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Abstract

Virtual evidence (VE), first introduced
by (Pearl, 1988), provides a convenient
way of incorporating prior knowledge into
Bayesian networks. This work general-
izes the use of VE to undirected graph-
ical models and, in particular, to condi-
tional random fields (CRFs). We show
that VE can be naturally encoded into a
CRF model as potential functions. More
importantly, we propose a novel semi-
supervised machine learning objective for
estimating a CRF model integrated with
VE. The objective can be optimized us-
ing the Expectation-Maximization algo-
rithm while maintaining the discriminative
nature of CRFs. When evaluated on the
CLASSIFIEDS data, our approach signif-
icantly outperforms the best known solu-
tions reported on this task.

1 Introduction

Statistical approaches to sequential labeling prob-
lems rely on necessary training data to model the
uncertainty of a sequence of events. Human’s
prior knowledge about the task, on the other hand,
often requires minimum cognitive load to spec-
ify, and yet can provide information often com-
plementary to that offered by a limited amount of
training data. Whenever prior knowledge becomes
available, it is desired that such information is in-
tegrated to a probabilistic model to improve learn-
ing.

Virtual evidence (VE), first introduced by Pearl
(1988), offers a principled and convenient way of
incorporating external knowledge into Bayesian
networks. In contrast tostandard evidence (also

known as observed variables), VE expresses a
prior belief over values of random variables. It
has been shown that VE can significantly extend
the modeling power of Bayesian networks without
complicating the fundamental inference method-
ology (Bilmes, 2004; Reynolds and Bilmes,
2005).

This work extends the use of VE to undi-
rected graphical models and, in particular, to con-
ditional random fields (CRFs). We show that
VE can be naturally encoded into an undirected
graphical model as potential functions. More im-
portantly, we discuss a semi-supervised machine
learning setting for estimating CRFs with the pres-
ence of VE. As the conditional likelihood objec-
tive of CRFs is not directly maximizable with re-
spect to unlabeled data, we propose a novel semi-
supervised learning objective that can be opti-
mized using the Expectation-Maximization (EM)
algorithm while maintaining the discriminative
nature of CRFs.

We apply our model to the CLASSIFIEDS data
(Grenager et al., 2005). Specifically, we use VE to
incorporate into a CRF model two types of prior
knowledge specified in previous works. The first
is defined based on the notion ofprototypes, i.e.,
example words for a given label; and the other as-
sumes that adjacent tokens tend to have the same
label. When unlabeled data becomes available,
we further extend the sparse prototype informa-
tion to other words based on distributional similar-
ity. This results in so-calledcollocation lists, each
consisting of a relatively large number of noisy
“prototypes” for a label. Given the fact that these
noisy prototypes are often located close to each
other in an input sequence, we create a new type
of VE based on word collocation to reduce ambi-
guity.



We compare our CRF model integrated with VE
with two state-of-the-art models,i.e., constraint-
driven learning (Chang et al., 2007) and gener-
alized expectation criteria (Mann and McCallum,
2008). Experiments show that our approach leads
to sequential labeling accuracies superior to the
best results reported on this task in both supervised
and semi-supervised learning.

2 Related work

There have been various works that make use
of prior knowledge in sequential labeling tasks.
Grenager et al. (2005) explicitly constrain the
transition matrix of a hidden Markov model
(HMM) to favor self transitions, assuming that
fields tend to consist of consecutive runs of the
same label.

Prototype-drive learning (Haghighi and Klein,
2006) specifies prior knowledge by providing a
few prototypes (i.e., canonical example words) for
each label. This sparse prototype information is
then propagated to other words based on distri-
butional similarity. The relation between words
and their prototypes are then used as features in
a Markov random field (MRF) model. Since an
MRF model aims to optimize the joint probability
p(x,y) of input and state sequences, it is possible
to apply the EM algorithm for unsupervised/semi-
supervised learning.

Constraint-driven learning (Chang et al., 2007)
expresses several kinds of constraints in a unified
form. In inference, a new decision function is pro-
posed to penalize the violation of the desired con-
straints as follows,

argmax
y

λ · F (x,y) −
∑

k

ρkd(y, 1Ck
(x)) (1)

Hereλ · F (x,y) is a linear decision function ap-
plicable to a number of sequential models, such
as HMMs, MRFs and CRFs. Functiond is imple-
mented as the Hamming distance (or its approx-
imation) between a hypothesis sequence and the
space of state sequences that satisfy the constraint
Ci. Due to the nature of the distance function,
their work approximates EM training by finding
the topK hypothesis sequences and using them as
newly labeled instances to update the model. This
process is repeated for a number of iterations in a
self-training fashion (Yarowsky, 1995).

Generalized expectation criteria (Mann and
McCallum, 2008) represent prior knowledge asla-

beled features, and use such information to reg-
ularize semi-supervised learning for CRFs. For-
mally, their learning objective consists of the stan-
dard CRF training objective, plus a Gaussian prior
on model parameters and an additional regulariza-
tion term:1

∑

i

log pλ(y(i)|x(i))−
1

2σ2
‖λ‖2−ρD(p̂||p̃λ) (2)

In the last term,̂p andp̃λ both refer to conditional
distributions of labels given a feature. While the
former is specified by prior knowledge, and the
latter is estimated from unlabeled data.

Our approach incorporates prior knowledge as
virtual evidence to express preferences over the
values of a set of random variables. The no-
tion of VE was first introduced by Pearl (1998)
and further developed by Bilmes (2004), both in
the context of Bayesian networks. Different from
constraint-driven learning, VE can be formally en-
coded as part of a graphical model. The funda-
mental inference methodology, therefore, does not
need to be altered. Moreover, VE has the flexibil-
ity of representing various kinds of prior knowl-
edge. For example, Reynolds and Bilmes (2005)
use VE that explicitly favors self transitions in dy-
namic Bayesian networks.

This work extends the use of VE to CRFs. In
essence, VE herein can be viewed as probabilistic
constraints in an undirected graph that allow exact
inference. One of the biggest challenges of such a
model lies in the semi-supervised machine learn-
ing setting. Since the entire state sequence of an
unlabeled instance remains hidden, the conditional
likelihood objective of CRFs is not directly opti-
mizable. There have been a number of works that
address this problem for conditional models. For
example,minimum entropy regularization (Grand-
valet and Bengio, 2004; Jiao et al., 2006), aims
to maximize the conditional likelihood of labeled
data while minimizing the conditional entropy of
unlabeled data:

∑

i

log pλ(y(i)|x(i))−
1

2σ2
‖λ‖2 − ρH(y|x) (3)

This approach generally would result in “sharper”
models which can be data-sensitive in practice.

Another approach (Suzuki and Isozaki, 2008)
embeds a joint probability model (HMM in their

1We slightly modify the notation here to be consistent
with the rest of the paper.



case) into a CRF model as a new potential func-
tion. Semi-supervised learning is then conducted
by iteratively (1) fixing the HMM and updating
CRF parameters on labeled data and (2) fixing the
CRF model and updating the HMM on unlabeled
data.

Additionally, when unlabeled instances have
partial labeling information, it is possible to op-
timize a marginal distribution of the conditional
likelihood, i.e., pλ(y

(i)
o |x), on unlabeled data.

Herey
(i)
o is a subvector ofy(i) that denotes the set

of observed state variables. The optimization can
be done in a similar fashion as training a hidden-
state CRF model (Quattoni et al., 2007).

3 Task

We consider the problem of extracting fields from
free-text advertisements. We use the CLASSI-
FIEDS data (Grenager et al., 2005) which consists
of 8767 ads for apartment rental. 302 of the ads
in the CLASSIFIEDS data have been manually-
labeled with 12 fields, includingsize, rent, neigh-
borhood and so on. The labeled data has been di-
vided into train/dev/test sets with 102/100/100 ads
respectively. The evaluation metric is the token-
level accuracy where tokens include both words
and punctuations.

Our goal in this work is two folds: (1) lever-
age both the training data and the prior knowledge
specified for this task for supervised learning, and
(2) additionally use the unlabeled data for semi-
supervised learning. We exploit two types of prior
knowledge:

• K1: label consistency with prototypes;

• K2: label consistency within a sentence.

K1 involves a set of prototype lists. Each list is
attached with a label and consists of a set of ex-
ample words for that label. In this work, we use
the prototype lists originally defined by Haghighi
and Klein (2006) (HK06) and subsequently used
by Chang et al. (2005) (CRR07) and Mann and
McCallum (2008) (MM08). The labels as well as
their prototypes are shown in the first two columns
of Table 1. Our model is desired to be consistent
with such prototype information. Secondly, K2
means that tokens tend to have consistent labels
within a sentence. A similar type of prior knowl-
edge is implemented by CRR07 as a constraint in
inference.

4 Conditional Random Fields

Conditional random fields are a probabilistic
model that directly optimizes the conditional prob-
ability of a state (label) sequence given an input
sequence (Lafferty et al., 2001). Formally, we let
x = (x1, x2, . . . , xT ) denote an input sequence
of T tokens, andy = (y1, y2, . . . , yT ) the cor-
responding state sequence. We further augment
y with two special states,Start and End,2 repre-
sented byy0 andyT+1 respectively. A linear-chain
CRF model is an undirected graphical model as
depicted in Figure 1(a), with the conditional prob-
ability given by

pλ(y|x) =
1

Zλ(x)

∏

t

ψ
(t)
λ (x, yt−1, yt) (4)

The partition functionZλ(x) normalizes the expo-

nential form to be a probability distribution.ψ(t)
λ

are a set of potential functions defined on themax-
imum cliques of the graph,i.e., (x, yt−1, yt) in the
case of a linear-chain CRF model. The potential
functions are typically in the form of

ψ
(t)
λ (x, yt−1, yt) = exp

(

λ · f(x, yt−1, yt, t)

)

(5)
whereλ is a weight vector andf is a feature vector
of arbitrary functions of the corresponding clique.

Given a set of labeled examples
{x(i),y(i))}m

i=1, we can estimate model pa-
rameters in a supervised machine learning setting.
The objective is to estimateλ that maximizes
the conditional likelihood while regularizing the
model size:

L1 =
m

∑

i=1

log pλ(y(i)|x(i)) −
1

2σ2
‖λ‖2 (6)

In this work, we optimizeL1 using stochastic gra-
dient descent and use the accuracy on the develop-
ment set as the stopping criterion.

5 CRFs with Virtual Evidence

A canonical way of using virtual evidence (VE)
in Bayesian networks is to have a directed edge
from a hidden variableh to a VE variablev. The
variablev will always be observed with a partic-
ular value,e.g., v = 1, but the actual value itself
does not matter. The prior knowledge abouth is

2Start andEnd are with regard to a document, which are
different from start and end of a sentence.
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Figure 1: Graphical model representations of (a) a
CRF model and (b) a CRF model integrated with
virtual evidence. Solid and empty nodes denote
observed and hidden variables respectively.

expressed via the conditional probabilityp(v =
1|h). For example, by settingp(v = 1|h = a) >
p(v = 1|h = b), we know thath = a is more
likely a event thanh = b. This conditional distri-
bution is not learned from data, Instead, it is pre-
defined in such a way that reflects a prior belief
over the value ofh.

VE can be encoded in an undirected graphical
model in a similar fashion. For our task, we mod-
ify the structure of a linear-chain CRF model as
depicted in Figure 1(b) — we create a sequence
of VE variables, denoted byv1, v2, . . . , vT+1, in
parallel to the state variables. Eachvt is assigned
a constant 1 (one), and is connected withyt−1

and yt, forming a new set of maximum cliques
(yt−1, yt, vt), t = 1, . . . , T + 1. We create cliques
of size 3 because it is the minimum size required to
represent the prior knowledge used in our task, as
will be discussed shortly. However, it is possible
to have a different graph structure to incorporate
other types of prior knowledge,e.g., using large
cliques to represent constraints that involve more
variables.

Next, in analogy to Equation (5), we define the

corresponding potential functions as follows,

φ(t)(yt−1, yt, vt) = exp

(

ω · s(yt−1, yt, vt, t)

)

(7)
s is a vector of VE feature functions andω is the
corresponding weight vector with pre-defined val-
ues. Given the new graphical model in Figure 1(b).
It is natural to model the conditional probability
of the state sequence givenboth the standard evi-
dence and the VE as follows,

pλ(y|x,v)

=
1

Zλ(x,v)

∏

t

ψ
(t)
λ (x, yt−1, yt)φ

(t)(yt−1, yt, vt)

(8)
Analogous to usingp(v = 1|h) in Bayesian net-

works, we can utilizeφ(t)(yt−1, yt,v = 1) to ex-
press preferences over state hypotheses in a CRF
model. In general, the function form ofφ(t) may
or may not depend on the inputx. Even whenφ(t)

does depend onx, the relation is completely deter-
mined by external knowledge/systems (as opposed
to by data). Thus we do not explicitly connectv

with x in the graph.

5.1 Incorporating prior knowledge

Now we show how to represent the prior knowl-
edge introduced in Section 3 using the VE fea-
ture functions. Unless otherwise stated, we as-
sumevt = 1 for all t = 1, . . . , T and simply use
vt instead ofvt = 1 in all equations. First, we
define a VE functions1 that represents K1:label
consistency with prototypes. We letPl denote a
prototype list associated with the labell. If xt be-
longs toPl, we should preferyt = l as opposed to
other values. To this end, for cases wherext ∈ Pl,
we sets1 as

s1(yt, vt, t) =

{

1 if yt = l

0 otherwise
(9)

On the other hand, ifxt is not a prototype, we will
always haves1(yt, vt, t) = 0 for all hypotheses
of yt. The impact of this prior knowledge is con-
trolled by the weight ofs1, denote byω1. At one
extreme whereω1 = 0, the prior knowledge is
completely ignored in training. At the other ex-
treme whereω1 → +∞, we constrain the values
of state variables to agree with the prior knowl-
edge. Note that althoughs1 is implicitly related to
x, we do not writes1 as a function ofx for consis-
tency with the general definition of VE.



To represent K2:label consistency within a sen-
tence, we define a second VE feature functions2
with weight ω2. Assume that we have an exter-
nal system that detects sentence boundaries. If it
is determined thatxt is not the start of a sentence,
we sets2 as

s2(yt−1, yt, vt, t) =

{

1 if yt−1 = yt

0 otherwise
(10)

It is easy to see that this would penalize state tran-
sitions within a sentence. On the other hand, ifxt

is a sentence start, we sets2(yt−1, yt, vt, t) = 0 for
all possible(yt−1, yt) pairs. In this work, we use
a simple heuristics to detect sentence boundaries:
we determine thatxt is the start of a sentence if its
previous tokenxt−1 is a period (.), a semi-colon
(;) or an acclamation mark (!),and if xt is not a
punctuation.

5.2 Semi-supervised learning

When a large amount of unlabeled data is avail-
able, it is often helpful to leverage such data
to improve learning. However, we cannot di-
rectly optimizep(y|x,v) since the correct state
sequences of the unlabeled data are hidden. One
heuristic approach is to adapt theself-training al-
gorithm (Yarowsky, 1995) to our model. More
specifically, for each input in the unlabeled dataset
{x(i)}n

i=m+1, we decode the best state sequence,

ŷ(i) = argmax
y(i)

p(y(i)|x(i),v(i)) (11)

Then we use{(x(i), ŷ(i))}n
i=m+1 in addition to the

labeled data to train a supervised CRF model. This
approach, however, does not have a theoretical
guarantee on optimality unless certain nontrivial
conditions are satisfied (Abney, 2004).

On the other hand, it is well known that unla-
beled data can be naturally incorporated using a
generative approach that models a joint probabil-
ity (Nigam et al., 2000). This is achieved by max-
imizing a marginal distribution of the joint proba-
bility over hidden variables. Inspired by the gen-
erative approach, we propose to explicitly model
p(y,v|x). In contrast to Equation (8), here we
jointly model y andv but the probability is still
conditioned onx. This “joint” distribution should
be chosen such that it results in the same condi-
tional distributionp(y|x,v) as defined in Equa-

tion (8). To this end, we definepλ(y,v|x) as

pλ(y,v|x)

=
1

Z ′

λ(x)

∏

t

ψ
(t)
λ (x, yt−1, yt)φ

(t)(yt−1, yt, vt)

(12)
HereZ ′

λ(x) is a normalization function obtained
by summing the numerator over bothy and v.
By applying the Bayes rule, it is easy to see that
p(y|x,v) is exactly equal to Equation (8).

Given unlabeled data{x(i)}n
i=m+1, we aim to

optimize the following objective,3

L2 =

m+n
∑

i=1

log pλ(v(i)|x(i)) −
1

2σ2
‖λ‖2 (13)

This is essentially the marginal distribution of
p(y,v|x) over hidden variablesy. Here we ig-
nore the labels of the dataset{(x(i),y(i))}m

i=1, but
we do use the label information in initializing the
model which will described in Section 6. To op-
timize such an objective, we apply the EM algo-
rithm in the same fashion as is used in a generative
approach. In other words, we iteratively optimize
Q(λ) =

∑

y
pλg(y|x,v) log pλ(y,v|x) whereλg

denotes the model estimated from the previous it-
eration. The gradient of theQ function is straight-
forward to compute with the result given by

∂Q(λ)

∂λk

=
∑

t

∑

yt−1,yt

fk(yt−1, yt,x, t)·

(

pλ(yt−1, yt|x,v) − pλ(yt−1, yt|x)

) (14)

We keep two sets of accumulators in running the
Forward-Backward algorithm, one for comput-
ing pλ(yt−1, yt|x,v) and the other for computing
pλ(yt−1, yt|x). Loosely speaking, the model will
converge to a local optimum if the difference be-
tween these two posterior probabilities becomes
trivial.

5.3 Collocation based virtual evidence

Prior knowledge represented by prototypes is typ-
ically sparse. This sparse information, however,
can be propagated across all data based on dis-
tributional similarity (Haghighi and Klein, 2006).
Following the same idea, we extend the prototype
lists as follows. (1) We merge all prototypes in
Pl into a single word typewl. (2) For each word

3In Equation (13), the fact thatv is assigned a constant 1
does not meanp(v = 1|x) = 1 (Bilmes, 2004)



Label Prototype lists of HK06 Collocation lists (top examples)

ADDRESS address carlmont [4-digit] street [3-digit] streets
AVAILABLE immediately begin cheaper available
CONTACT [phone] call [time] [email] appointment email see today ...
FEATURES kitchen laundry parking room new covered building garage ...
NEIGHBORHOOD close near shopping transportation center located restaurants ...
PHOTOS pictures image link [url] click view photos
RENT $ month [amount] lease deposit security year agreement ...
RESTRICTIONS pets smoking dog ok sorry please allowed negotiable ...
ROOMMATES roommate respectful drama
SIZE [1-digit] br sq [4-digit] [3-digit] ft bath ba ...
UTILITIES utilities pays electricity water included owner garbage paid

Table 1: Field labels (exceptother) for the CLASSIFIEDS task, their respective prototype lists specified
by prior knowledge, and collocation lists mined from unlabeled data.

in the corpus, we collect a context vector of the
counts of all words (excluding stop words) that
occur within a window of sizek in either direc-
tion, where the window is applied only within sen-
tence boundaries. (3) Latent semantic analysis
(Deerwester et al., 1990) is performed on the con-
structed context vectors. (4) In the resulting latent
semantic space, all words (except stop words) that
have a high enough dot product withwl will be
grouped to form a new set, denoted asCl, which
is a superset ofPl. In this regard,Cl can be viewed
as lists of noisy “prototypes”. As observed in
HK06, another consequence of this method is that
many neighboring tokens will share the same pro-
totypes.

Differently from previous works, we useCl

directly as virtual evidence. We could apply
s1 in Equation (9) whenxt ∈ Cl (as opposed
to whenxt ∈ Pl). This, however, would con-
taminate our model sinceCl are often noisy.
For example, “water” is found to be distribu-
tionally similar to the prototypes ofutilities.
Although in most cases “water” indeed means
utilities, it can mean features in the context
of “water front view”. To maximally reduce
ambiguity, we propose to applys1 in Equa-
tion (9) if both of the following conditions hold,
(1) xt ∈ Cl

(2) There existsτ s.t. |τ − t| < k, andxτ ∈ Cl

In other words, we will impose a non-uniform
prior on yt if xt ∈ Cl “collocates”, within k
tokens, with another word that belongs toCl.
Based on K2, it is reasonable to believe that
neighboring tokens tend to share the same label.
Therefore, knowing that two tokens close to each

other both belong toCl would strengthen our
belief that either word is likely to have labell.
We thus refer to this type of virtual evidence
as collocation-based VE, and refer toCl as
collocation lists.

6 Evaluation

We use the CLASSIFIEDS data provided by
Grenager et al. (2005) and compare with re-
sults reported by CRR07 (Chang et al., 2007) and
MM08 (Mann and McCallum, 2008) for both su-
pervised and semi-supervised learning. Following
all previous works conducted on this task, we to-
kenized both words and punctuations, and created
a number of regular expression tokens for phone
numbers, email addresses, URLs, dates, money
amounts and so on. However, we did not tokenize
newline breaks, as CRR07 did, which might be
useful in determining sentence boundaries. Based
on such tokenization, we extractn-grams,n =
1, 2, 3, from the corpus as features for CRFs.

As described in Section 3, we integrate the prior
knowledge K1 and K2 in our CRF model. The
prototypes that represent K1 are given in Table 1.
CRR07 used the same two kinds of prior knowl-
edge in the form of constraints, and they imple-
mented another constraint on the minimum num-
ber of words in a field chunk. MM08 used almost
the same set of prototypes as labeled features, but
they exploited two sets of 33 additional features
for some experiments. In this regard, the compar-
ison between CRR07, MM08 and the method pre-
sented here cannot be exact. However, we show
that while our prior knowledge is no more than
that used in previous works, our approach is able



# labeled examples
Supervised model 10 25 100

CRR07: HMM 61.6 70.0 76.3
+ Constr in decoding 66.1 73.7 80.4
MM08: CRF 64.6 72.9 79.4

CRF 62.3 71.4 79.1
+ VE in decoding 68.9 74.6 81.1
CRF + VE (auto weights) 48.0 54.8 59.8
+ VE in decoding 66.0 72.5 80.9

Table 2: Token-level accuracy of supervised learn-
ing methods; “+ VE” refers to the cases where
both kinds of prior knowledge, K1 and K2, are in-
corporated as VE in the CRF model.

to achieve the state-of-art performance.

6.1 Decoding settings

Depending on whether VE is used at test time, we
explore two decoding settings in all experiments:

1. Findy that maximizespλ(y|x) as in standard
CRF decoding, ignoring virtual evidence.

2. Findy that maximizesp(y|x,v). We use “+
VE in decoding” to represent this setting.

These two scenarios are analogous to those in
CRR07 which conducted HMM decoding with-
out/with constraints applied. We use “+ constr. in
decoding” to represent the latter scenario of their
work. MM08, on the other hand, found no accu-
racy improvement when adding constraints at test
time.

Note that in our second decoding setting, the
weights for the VE feature functions,i.e., ω1 and
ω2, are tuned on the development set. This is done
by a greedy search that first finds the bestω1, and
then finds the bestω2 while fixing the value ofω1,
both with a step size 0.5.

6.2 Supervised learning results

First, we experimented with a standard CRF
model with VE applied neither in training nor in
decoding. As shown in Table 2, our CRF imple-
mentation performed slightly worse than the im-
plementation by MM08, probably due to slight
difference in tokenization. Secondly, we used the
same CRF model but additionally applied VE in
decoding, corresponding to the second setting in
Section 6.1. This method gave a significant boost
to the tagging performance, yielding the best su-
pervised learning results (shown as bolded in the

# labeled examples
Semi-supervised models 10 25 100

CRR07: HMM + Constr 70.9 74.8 78.6
+ Constr in decoding 74.7 78.5 81.7
MM08: CRF + GE 72.6 76.3 80.1

CRF + VE (Self-train) 69.0 74.2 81.4
+ VE in decoding 69.1 75.2 81.2
CRF + Col-VE (Self-train) 73.1 76.4 81.8
+ Col-VE in decoding 75.7 77.6 82.9
CRF + Col-VE (EM) 78.3 79.1 82.7
+ Col-VE in decoding 78.8 79.5 82.9

Table 3: Token-level accuracy of semi-supervised
learning methods. “+ Col-VE” refers to cases
where collocation-based VE is integrated in the
CRF model in addition to the VE representing K1
and K2.

table). This proves that the prior knowledge is in-
deed complementary to the information offered by
the training data.

Similar to the second decoding setting that in-
corporates VE, we can have a counterpart setting
at training time. In other words, we can optimize
pλ(y|x,v) instead ofpλ(y|x) during learning. In
decidingω = (ω1, ω2), it is possible to learnω
from data in the same way as how we learnλ.
This, however, might undermine the role of other
useful features since we do not always have suffi-
cient training data to reliably estimate the weight
of prior knowledge. As shown in Table 2, we ex-
perimented with learningω automatically (shown
as “auto weights”). While applying VE with such
weights in both training and decoding worked rea-
sonably well, applying VE only in training but not
in decoding yielded very poor performance (prob-
ably due to excessively large estimates ofω1 and
ω2). Additionally, we repeated the above experi-
ment with manually specified weights, but did not
find further accuracy improvement over the best
supervised learning results.

6.3 Semi-supervised learning results

One natural way of leveraging the unlabeled data
(more than 8K examples) is to perform semi-
supervised learning in a self-training fashion. To
this end, we used our best supervised model in Ta-
ble 2 to decode the unlabeled examples as well
as the test-set examples (by treating them as un-
labeled). Note that by doing this our comparison
with CRR07 and MM08 cannot be exact as they



sampled the unlabeled examples, with different
rates, for semi-supervised learning, while we used
as much data as possible. We applied the sameω

that was used for the supervised model, and then
combined the newly labeled examples, in addition
to the manually labeled ones, as training data to
learn a supervised CRF model. On this particu-
lar dataset, we did not find it helpful by selecting
automatically labeled data based on a confidence
threshold. We simply used all data available in
self-training. This paradigm is referred to as “CRF
+ VE (self-train)” in Table 3. When no VE is ap-
plied at test time, this semi-supervised CRF model
significantly outperformed the best model in Ta-
ble 2. When applying VE at test time, however,
the improvement over its supervised counterpart
became trivial.

Next, following Section 5.3, we collected con-
text vectors on the unlabeled data using a win-
dow sizek = 3, and extracted the top 50 singular
vectors therefrom.4 We created collocation lists
that contain words close to the merged prototype
words in the latent semantic space. Some exam-
ples are given in the last column of Table 1. We
then augmented the prototype-based VE based on
the following rules: Ifxt belongs to any prototype
list Pl, we directly applys1 in Equation (9); oth-
erwise, we applys1 if xt and at least one neigh-
bor (within 3 tokens fromxt) belong to the same
collocation listCl. In our experiments, we let
“Col-VE” represent such collocation-based VE.
We conducted self-training using a CRF model in-
tegrated with Col-VE, whereω was tuneda pri-
ori by testing the same model on the develop-
ment set. As shown in the table, “CRF + Col-VE
(self-train)” gave significant accuracy improve-
ment over “CRF + VE”, while adding Col-VE at
test time further boosted the performance. The ac-
curacies were already on par with the best results
previously reported on this task.

Finally, we implemented the EM algorithm pro-
posed in Section 5.2 that iteratively optimizes
p(v|x) on all data. The model was initial-
ized by the one obtained from “CRF + Col-VE
(self-train)”. After the model was initialized,
we performed the EM algorithm until the model
reached a maximum accuracy on the develop-
ment set. Note that in some cases, we observed
a development-set accuracy degradation after the
first iteration of the EM, but the accuracy quickly

4The same configuration is used in HK06.

recovered from the second iteration and kept in-
creasing until a maximum accuracy was reached.5

As shown in the last two rows in Table 3, this
method is clearly advantageous over self-training,
leading to the best tagging accuracies in both de-
coding settings. Our model achieved2.6%−5.7%
absolute accuracy increases in the three training
settings compared with MM08 which had the best
results without using any constraints in decoding.
When applying VE at test time, our model was
1.2% − 4.1% better than CRR07 which had the
best overall results. Additionally, when compared
with supervised learning results, our best semi-
supervised model trained on only 10 labeled ex-
amples performed almost as well as a standard su-
pervised CRF model trained on 100 labeled exam-
ples.

7 Conclusions

We have presented the use of virtual evidence as
a principled way of incorporating prior knowledge
into conditional random fields. A key contribu-
tion of our work is the introduction of a novel
semi-supervised learning objective for training a
CRF model integrated with VE. We also found it
useful to create so-called collocation-based VE,
assuming that tokens close to each other tend to
have consistent labels. Our evaluation on the
CLASSIFIEDS data showed that the learning ob-
jective presented here, combined with the use of
collocation-based VE, yielded remarkably good
accuracy performance. In the future, we would
like to see the application of our approach to other
tasks such as (Li et al., 2009).
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