
Bridging the Gap between the Cloud and an eScience Application Platform

Yogesh Simmhan, Catharine van

Ingen

eScience Group

Microsoft Research

Los Angeles, CA, USA

{yoges, vaningen}@microsoft.com

Girish Subramanian

Computer Science Department

Indiana University

Bloomington, IN, USA

subramag@cs.indiana.edu

Jie Li

Department of Computer Science,

University of Virginia,

Charlottesville, VA USA

jl3yh@virginia.edu

Abstract— The widely discussed scientific data deluge

creates not only a need to computationally scale an

application from a local desktop or cluster to a

supercomputer, but also the need to cope with variable

data loads over time. Cloud computing offers a scalable,

economic, on-demand model well matched to the

evolving eScience needs. Yet cloud computing creates

gaps that must be crossed to move science applications to

the cloud. In this article, we propose a Generic Worker

framework to deploy and invoke science applications in

the Cloud with minimal user effort and predictable, cost-

effective performance. Our framework is an evolution of

Grid computing application factory pattern and

addresses the distinct challenges posed by the Cloud such

as efficient data transfers to and from the Cloud, and the

transient nature of its VMs. We present an

implementation of the Generic Worker for the Microsoft

Azure Cloud and evaluate its use in a genome sequencing

application pipeline. Our results show that the user

overhead to port and run the application seamlessly

across desktop and the Cloud can be substantially

reduced without significant performance penalties, while

providing on-demand scalability.

Keywords-cloud tools; escience applications; scientific

data management; provenance; scientific workflows;

performance analysis;

I. INTRODUCTION

Cloud computing has emerged during recent times
as viable platform [10] for performing large scale
computation and data processing operations. Building
on prior work on Grid and cluster computing [14], it
offers an evolutionary paradigm that approaches utility
computing [4, 16]. The advantages of cloud computing
are well known: it offers resources on demand and in a
scalable manner, it allows users to pay as they go
avoiding costly capital costs, it provides competitive
pricing due to economies of scale, and it uses simple
service interfaces for easy access and management.
Commercial Clouds providing these features have been
available for some time from different vendors, such as
Amazon, RackSpace, and Microsoft, running out of
large data centers that are geographically distributed.
There is also active research on open source [5] and
private clouds [17] and improving cloud operations [8].

Scientific applications have historically been major
users (if not drivers) of next generation computation
and data resources. Cloud computing has benefits [9]

for eScience applications that range from those running
on the local desktop to those that can only run at
supercomputing centers [7]. The different scales of
applications benefit differently.

 For desktop users whose applications have

outgrown single machine resources, the prospect of

building, operating, and porting their applications to

a (distributed) cluster can be prohibitive. While

Moore’s Law improves workstation compute

capacity and disks capacity continue to increase,

that rate of growth is still dwarfed by the needs of

scientific computation and data analyses. The cloud

could provide a migration path to better scalability

over a longer period of time as long as any changes

to the programming models or interfaces remain

simple. The cloud also provides on-demand access

to resources at any time [12]. Not all scientific

analyses are performed continuously. For example,

an environmental scientist performing a field

campaign may large computation and data resources

during and immediately after the campaign for the

initial data reduction but not thereafter.

 The cloud helps existing users of local clusters at

universities or research groups reduce the cost of

running a cluster and scale beyond local resources.

Cloud computing provides a lower real (non-

subsidized) total cost of ownership than private

clusters by reducing the operations people cost, peak

networking bandwidth requirements, and

technology upkeep through constant machine

upgrades [6]. For cluster users considering a step up

to national supercomputing centers, paperwork and

eligibility requirements may restrict access and

delay account creation. With cloud computing, all it

takes is a credit card to open a new account online

and a few minutes wait. While national labs provide

technical support on the clusters or Grids, they also

impose security restrictions that may limit the

software stack on the nodes or services that can that

can be deployed. Applications often have to be

modified to be compatible with a center’s user

policies and/or scheduler which differ from the local

clusters. While a similar challenge may exist for

cloud services, the leap can be less disruptive and

may give the user full control over compute nodes.

 Users of supercomputing centers can also find

benefits from the on-demand nature of cloud

computing. The queue wait times at supercomputing

centers can be long and clouds provide resources

near-instantaneously. Anecdotal evidence [12]

shows that despite a lower throughput, cloud

computing can have a faster time to completion

when including queue wait times. Clouds can also

be used as a resource surge when centers hit peak

load by shedding smaller jobs to clouds. For

example, clouds can be used when running tutorials

or hands-on workshops that require large resources

for a short period of time especially since guest

accounts for all attendees can be a challenge. Lastly,

users can easily share large datasets generated

within the cloud to be analyzed and processed

within or outside the cloud, democratizing access to

scientific analysis. Supercomputing centers may

restrict ad hoc hosting of these datasets or limit their

analysis at the center to authorized users.
Cloud computing comes in several favors,

primarily Infrastructure as a Service (IaaS), Platform as
a Service (PaaS) and Software as a Service (SaaS). The
former abstracts the hardware resources to give
equivalent of barebones machine that typically runs as
a virtual machine, Amazon’s EC2 being a popular
example. PaaS provides a restricted sandbox or runtime
environment with additional native services, such as
Google’s AppEngine. SaaS provides applications as
scalable services that can be used to compose other
applications, one example being SalesForce.com’s
business applications. Since SaaS does not yet offer a
broad set of composable scientific services, IaaS and
PaaS are the relevant flavors for building or porting
science applications in the cloud. Such applications
may themselves be offered as a public service, thus in
effect evolving into eScience SaaS. The focus of our
paper is on effective use of existing commercial clouds
that are widely available to run scientific application.

While Cloud computing provides desirable features
for scaling science applications, there are significant
challenges for users to easily access and efficiently use
it for existing applications [15]. In this article, we focus
on tools to build an effective platform for eScience
applications in the cloud while limited by the
abstractions that it provides. Specifically, we identify
three issues that pose an overhead to a broad category
of scientists: (1) Ease of porting and running of science
applications in the cloud, (2) Efficient data
management across applications within and outside the
cloud, and (3) Effective tracking of application and
data provenance. These problems motivate the need for
a Generic Worker framework, we propose, that lowers
the barrier to entry for cloud computing. We implement
the proposed framework for the Microsoft’s Azure
Cloud platform that straddles IaaS and PaaS, and
evaluate the framework’s performance and ease of use
in a real world genome sequencing application.

The rest of the paper is structured as follows: in
Section 2, we motivate problems for eScience on the
Cloud using Amazon and Microsoft’s cloud services
and discuss related work; in Section 3, we introduce
the generic worker design for application deployment
and execution; Section 4 delves into efficient transfer
of scientific data between cloud and desktop
applications; provenance tracking of cloud applications
is featured in Section 5; Section 6 presents a qualitative
and empirical evaluation of the framework for a
genome phasing science application; and Section 7
presents our conclusions and future work.

II. BACKGROUND AND RELATED WORK

Among the commercial clouds available, Amazon’s
Elastic compute and storage infrastructure as a service
have been popular in the research and scientific
communities for several years [11]. Microsoft’s Azure
provides a .NET platform as a compute service with
some features of a Windows infrastructure as a service,
along with storage and queue services. Azure has been
in public beta (Community Technology Preview) for
the past year and, as of writing, is due to be released
next week. These two are examples of IaaS and PaaS
clouds that can run scientific applications and
discussing their limitations in running science
applications in this section to motivate our paper. We
later present related work on enabling tools for science
applications in cloud and grid computing.

A. Amazon Elastic Cloud and Microsoft Azure

The scalable cloud infrastructure services provided
by Amazon to run applications are Elastic Compute
Cloud (EC2) barebones virtual machines (VM); Simple
Storage Service (S3) for flat file store, Elastic Block
Service (EBS) for file system storage and SimpleDB
for a hashtable of attributes; and Simple Queue Service
(SQS) for reliable message passing, typically between
clients outside the cloud and applications within. EC2
allows any OS image to be installed in their VMs along
with any of the user’s software and tools. This provides
the flexibility of being able to run virtually any
application the user runs on their desktop with the
requirement that the user is responsible for managing
the software stack in the VMs or forming a cluster out
of the VM instances. Public IP addresses are provided
for up to 5 EC2 instances. S3 provides a REST API for
reliably storing files in a flat collection of buckets,
while EBS provides a robust virtual disk that can be
mounted on an EC2 instance and run a file system of
the user’s choosing.

Microsoft’s Azure cloud platform provides
Window Server 64bit virtual machines that use the
.NET runtime as the platform for running applications.
VMs fall in either a Web role that have public IP
address and run IIS server or a Worker role that runs a
.NET application. Worker roles can be used to fork
processes that run executables in a restricted Windows
VM to provide IaaS. The Windows Server OS is

managed automatically by the Azure fabric while users
are responsible for the .NET applications they run in
the roles. Like Amazon, Azure also provides a reliable
Blob storage service for flat files collected in
containers, durable Queues for message passing and
indexed tables for attribute lookup. Unlike EBS, Azure
does not offer disk volumes for network file access.

B. Challenges of Running Applications on the Cloud

Running a science application in the cloud presents
three different challenges: initial application
deployment, subsequent application execution, and
data transfers to/from the cloud. Simplistically,
deploying an application in the cloud requires that the
application be installed on an existing or new virtual
machine image. That image is then and deployed in the
Cloud so that new instances of that virtual machine can
be created. Data transfers to and from the application
also need to be handled by the (non-cloud) client and
the cloud application instances using cloud data
services or other network protocols.
1) Application Deployment.

Amazon’s EC2 and Microsoft Azure deploy
applications differently. Amazon EC2 IaaS images
(AMI) are built from the ground up by the user by
reusing an existing or installing an fresh OS image,
along with all software, libraries, and tools necessary to
run the application. This image is packaged and
uploaded to S3 cloud storage, from where EC2 VM
instances of the image can be started. Windows
Azure’s PaaS differs by requiring users to implement a
.NET worker role interface for each virtual machine
image. The interface implementation can be the
application itself, or it can start the application as a
separate commandline process. The worker role
implementation, external application and dependency
files are deployed to the cloud through a web interface.

Both platforms require the scientist user to manage
application dependencies, maintain their applications in
an image/role, and recreate and redeploy that image in
the event of any change to an application. Scientists
often have little knowledge of application dependency
“dll/jar hell” – a version of MatLab depends on specific
language and Java runtime versions. This becomes
more complicated when multiple applications need to
be managed in a single VM to optimally use the VM
resources. This makes managing transient applications
in a cloud fairly challenging to a scientist.

Amazon’s EC2 has the additional drawback that the
scientist user is responsible for managing everything in
the VM, including the operating system and standard
software stack. While this gives the flexibility of a
familiar computing platform with any OS or software
installed in the VM image, having to deal directly with
OS images often requires a system administrator to be
engaged. Also, the large size of the OS image can be
costly and time consuming to transfer between client
and cloud unless updated in place over the network.

Azure reduces the OS and "DLL hell" management
at the cost of flexibility. Azure directly maintains the
Windows Server OS and the .NET runtime as part of
the platform. Users need to only manage their own
applications through worker roles. However, this also
means that the OS and language runtime is fixed within
the VM. Security restrictions on the Azure worker roles
limit the software that can be installed on the VM to
those not requiring administrative rights to install or
run. Lastly, users cannot directly connect to a running
virtual machine instance (e.g. SSH/Remote Desktop).
2) Application Execution.

Applications available in cloud VM instances need
to be invoked from outside that VM instance. These
user clients may be in other VMs or, often, outside the
cloud as commandline tools or workflow engines that
orchestrate cloud applications. Reliable queues in the
cloud are often used to pass application execution
requests that are picked up and processed by one of the
VM instances having the deployed application.
However, the client application or its proxy running in
the VM instances must listen for these messages,
interpret their payload, run the application and return
the response. Users end up modifying their application
to listen and process execution requests, or writing
proxy agents or web services that do parameter
marshalling and unmarshalling. This becomes tedious
as applications increase or change over time.

Amazon’s EC2 allows public IP addresses for VM
instances and clients can invoke the (commandline)
application on a specific IP address (e.g. using SSH).
But EC2 limits the number of public IPs, hindering
application scalability across multiple VM instances.
.Microsoft Azure fits the above pattern by having users
implement a worker role for each application that uses
queues to pass messages for that application.
3) Data Transfer.

Passing files as input and output to cloud
application introduces additional problems of
managing data transfers between client and VM
instances. Science applications and their clients
normally use local or network files like NFS or CIFS
for data exchange. However, S3 and Blob storage,
while providing reliability and collocation with the
VMs, do not support a network file system. VM
instances themselves are transient, so their local disks
are not reliable network stores. Using a public network
share near the client breaks co-locality with the cloud
applications. Users can either use a cloud network file
system like Amazon’s EBS, or explicitly change their
applications/clients to transfer input and output files
between client and cloud applications through Blob/S3
storage while being cognizant of network speed
bottlenecks and transfer costs outside the cloud.

C. Related Work

Grid computing has used the factory pattern to
dynamically instantiate stateful grid service instances,
which can invoke an application on the cluster, using

factory services [1]. While it does not prescribe how
grid service instance is created, the GFac [2] and Opal
[3] toolkits uses an application description document as
metadata to dynamically instantiate a web service to
invoke a commandline application, while also staging
input and output data over network shares. Application
descriptions can be a deployed at runtime for a binary
application available in the grid. GADe uses a detailed
application description model to capture dependencies
for complex applications in Grids [20].

Our proposed model is similar to GFac and Opal
but has key differences to meet specific challenges
posed by cloud computing. We do not assume that the
applications are already present locally in the VM or
executable ever the network. Part of the problem we
address is dynamically deploying the application
binaries and its files to a VM for execution to reduce
changes to the VM image. Also, we cannot assume that
input and output files to the application are accessible
over a network file system. We support cloud storage
protocols for transparently staging data between client,
persistent cloud storage and VM’s local storage that
also supports passing data by value or reference to
reduce data transfers between client and cloud
applications. For .NET applications, we use reflection
to automatically create an application configuration file
instead of requiring users to fill input and output
parameters for the application. While we do not
generate a web service for the application, our XML
based request/response messages that use Azure
Queues are similar to SOAP messages for future
compatibility. We envisage handling simpler
applications self-contained in a VM than the complex
software dependencies supported by GADe since those
are more likely to be ported to and scaled in the cloud.
However, supporting predefined runtime platforms
dependencies would be useful.

The Blob Caching that we present is similar to
other distributed master/slave caches in the cloud like
Google MemCache for objects or Elastic MapReduce’s
DistributedCache for static files. Unlike the in memory
object caching of the former, we support disk caching
in the VM for files, which are more common
input/output parameters for science applications. The
files our Worker roles cache is determined dynamically
unlike the static specification of DistributedCache.

III. GENERIC WORKERS FOR CLOUD APPLICATIONS

 Porting a science application that runs on a local
machine to the cloud means answering these questions:
1. How do we (easily) upload our application and its

dependency libraries into the cloud? E.g. Are the

DLLs for my executable available?

2. How do we ensure that the application’s runtime

environment is available and current when the

application is invoked? E.g. Is JRE 1.6 present?

3. How do we make efficient use of Cloud resources

with minimal application impact?

4. How do we load and run multiple, diverse

applications simultaneously within a single virtual

machine instance in the Cloud?

5. How do we track and monitor applications?

6. How do we scale the application across cloud

resources?
We address the first five questions here. The last

question is not key to our goal of taking existing
applications and easily running them in the cloud with
little code change or administrative overhead. We
focus on the gap between cloud IaaS/PaaS and
conventional local desktop/cluster computing.

We achieve this for Microsoft Azure by creating a
“Generic” Worker Role that reduces common glue
code that science users have to write to deploy and
manage their application in the Azure cloud. We
believe the same Generic Worker Role pattern applies
to Amazon’s EC2 and other IaaS/PaaS clouds, albeit
with somewhat different underlying implementation..

Our Generic Worker is a wrapper for existing
science applications that are either command line
executables, or present as a method within a .NET
library. Worker Roles are the entry point for
performing computation on Azure and typically, a
worker role is implemented for each application.
While this may work for a science application written
from scratch, the ability to run existing applications
with little overhead is crucial. Also, there is sufficient
common glue code across cloud applications that can
be avoided and applications written specifically for a
cloud platform becomes difficult to switching to other
clouds or the desktop. Using the Generic Worker
pattern decouples the application logic from the cloud
dependencies.

Our Generic Worker role is “generic” because it is
can execute any application that is dynamically
registered with the framework. It provides four key
functions: application deployment, client:cloud
application communications, application execution,
and reliable scaling.

A. Application Deployment

Applications undergo a two step deployment
process with the generic worker framework before
execution by a generic worker instance. The first step,
Application Upload, copies the application binaries and
dependency libraries into cloud storage that makes it
accessible to the generic worker instance at runtime.
The second step, Application Registration, informs the
generic workers of the application file location and the
set of runtime input and output parameters used for the
application. Registration information is persisted in a
Generic Worker Registry stored in Azure tables.

During application upload, users copy the
application binary and libraries to a directory
(container) in Azure Blob store (Figure 1, step R1).
This container is later copied to the Generic Worker
instance as a local directory and acts as the “bin”
directory for the application when it is executed. The

current implementation shares the same security
credentials for the Blob store holding the application
container and the Generic Worker role. Since Azure
Blob and Amazon S3 are limited to a flat directory
structure, if applications require nested directories, the
Generic Worker supports storing the application
directory as a zip file Blob that is later expanded.

During application registration, the user supplies
the generic worker with the information necessary to
launch the application (Figure 1, step R2-3) via a
command line utility. The information includes the
application type, application container location,
invocation target, and/or parameter types to be passed.
The application type is used both to identify and
configure common runtime libraries and to determine
the invocation mechanics. Our current application
types include .NET, Java, MatLab and generic
Windows commandline executable. As an example,
the Generic Worker ensures that the JRE is available to
Java applications.

Our Generic Worker currently supports two

invocation mechanisms: .NET method and Windows

executable. For .NET applications, the users specify

the fully qualified class name and the method name

and the registration utility uses .NET reflection to

determine the typed input and output parameters from

the application DLLs. Similarly, Java applications will

leverage Java reflection in future. For other

applications, the users specify the commandline

executable to invoke along with a list of commandline

parameters. The parameters are passed as mappings

between the typed input parameters passed from the

client and the string parameter passed to the

commandline. Output parameters include the return

value of the executable process and/or files or

directories that the application may create in the

working directory. In addition, users can specify the

each parameter’s value/reference type and serialization.
The registration utility saves the registration

information in the App and Param Azure Tables of the
Generic Worker Registry. The user may also specify a
unique logical name for the application to refer to that
application in future, use the original fully qualified
name, or an auto-generated Application ID.. These
deployment steps for applications supported by the
Generic Worker framework are much simpler than the
normal cloud application deployment process provided
by Microsoft Azure and Amazon EC2.

B. Client:Cloud Communications

The Generic Worker includes an intuitive way for
clients to invoke a cloud application registered with the
framework that hides the queue-based, asynchronous
execution model normally used to run cloud
applications. Typically, Azure Worker Role instances
wait for work request messages to arrive in a
predetermined queue, clients put these messages with
work details in the queue, and likewise for responses.

Besides imposing an asynchronous model of
invocation, queues also require clients and applications
to serialize and deserialize the parameters, and cannot
handle large message sizes. Azure Web Roles provide
a way to hide the queue using an application specific
web service, but require the web service to be manually
defined. Amazon’s EC2 offers similar capabilities as
Azure Queues with the same issues. Amazon also
provides Elastic IP – a feature that exposes a public IP
address to the EC2 instance that blurs the distinction
between public Web and private Worker roles of

Figure 1. Generic Worker Architecture on Microsoft Azure. Numbered arrows are order of application deployment (R1-3) and execution (1-10).

Generic

Worker A

J2 K2 K1 J1

J2’ J1’

ID Name Type Meth Blob

App Table

Request Queue

Blob Store

INTERNET

AA A PJ J

Ea a AB
B

B

Ea'

K1’

ID Name Type Ser IsRef

Param Table

Response Queue ‘J’

Response Queue ‘K’

Generic

Worker B

Generic

Worker N

Generic
worker DLLs

App Param
Files
App DLLs/Bin

Java Runtime

R2

R3

R1

1

2

3

10

9

4

6

3

5

7

8

AZURE PUBLIC SERVICES AZURE PRIVATE WORKERS

Client App
Registry Utility

Client Invoker
Utility

User Local Store
App DLLs/Bin

WORKER ROLE INSTANCES

(VIRTUAL MACHINES)
CLIENTS AZURE STORAGE

VM Local Disk
User Local Store
App Param Files

Azure. This allows the use of a network socket for
RPC calls applications in EC2; however, the number of
elastic IPs available is limited.

We provide a client library with a common Invoke
method to run any application that mitigates the
additional complexity and overhead of dealing with
queues, serializations or application-specific web
services. The Invoke method takes the application
identifier of a registered application and the list of
parameters registered for that application and receives
.NET objects on return. Invoke serializes the
parameters using XML or string serialization as
registered. Handling of files and large parameters is
done by uploading them to Azure Blob store and
passing their references. Invoke then type-verifies the
application identifier and serialized parameters with the
Registry and combines them with the name of a
Response queue and Log table into a Job message. The
Job message is then placed on the Request queue
shared by all Generic Worker instances. Invoke then
polls the Response queue waiting a Job response
message. The Job response message is created by the
Generic Worker instance that dequeued the original Job
request and executed the application. The return
parameters are serialized by the Generic Worker
instance and deserialized by the client library into
.NET objects. In case of an exception message, an
Exception is thrown to the client. The progress of the
Job execution can be monitored using the Application
Log queue by spawning a separate thread or from a
commandline utility.

This client execution model makes it flexible
enough to map it into a commandline utility, a web
form, as a generic activity that can be used in a
workflow, or directly for use by a .NET client.

C. Application Execution

The primary task of the generic worker is to
execute any registered application without restricting
the number of registered applications in a single virtual
machine or imposing a specific mix of applications.
This means that the application must be instantiated
dynamically on the VM by the Generic Worker. That

includes deploying the required application runtime
environment and binaries on the VM from persistent
cloud storage, deserializing and staging the input
parameters and files from the client, invoking the
application, persisting its output parameters and files,
and returning the serialized outputs or an exception
back to the client. Generic Workers capture common
template code thus freeing users from these concerns.

On-demand, pay-as-you-go execution creates a
need for dynamic instantiation of Generic Workers.
When a worker instance starts up, it is running in a
clean virtual machine that was originally deployed, and
the only local files available to the Generic Worker are
its own libraries. Once instantiated, the Azure Fabric
calls the Initialize() method of the Worker role
interface which in the Generic Worker case initializes a
Control Log queue for publishing the instance’s status
and ensures that the Job request queue exists.
Following this, the Start() method of the Worker role is
called by the Azure Fabric and the mainline code of the
Generic Worker starts. The new Generic Worker starts
polling the Job request queue within an infinite loop
looking for work (Figure 2).

Job request messages are processed first in, first
out. The Generic Worker instance picking up the top
message verifies the application ID or logical name
present in the Job message, verifies its parameter
against the registry tables, and transmits the status of
the Job onto the Application Log queue present in the
message. Depending on the type of application (e.g.
.NET, Java, MatLab, Windows Executable), the
worker may have to prepare the virtual machine
instance to run that particular application type. For
example, in the case of Java applications, this involves
copying the Java Runtime Environment files from a
well known location in Azure Blob store to a directory
in the local virtual machine and ensuring that java.exe
is present in the commandline execution path. For
.NET and Windows commandline executables, no
preparation is needed.

Next, the worker creates a working directory for the
application execution and downloads the application
libraries from the Application Blob container listed in
its registry entry. If compressed, the files are extracted
to duplicate the directory structure expected by the
application. The input parameters present in the Job
Request message are deserialized and optionally
dereferenced from Blob store in case of files or large
objects. If the application is a .NET method, the target
class is instantiated using reflection and the method
invoked using the deserialized .NET objects in the
same process. For other types, the invocation is done
by mapping the input parameters to the appropriate
commandline specific to that platform and application
and the commandline forked as a separate process for
which the Worker instance process busy-waits.

Once application execution completes, successfully
or not, the results from the invocation are collected and
serialized back into output parameters. While the

Figure 2: Program lifecycle of a Generic Worker instance

Poll Job
Request
Message
& Verify Stage

App
Platform

Files

Stage
App Files

Stage
App

Input
Params

Execute
Applicati

on

Stage
App

Output
Params

Verify &
Put Job

Response
Message

Generic
Worker

Role

outputs are defined by the return and “out” parameters
for .NET methods, for other platforms, the output
parameters are typically the return code from processes
or files defined in the application registry mapping.

Finally, the Generic Worker performs a number of
cleanups and persistence. A log file of console output
as well as any files generated by the invocation are
uploaded from the VM instance to Azure Blob store.
The serialized output parameters and references to any
output blobs are enqueued to a response queue as a Job
response message. The original Job request message is
then permanently deleted. The Generic Worker
instance returns to polling the Job request queue.

Generic Workers can run any registered
application. So application loads is distributed across
all worker instances allowing load averaging, rather
than having to reserve specific instances for specific
applications, whether those applications are being run
or now.. For simplicity, we currently do not support
running multiple Jobs simultaneously by the Generic
Worker, so this may cause the VM to be underutilized.
As future work, we plan to concurrent application in
the same VM as multiples threads (.NET) or processes
(Java/Windows executable).

Our Generic Worker also guarantees reliable
completion of job requests by leveraging the the Azure
queue behavior that revives messages when they are
not deleted within a certain period. By performing a
non-destructive read of the request message and
deleting the request message only after completion of
the application execution, the Generic Worker instance
ensures that if it crashes when running, the read
message will reappear after a predetermined timeout
for another generic worker instance to process the
message. One drawback of this is the time delay
between the crash of the Worker instance and the
reappearance of the Job request message. For high
priority jobs that need reliable and timely completion,
we support multiple worker instances working on the
same Job request simultaneously by posting two copies
of it and the first response being used by the client.
While this causes twice the work to be done, it ensures
that there is a higher probability that the application
execution completes successfully. The generic worker
client picks the first response message that arrives for
the job request and returns it to the user, who is
unaware that multiple job were run.

IV. DATA ACCESS FOR CLOUD APPLICATIONS

Files located on local disks or network shares form
an important and often primary form of data used as
input and output to science applications. Applications
that run in the Cloud need to access local files on the
client outside the cloud, and vice versa, in a reliable
manner without significant performance or user/code
overhead. Scientists write their applications using
simple local or network file paths but local file paths
on VM instances exist only during the lifetime of the
VM, and not all cloud platforms provide a shared

network file system like Amazon EBS. This
necessitates data movement between the client and the
VM using shared cloud storage service interfaces that
are cumbersome and unintuitive for science
applications. That movement carries a performance and
cost penalty. We address these data management issues
in this section.

As such, the challenge is to enable cloud

applications to transparently access client local files,

VM local files, and persisted cloud storage with

minimal user coding effort overheads and no more

than modest performance impacts. Our Generic

Worker includes mechanisms to reduce the code

overhead by automatically persisting and transferring

input and output files between client and the VM, and

reduces the performance impacts with intelligent local

file caching of on VMs and just-in-time data transfers.

Again, we use Microsoft Azure as an example though

the same is applicable to Amazon EC2 and S3 (but not

EC2 and EBS).

A. Sharing Files between Client & Cloud Application
Our Generic Worker and client library enables

clients and cloud applications to pass local files as
parameters by transparently copying files between
client/VM local disk, cloud persistent store and
VM/client remote disks as necessary. Passing local
files and large objects between client and the
application running in the VM usually requires
additional data movement since clients and VMs
cannot directly access each other’s local files. Though
the VM instances are in the cloud, they do not provide
reliable local storage and their output data has to be
moved to cloud storage for persistence. Similarly, large
in-memory objects that overflow the queue request and
response message size have to be mapped to cloud
storage and transmitted between client and application..

When an application is registered, the parameters
that correspond to input or output files are marked as a
special file type. File parameters of the .NET built-in
type FileInfo (which wraps a local file path) or
BlobFile (an .NET object we provide) are
automatically recognized through reflection. All file
types are passed as references in the Job request and
response messages. The references are URLs to Azure
Blob that are uploaded to a (pre-defined or
configurable) container in cloud storage when the file
parameter is serialized at the client or VM. The
difference between FileInfo/”string” file path
parameters and BlobFile objects is that BlobFiles track
both local file path and Azure Blob URLs as replicas of
each other with either replica being accessible and
downloaded on-demand when explicitly used. The
FileInfo/string file paths, however, are only accessible
by their local path – the Blob URL is used internally by
the Generic Worker and client library in the
request/response messages – and hence always
downloaded locally from cloud store when they are
deserialized, whether the files are actually used or not

There are a several advantages to the file handling
we provide. The science application and clients can
always use local files as parameters and not worry
about uploading and downloading them to/from cloud
storage. The application also does not have to concern
itself about the directories to upload and download the
files as Blob container creation and local path rewriting
is done automatically by the Generic Worker and client
library. Lastly, using BlobFiles ensures data is not
downloaded from cloud storage unless used by the
client/cloud application. For e.g., if a scientific
workflow is running on the desktop client and uses
several cloud applications, the intermediate BlobFile
data does not have to be downloaded to the client and
can be passed between the cloud applications as
references. Only the final data product generated by the
workflow need be downloaded to the client if required.

The Generic Worker and client library treat large in
memory objects similar to files by serializing them to
local files, uploading them to Blob storage, passing
their Blob URLs in the request/response messages and
deserializing them back to objects at the remote end.

B. Efficient File Management

Runtime platform files and application binary
/library files required to run the application need to be
present within the local storage of the VM before
application execution. These files can either be present
as part of the virtual machine image when it is
instantiated, or downloaded from persistent storage as
required to run an application. The advantage of the
former is that it avoids the cost of downloading the
application dependency files from persistent cloud
storage to local disk at application runtime, and allows
fine grained management of the files in the VM image.
This, however, persists the problem of manually
deploying and maintaining applications in VM images
and can bloat the image size if there are several
applications.

The generic worker uses a just-in-time download to
deploy application and platform files. Application files
are downloaded on demand when the application
execution request is received by the generic worker
instance. We mitigate some of the performance
penalties associated with downloading the application
and platform files by using a caching mechanism and
by allowing all application binaries and libraries to be
compressing into a single tarball package when they
are registered. This reduces the observed performance
overhead associated with downloading multiple small
files.

We provide a Blob Cache service that runs in the
Generic Worker instance to mitigate the performance
penalties of uploading and downloading files to/from
the reliable cloud store. All Blob operation in the
Generic Worker goes through our Blob Caching library
that uses the local VM disk to cache files indexed by
the Blob ID and tracks dirty entries using the ETag
version number assigned by Azure Blob store. These

Blob files may be may be application inputs,
application outputs, application binaries, or runtime
platform files. The cost of reading a file from cloud
storage is often several times slower than local disk
access so caching commonly used files is a
performance savings. For example, when several
applications or multiple invocations of the same
application share reference files that are often static, it
helps to download them just once and reuse them.
Also, applications that execute in a sequential pipeline
where the output of one is passed as input to the next
benefit from uploading each intermediate file once for
persistence to cloud storage and reusing the local copy
as the input to avoid the download.

The Blob Cache is writethrough to avoid data loss.
The library uploads any updated file into Azure Blob
store and updates the local cache – creating a new
cache entry if the files did not exist before – with the
new version number assigned by the Blob store. This
ensures that the copy of the blob file in cloud storage is
always the latest version and all VM caches are
coherent with this copy. Also, a crash of the virtual
machine instance will not cause a loss of data.

V. PROVENANCE COLLECTION AND LOGGING

Cloud computing presents additional provenance
challenges due to the inherent distribution across the
cloud and the local client. Science applications running
in the cloud need to be monitored to track their
execution progress, to collect provenance on data, and
to audit application execution for resource usage.
Cloud resources can be prone to failures as with most
distributed systems. Monitoring services from cloud
providers, such as Amazon CloudWatch and Azure
Diagnostics, help track the infrastructure status like
VMs that are running and CPU or I/O usage, but do not
inform users about the specific applications that are
affected by this. Also, the inability to remote logon to
Azure VMs limits the ability to run desktop monitoring
tools to check application status or browse local files.

Applications that run in the Generic Worker
instances are automatically tracked and monitored.
There are three types of monitoring: tracking the
control flow between desktop clients and cloud
applications in the VM, the tracking the data
provenance across client/VM local store and Blob
store, and tracking the status of the VMs themselves.

The Generic Worker instances publish the status of
their liveliness on a Control Log queue. Each worker
publishes timestamped status messages with its identity
that tracks the instance liveliness, Job statistics, and
resource usage. Any traceable exception in the VM is
also published. This log can be persisted to Azure
tables and supplements diagnostics provided by Azure.

The application Jobs are tracked on an Application
Log queue created for each job and shared by the client
and the Generic worker. This log tracks the control
flow between client to cloud application and back to
client, recording realtime state changes such as client

placing Job in work request queue and the Generic
Worker instance that picks it up for application
execution. Users can monitor this log queue to track
their Job progress.

Application provenance is determined by the
combination of the Job request/response and
application log messages. Since all input and outputs
to/from the cloud application are typed and files are
identified, this allows us to track the location and
copies of all files that were part of the application
execution: on the client local store, cloud storage and
VM disk. We also provide a way to record the
provenance to Azure table store for simple queries and
will later support their export using the Open
Provenance Model [19] schema for provenance
tracking across the cloud and non-cloud applications.

VI. EVALUATION FOR SCIENCE APPLICATION

We apply the generic worker framework we have
implemented to a genomics application to evaluate the
efficacy of our Generic Workers for porting a real
world genomics phasing application science
application to run in Azure. We evaluate two aspects:

 The coding and deployment overhead to port the

application to the Cloud,

 The performance tradeoff between running the

application on a local machine versus in the cloud

using the generic workers,
Human genome phasing is the process of separating

the two haplotypes sequences contributed by each
parent as part of sequencing an individual. Haplotype
identification plays an important role in predicting
diseases predisposition and phasing is a compute
intensive application. We use the HapCUT phasing
algorithm from UCSD [18] which is implemented as a
.NET library containing the 3 sequential stages of the
phasing pipeline: Initialize, TrimSparse and
DoHapCUT. A client running calls each of these
methods in succession, passing files between them to
simulate a sequential workflow. The input to the

pipeline is a chromosome sequence (~40MB) and a
reference database file (~120MB) and the output is a
pair of haplotype sequence files (~1MB). The
intermediate files are about 50MB at each stage.

A. Ease of Porting Science Application to Cloud

The tasks required to port the local phasing pipeline
to run in the Cloud using the generic worker model
involved registering the application with the generic
worker registry and modifying the client pipeline to use
the Generic Worker client library to invoke the
methods instead of directly invoking them, and
changing the methods to use BlobFile types for file
parameters instead of FileInfo. We wrote a trivial
wrapper to achieve this to improve the performance.

Application registration involves uploading the
phasing library and dependency DLL files to a unique
/PhasingSteps container in Azure Blob store using a
COPY-CD shell script from Azure. Next, the three
applications are registered with the Generic Worker
Registry using the AppRegistryUtil commandline tool
we provide. This takes the fully qualified method name
as parameter and the name of the application Blob
container, and returns the ID of the registered
application. The input and output parameters for these
methods are simple integer, float and string value
types, or files defined as BlobInfo types using the
wrapper. Once registered, these three applications are
run in as cloud applications by calling the Invoke
method in the client library using their fully qualified
method names and .NET objects as parameters, with a
method signature similar to the original methods.

The effort required for this is minimal as compared
to rewriting all the phasing steps to run in the Azure
Cloud as separate worker roles. Wrapping each method
to use the BlobFiles instead of FileInfo parameters was
the costliest human operation done to optimize file
transfers. Using the original FileInfo objects would
have entailed unnecessary data transfers between client
and the cloud application for each intermediate step.

Figure 3(a). Performance of the Azure pipeline application against quad core

workstation and Azure monolithic application for 3 chromosomes.

Figure 3(b). Performance of Azure pipeline

application against quad core workstation with

increasing parallelism.

Chr 19
Workstation

Chr 19 Azure
Pipeline

Chr 19 Azure
Monolithic

Chr 21
Workstation

Chr 21 Azure
Pipeline

Chr 21 Azure
Monolithic

Chr 22
Workstation

Chr 22 Azure
Pipeline

Chr 22 Azure
Monolithic

Ti
m

e
(i

n
 h

o
u

rs
)

Phasing Total

HapCut Data Binding

HapCut Processing

Trim data Binding

Trim Processing

Init Data Binding

Init Processing

0 5 10 15 20 25

To
ta

l
e

xe
cu

ti
o

n
 t

im
e

 (
in

 h
o

u
rs

)

Number of Chromosomes (Chr22) Phased in Parallel

Azure (16 Generic Workers Instances)

Local Workstation (4 x 3GHz Cores)

B. Performance Comparison of Local and Cloud

Versions of Science Application

We run two experiments, the first to measure the
overhead of running the application in the cloud as a
pipeline and as a monolithic application as compared to
a local workstation. Next, we measure the scalability of
the Azure workers with increasing numbers of
chromosomes sequences processed in parallel.

The first set of experiments compare the
performance of the phasing pipeline by running the
pipeline and the applications on a quadcore 3GHz
Xeon workstation with 16GB RAM for 3
chromosomes. This is a baseline for local execution.
We then run the client pipeline on a local workstation
while using the cloud applications registered with the
Generic Workers, and using BlobFiles – only the final
output of the pipeline is accessed as local files. Lastly,
we wrap the three methods into a single method that is
registered as a separate application that is then invoked
as a cloud application from the workstation.

The averaged results of these runs are shown for 3
different chromosomes in Figure 3(a). The graph
shows that the workstation uniformly performs better
than the other two, and this is due to two reasons. (1)
the workstation has a higher CPU rating of 3GHz than
the ones running Azure Worker Roles rated at 1.7GHZ,
and (2) the time taken for data transfer of the inputs
and outputs between client and the cloud application
contributes to the total. Comparing the Azure pipeline
version and the Azure monolithic version, we see that
using the BlobFile objects keeps the performance of
the two comparable since the BlobFile only transfers
data on demand and we only access the output data on
the client at the last stage. This is a more favorable
model than running all three methods as a monolithic
block in the cloud since it allows composition of
science applications that are deployed in the cloud and
their orchestration from any desktop client. If the
FileInfo objects had been retained instead of BlobFiles,
there would have been additional data transfer times
for the intermediate files.

Figure 3(b) shows the performance of the phasing
application running multiple sequences in parallel on
the quadcore workstation, and the client running those
on concurrent Azure generic workers (up to 16
instances). As can be seen, despite the network transfer
overhead, Azure allows instant scalability of the
application to as many worker instances as necessary
and the increasing time is mainly due to the increased
network transfers between client and cloud application.

VII. CONCLUSION

In this paper, we have shown the effectiveness of

using cloud computing for scalable scientific

applications and the benefits of using the Generic

Worker model to easily deploy and execute

applications in the cloud with minimal user effort.

This further lowers the barrier to entry for science

applications on the cloud. We have also shown

techniques such as on-demand data transfers using

BlobFiles that reduce the performance penalty for data

transfer between desktop and cloud applications.

As future work, we will support multiple

application runs simultaneously in a Generic Worker

role, and address interesting questions on which

applications to concurrently schedule on a particular

VM to optimize resource usage. Another scheduling

problem for future work is to leverage the data cached

in the Blob cache for data locality. If a worker role

instance already has data in its local cache that

matches the input parameter of a job request, then that

worker should be given a higher priority in choosing

that job request over others.

VIII. REFERENCES

[1] Open Grid Services Infrastructure (OGSI), v1.0, 2003

[2] Building web services for scientific grid applications, G.

Kandaswamy, et al., IBM J. RES. & DEV. 50 (2/3) 2006.

[3] Design and Evaluation of Opal2: A Toolkit for Scientific

Software as a Service. S. Krishnan, L. Clementi, J. Ren, P.

Papadopoulos, and W. Li.. SERVICES 2009.

[4] Above the Clouds: A Berkeley View of Cloud

Computing, Michael Armbrust, et al., UC Berkeley

Technical Report UCB/EECS-2009-28.

[5] The Eucalyptus Open-Source Cloud-Computing System,

Nurmi, D., et al., CCGRID 2009

[6] Cost-Benefit Analysis of Cloud Computing versus

Desktop Grids, Derrick Kondo, et al., IPDPS 2009.

[7] On the Use of Cloud Computing for Scientific

Workflows, Christina Hoffa, et al., SC, 2009.

[8] Resource Monitoring and Management with OVIS to

Enable HPC in Cloud Computing Environments, Jim Brandt,

et al, IPDPS 2009.

[9] Cloud Computing for the Sciences, Francis Sullivan,

Comput. Sci. Eng. 11(10) 2009.

[10] A break in the clouds: towards a cloud definition.

Vaquero, L. M., Rodero-Merino, L., Caceres, J., and Lindner,

M., SIGCOMM Comput. Commun. Rev. 39(1), 2008.

[11] Benchmarking Amazon EC2 for high-performance

scientific computing, E Walker, USENIX Magazine, 2008.

[12] Slow Moving Clouds Fast Enough for HPC, Michael

Feldman, HPC Wire, August 10 2009.

[13] CloudBurst: highly sensitive read mapping with

MapReduce, M. Schatz, BioInformatics Vol. 25 no. 11 2009

[14] Cloud Computing and Grid Computing 360-Degree

Compare, Ian Foster, et al, GCE 2008.

[15] Cloud Computing for e-Science with CARMEN, Paul

Watson, et al, IBERGRID 2008.

[16] Commodity grid computing with Amazon's S3 and EC2,

S Garfinkel, USENIX Magazine, 2007.

[17] Emergence of the Academic Computing Clouds. Delic,

K. A. and Walker, M. A., Ubiquity 2008.

[18] HapCUT: an efficient and accurate algorithm for the

haplotype assembly problem, Vikas Bansal, Vineet Bafna,

Bioinformatics 2008 24(16).

[19] The Open Provenance Model (1.01), Luc Moreau, 2008.

[20] GADe: Toward Automatic Deployment of Applications

on Computational Grids, Sébastien Lacour, et al. Grid 2005.

