy) being integrated.

4.2 Integration of Search Strategies

A straightforward and fair search strategy would be a

random strategy, which chooses branching nodes to flip ran-

domly. While such a strategy often performs reasonably

well, it suffers from a grave problem: it would result in a

random distribution of path lengths. If the program con-

tains a loop over an unbounded unsigned integer of 32 bits,

then a path would have 232/2 = 231 branches on average.

In other words, this strategy tends to dwell on un-rollable

loops.

There are many well-known simple search strategies

such as breadth-first and depth-first search strategies. How-

ever, each such strategy is biased towards particular control-

flow points. While breadth-first search favors initial

branches in the program paths, the depth-first search favors

final branches.

To avoid any particular bias such as those preceding

ones, Pex combines various strategies into a top-level meta-

strategy. To this end, Pex provides a rich set of basic strate-

gies and strategy combinators.

A strategy is informed about new branching nodes (in

short as nodes), flipped nodes, and nodes that have been

exhausted. Initially, a root node is announced. A strategy

can be asked to provide the next node to flip; the strategy

can choose to decline the request, e.g., when its test target

has been covered.

When we conducted the evaluation (Section 5) for eval-

uating our new approach, the main strategy of Pex was de-

fined as follows:
ShortCircuit(

CodeLocationPrioritized[Shortest],

DefaultRoundRobin)

This main strategy uses the following strategies and strategy

combinators:

• The ShortCircuit(s0, . . . , sn) combinator com-

bines a sequence of strategies s0, . . . , sn in the fol-

lowing way: as long as an earlier strategy si provides

nodes to flip, a later strategy sj (where j > i) will not

be asked to provide nodes to flip.

• The CodeLocationPrioritized[S] strategy parti-

tions all nodes into equivalence classes based on the

control-flow locations (branches) of which the nodes

are instances. For each equivalence class, an inner

frontier of strategy type S is maintained, which is

informed about only nodes of its equivalence class.

When a node is to be selected, a fair choice is per-

formed between all equivalence classes, and then the

inner frontier of the chosen equivalence class is asked

to provide a node. When the inner frontier does not

provide a node, another equivalence class is chosen. If

all equivalence classes have been exhausted, no node

is provided.

• The Shortest strategy maintains a list of nodes or-

dered by their depths in the execution tree, and the

strategy remembers the smallest depth observed so far.

When asked to provide a node, the strategy would re-

move the first node of the list and provide this node

only if it has the smallest observed depth.

• The DefaultRoundRobin strategy combines a set of

strategies5 (one of which is Fitnex). This strategy

makes a fair choice among the combined strategies

when it is asked to choose the next branching node to

flip. Most of the strategies are variations of breadth-

first search over the execution tree, except that these

strategies do not proceed strictly along the depth of the

branches in the tree, but instead they proceed along a

border that is defined by properties of the branching

5More details of these strategies can be found at http://ase.csc.

ncsu.edu/projects/fitnex/

nodes such as structural coverage and calling contexts.

The intention is to create diversity in the exploration

beyond the notion of the depth of a branch.

In practice, we observe that Pex’s other strategies in

combination with Fitnex perform quite well (based on our

experience and feedback of the Pex releases, which by de-

fault uses the combination of Pex’s other strategies and Fit-

nex).

Pex’s other strategies have a bias towards flipping nodes

with short depths in the execution tree; the intuition is that

easy cases should be covered fast. These other strategies

partition nodes into various equivalence classes based on

structural coverage, leading to diversity, while avoiding the

general combinatorial explosion.

When using the frontier for the Fitnex strategy, Pex

eagerly climbs local fitness hills without distraction from

other frontiers by using progress boost: when the Fitnex

frontier makes progress (i.e., a fitness value improves), the

Fitnex frontier notifies its outer frontier, which may boost

its probability of being used more often later on.

In summary, Fitnex works for only a particular type of

problems (e.g., those amenable to fitness functions), and

Pex’s other strategies work well for other types of problems.

These other strategies are in fact more general, and tend to

work on a broader scope of programs. Our integration of

Fitnex and other strategies achieves the effect of getting the

best of both in practice.

5 Evaluation

We have implemented our Fitnex strategy and its integra-

tion with other strategies in Pex [15], an automated struc-

tural testing tool for .NET developed at Microsoft Research.

To evaluate our Fitnex strategy and its integration, we com-

pare the following different search strategies:

• Pex with Fitnex: Pex’s default strategy as described in

the previous section.

• Pex without Fitnex: a variation of Pex’s default strategy

for evaluation purposes, where the Fitnex strategy has

been removed.

• Random: a strategy where branches to flip are chosen

randomly in the already explored execution tree (but

no branch is selected twice).

• Iterative Deepening: a strategy where breadth-first

search is performed over the execution tree.

The Random, Iterative Deepening (breadth-first), and

Depth-First strategies are representatives of search strate-

gies commonly adopted in existing state-of-the-art DSE

tools [2,3,5–7,14]. Comparing our proposed approach with

these strategies helps assess the new benefits of our new

approach over these existing strategies. In our evaluation

results shown in Section 5.2, we did not include the Depth-

First strategy commonly used in other DSE tools [3, 6, 14],

Table 2. Evaluation subjects and results
#basic #runs #runs #runs #runs

blocks Pex Pex

with without iterative

subject Fitnex Fitnex random deepening

1 9 15 22 12 227

2 16 45 58 13 127

3 29 26 30 14 50

4 40 9 9 15 22

5 20 42 22 16 42

6 28 17 127 19 28

7 21 35 27 21 51

8 34 91 30 24 65

9 29 18 25 26 24

10 25 18 26 26 24

11 27 18 26 26 24

12 27 18 26 26 24

13 27 18 26 26 24

14 39 11 11 27 31

15 34 16 17 33 16

16 9 13 26 41 295

17 40 12 26 41 1000

18 18 122 68 43 369

19 11 20 33 45 135

20 18 20 35 46 962

21 25 17 17 55 39

22 25 65 52 55 118

23 19 31 30 112 33

24 16 31 30 112 33

25 44 62 104 185 113

26 11 22 171 277 823

27 9 23 249 566 1000

28 9 23 249 566 1000

29 21 24 73 1000 1000

30 62 101 775 1000 1000

mean

improvement n/a

over random 5.2 1.9 (1) 0.9

as it consistently performs abysmally in most subjects used

in the evaluation, since most subjects contain loops whose

bounds are related to the program inputs, and the Depth-

First strategy keeps unrolling the last loop instead of at-

tempting to achieve test targets.

Through this evaluation, we intend to answer the follow-

ing research questions:

• Is the integrated Fitnex strategy (i.e., Pex with Fitnex)

effective in achieving high code coverage fast?

• To what extent does the Fitnex strategy degrade or im-

prove the performance of other strategies when they

are integrated?

• How does the performance of the integrated Fitnex

strategy (i.e., Pex with Fitnex) compare to the perfor-

mance of the other strategies?

5.1 Subjects

The evaluation subjects listed in Table 2 (whose Column

2 shows the number of a subject’s basic blocks) are a col-

lection of benchmark subjects routinely used by the Pex de-

velopers to evaluate Pex’s performance6. Note that these

subjects were created independently of the Fitnex approach

(existing before the conception and development of Fitnex)

so evaluating Fitnex on these subjects provides an unbiased

assessment, whose results reflect a strong indication of gen-

eral performance in the field.

The subjects were created by extracting characteristic

exploration problems from real, complex C# programs. As

a result, their size may seem small (each has less than 100

basic blocks), but such small size is because they contain

only the essence of an individual exploration problem. Each

subject contains one or more hard-to-reach statements that

were pre-designated. More specifically, each subject con-

sists of a sequence of boolean guards, followed by hard-to-

reach statements that can be reached only by fulfilling all

guards. A simple example of such a subject is listed be-

low, where the target is to create a string as the test input

that starts with the word “Hello”, ends with “World!”, and

contains at least one space.

public void HelloWorld(string value) {

if (value.StartsWith("Hello") &&

value.EndsWith("World!") &&

value.Contains(" "))

MustReach();

}

One subject is a small parser for a Pascal-like language,

and the target is to create a legal program; the smallest le-

gal program to be created as input to the subject is of the

following form: program X; begin end.

Another set of subjects is similar to the example

TestLoop shown in Figure 1, where a loop iterates over

program inputs, and then values computed by the loop are

used later on.

These subjects contain few boolean variables, most of

them contain one or more loops, and most of them con-

tain strings, e.g., arrays of characters. Specifically, several

subjects encode constraint systems over strings. Pex ex-

plores these subjects by analyzing the called string methods

as well, which often contain loops over individual charac-

ters of the strings.

5.2 Results

In the evaluation, we measured how many runs were

needed to cover designated hard-to-reach statements in our

evaluation subjects. Each run indicates that a node flipped

by the combined top-level search strategy indeed leads to

the discovery of a new feasible path. At most 1000 runs

were considered for each subject.

In the evaluation, the execution time of DSE was domi-

nated by the time spent to execute and monitor the subjects,

6More details of the evaluation subjects and results can be found at

http://ase.csc.ncsu.edu/projects/fitnex/

and constraint solving. The time spent by the search strate-

gies, including Fitnex, to maintain the nodes and select the

next branching node to flip was negligible. Thus, the num-

ber of runs is a good proxy for measuring the effectiveness

of search strategies.

The results of the evaluation are shown in Table 2. For

each subject, the number of runs needed to cover the desig-

nated statements is shown in Columns 3-6 of Table 2 for the

four compared strategies. We highlight in bold the subjects

that our Pex with Fitnex strategy (Column 3) achieves better

or same performance than any of the other three strategies.

Smaller run numbers are better and the run number of 1000

indicates that some of the designated statements could not

be reached. The last row of the table shows the mean im-

provement factor of each strategy over the Random strategy.

From the results, we observe that Random and Iterative

Deepening cannot always produce paths covering the test

targets (reflected by their run numbers of 1000); the per-

formance of these strategies serves as our baseline, against

which we want to improve. The Pex without Fitnex strategy

could find paths to cover all test targets. Adding Fitnex to

Pex’s other strategies (i.e., the Pex without Fitnex strategy)

effectively improves the overall performance: while the Pex

without Fitnex strategy improves performance on average

by a factor of 1.9 over the Random strategy, including Fit-

nex (i.e., Pex with Fitnex) improves performance on average

by a factor of 5.2 over the Random strategy.7

Compared to the Random and Iterative Deepening strate-

gies, the Pex with Fitnex strategy is more effective in achiev-

ing high code coverage faster. The Pex with Fitnex strat-

egy also improves the overall performance over Pex’s other

strategies alone (i.e., the Pex without Fitnex strategy). As

a result, the Pex with Fitnex strategy is most effective in

achieving high code coverage faster.

Note that in 8 out of 30 subjects, the Pex with Fitnex

strategy performs worse than the Random strategy. This

phenomenon happens when a previously observed fitness

gain causes the Fitnex strategy to drive the exploration to an

eventually unfruitful direction. We use the following exam-

ple program to illustrate the phenomenon.

public void LoopExample(int[] a) {

int sum = 0;

for (int i = 0; i < 100; i++)

{ if (a[i] > 0) sum++; }

if (sum > 100) { ... }

...

}

The true branch of the last shown conditional is not cov-

ered during some initial runs and is considered as one of the

target branches. The Fitnex strategy will notice that flipping

to produce more positive array elements allows to get closer

7Since we capped the number of runs at 1000, which was relevant only

for the Random and Iterative Deepening strategies, these average improve-

ment factors are in fact conservative.

to covering the target branch, but a human observer can eas-

ily determine that this target branch cannot ever be covered.

Such a factor leads to a bias of the exploration that causes

the Fitnex strategy to perform worse than the Random strat-

egy (when the program contains many more branches else-

where that are not yet covered and are coverable). However,

if the branch would have been if (sum >= 100) { ...

}, then Fitnex’s attempts would have led the exploration to

an eventually fruitful direction, as the branch is now cover-

able.

This example illustrates one situation where the input is

first transformed or used in transforming another variable,

and branches in later code may depend on the result of the

transformation. Not all (combinations of) branches in later

code will be reachable, and Fitnex may cause the unrolling

of loops with the intention to cover a particular branch, but

being unable to actually cover it in the end.

Overall, the benefits of integrating Fitnex into Pex’s other

strategies (i.e., the Pex with Fitnex strategy) is greatly ben-

eficial: even if Fitnex sometimes drives the exploration into

a wrong direction, then the fair combination of Fitnex with

other strategies ensures overall diversity in the exploration;

and if Fitnex drives the exploration into a beneficial direc-

tion, then a substantial advantage in the achieved coverage

can be gained. In those cases, the Fitnex strategy can of-

ten reduce the exponential path explosion to a polynomial

problem, as the Fitnex strategy always makes progress to-

wards a test target. Such an effect is reflected by the obser-

vation that the Pex with Fitnex strategy achieved significant

improvement over the other strategies for Subjects 25-30

(where the Random strategy requires more than 180 runs

to achieve the test targets or fails to achieve the test targets

within 1000 runs), whereas the Pex with Fitnex strategy suf-

fers only marginal loss on the 8 subjects where the Random

strategy performs better.

6 Related Work

Path exploration strategies in symbolic execution.

DART [6] and CUTE [14] perform a depth-first search.

SMART [5], an extension of DART, computes method sum-

maries in order to make the analysis modular and thereby

more scalable, and it requires a fixed order that explores

innermost functions first. EXE [3] uses depth-first search

as its default strategy. It also provides a mixture of best-

first and depth-first search based on coverage heuristics.

SAGE [7] uses a generational search that explores only

a very limited horizon, starting from an execution path

spawned by a meaningful seed input. CREST [2] uses a

search strategy guided by the control flow graph of the pro-

gram under test and two random strategies. JPF [1] includes

strategies of depth-first and breadth-first search in addition

to structural heuristics [8]. None of these existing search

strategies is strongly guided towards covering test targets in

the form of branches. In contrast, our new Fitnex strategy

is the first one directly using fitness values to effectively

guide the exploration of paths towards covering individual

branches. In addition, the Fitnex strategy is integrated with

other strategies in Pex to achieve overall effectiveness for

programs with various characteristics.

Search-based test generation based on fitness values.

Search-based test generation [11], often referred to as evo-

lutionary testing (ET) [17], uses genetic algorithms to find

test data to achieve test target coverage. Based on fitness

values computed from test outputs or other observations

along execution paths, ET selects a subset of test inputs

with the best fitness values, and then applies crossover and

mutation operations (in a random fashion) on this subset to

produce new test inputs. Evacon [9] loosely integrates evo-

lutionary testing [17] and symbolic execution [14] in gener-

ating effective method sequences for achieving high struc-

tural coverage. Our new Fitnex strategy shares common-

ality with existing ET approaches in that both use fitness

functions to compute fitness values. However, the salient

novelty and difference of Fitnex is our novel way of using

the fitness values to guide the search process for feasible

paths in DSE, as opposed to performing a search (largely

randomly) on the test inputs, as usually done in ET. Fitnex

uniquely computes fitness gains for branches to help select

branching nodes to flip, which involves solving constraint

systems, whereas existing ET approaches would randomly

apply crossover and mutation operations on test inputs. In

addition, our Fitnex strategy is also integrated with other

strategies for achieving overall effectiveness.

7 Discussion

Enhancement of fitness functions. We currently assign

the worst possible fitness value to a path that does not reach

immediately before a test target (such as a branch). Assume

that none of the known paths reaches immediately before a

test target, then we will have no indication of which paths

are more promising to cover a test target. In this case, the

Fitnex frontier does not choose any node to flip, but lets

other integrated strategies proceed. In future work, we plan

to explore using a new type of fitness function [17] by mea-

suring the distances between an already explored path and

statically computed paths that can reach immediately before

a test target. Then we can assign different fitness values to

different paths that do not reach immediately before the test

target if these paths have different distances in reaching be-

fore the test target.

Guidance from tool users. Sometimes tool users could

have insights and knowledge in knowing which test targets

to focus on first or formulating a sub-target to focus on first.

With the best of our knowledge, no previous test genera-

tion tool provides convenient features to allow tool users

to guide the tool when the tool cannot effectively accom-

plish the test generation task. For example, a tool may get

stuck in exploring loop iterations that may not help cover a

particular test target. The integration of Fitnex with other

strategies alleviates the issue to some extent, but there will

always be programs for which no fully automatic and ef-

fective search strategy exists. To this end, Pex provides a

mechanism for allowing tool users to specify annotations

for informing Pex which portion of the program under test

should be given higher (or lower) priority in path explo-

ration. These annotations are used by several search strate-

gies, including Fitnex. We plan to explore this promising

area of cooperation between the tool and tool users in ac-

complishing testing tasks in future work.

Method-sequence generation. In object-oriented test

generation, generating effective method sequences [9] is

an important and yet challenging problem. We can re-

duce the method-sequence generation problem to the path-

exploration problem by constructing a test driver such as the

one below for testing a Stack class:

public void TestDriverForSeq(int[] methods,

int[] args, int SeqLen){

Stack s = new Stack();

for (int i = 1; i <= SeqLen; i++) {

switch (methods[i]) {

case 1: s.push(args[i]); break;

case 2: s.pop(); break;

default: s.clear(); break;

}

}}

In method-sequence generation, the path explosion problem

is aggravated and especially calls for an effective approach

such as the one proposed in this paper. We plan to apply our

Fitnex strategy and its integration to address the sequence-

generation problem in future work.

Complexity of fitness-guided exploration. If a given

program is amenable to fitness functions, then Fitnex ba-

sically reduces the general problem of exponential path ex-

ploration to polynomial complexity, since the fitness-guided

exploration always makes progress towards the coverage of

the test target, instead of trying all possible combinations as

in previous approaches.

8 Conclusion

Dynamic symbolic execution generates test inputs to

achieve test target coverage by iteratively exploring paths

of the program under test. Although the reachability of a

test target is undecidable in general, dedicated search strate-

gies may be effective for certain kinds of programs in find-

ing paths that cover a test target. We have developed a

novel search strategy called Fitnex for fitness-guided path

exploration in dynamic symbolic execution. Fitnex priori-

tizes the search by minimizing fitness values, which indi-

cate how close a path is to covering a test target. Fitness-

guided exploration is integrated with other search strate-

gies to achieve overall testing effectiveness. We have im-

plemented the Fitnex strategy and integrated it with other

strategies in Pex, an automated structural testing tool for

.NET developed at Microsoft Research. The evaluation re-

sults show that our new approach consistently achieves high

code coverage faster than existing search strategies.

Acknowledgments
This work is supported in part by NSF grant CCF-

0725190 and ARO grant W911NF-08-1-0443.

References

[1] S. Anand, C. S. Pasareanu, and W. Visser. JPF-SE: A

symbolic execution extension to Java Pathfinder. In Proc.

TACAS, pages 134–138, 2007.
[2] J. Burnim and K. Sen. Heuristics for scalable dynamic test

generation. In Proc. ASE, pages 443–446, 2008.
[3] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.

Engler. EXE: automatically generating inputs of death. In

Proc. ACM CCS, pages 322–335, 2006.
[4] L. A. Clarke. A system to generate test data and symboli-

cally execute programs. IEEE Trans. Softw. Eng., 2(3):215–

222, 1976.
[5] P. Godefroid. Compositional dynamic test generation. In

Proc. POPL, pages 47–54, 2007.
[6] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed au-

tomated random testing. In Proc. PLDI, pages 75–84, 2005.
[7] P. Godefroid, M. Y. Levin, and D. Molnar. Automated white-

box fuzz testing. In Proc. NDSS, pages 151–166, 2008.
[8] A. Groce and W. Visser. Model checking Java programs

using structural heuristics. In Proc. ISSTA, pages 12–21,

2002.
[9] K. Inkumsah and T. Xie. Improving structural testing of

object-oriented programs via integrating evolutionary test-

ing and symbolic execution. In Proc. ASE, pages 297–306,

2008.
[10] J. C. King. Symbolic execution and program testing. Com-

mun. ACM, 19(7):385–394, 1976.
[11] P. McMinn. Search-based software test data generation: a

survey. Softw. Test. Verif. Reliab., 14(2):105–156, 2004.
[12] B. Meyer. Object-Oriented Software Construction. Prentice

Hall, 1988.
[13] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-

directed random test generation. In Proc. ICSE, pages 75–

84, 2007.
[14] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit

testing engine for C. In Proc. ESEC/FSE, pages 263–272,

2005.
[15] N. Tillmann and J. de Halleux. Pex – white box test genera-

tion for .NET. In Proc. TAP, pages 134–153, 2008.
[16] N. Tillmann and W. Schulte. Parameterized unit tests. In

Proc. ESEC/FSE, pages 253–262, 2005.
[17] P. Tonella. Evolutionary testing of classes. In Proc. ISSTA,

pages 119–128, 2004.
[18] N. Tracey, J. Clark, and K. Mander. Automated program

flaw finding using simulated annealing. In Proc. ISSTA,

pages 73–81, 1998.

