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Abstract—  The widely discussed scientific data deluge 

creates not only a need to computationally scale an 

application from a local desktop or cluster to a 

supercomputer, but also the need to cope with variable 

data loads over time. Cloud computing offers a scalable, 

economic, on-demand model well matched to the 

evolving eScience needs. Yet cloud computing creates 

gaps that must be crossed to move science applications to 

the cloud. In this article, we propose a Generic Worker 

framework to deploy and invoke science applications in 

the Cloud with minimal user effort and predictable, cost-

effective performance. Our framework is an evolution of 

Grid computing application factory pattern and 

addresses the distinct challenges posed by the Cloud such 

as efficient data transfers to and from the Cloud, and the 

transient nature of its VMs. We present an 

implementation of the Generic Worker for the Microsoft 

Azure Cloud and evaluate its use in a genome sequencing 

application pipeline. Our results show that the user 

overhead to port and run the application seamlessly 

across desktop and the Cloud can be substantially 

reduced without significant performance penalties, while 

providing on-demand scalability.    
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data management; provenance; scientific workflows; 
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I. INTRODUCTION 

Cloud computing has emerged during recent times 
as viable platform [10] for performing large scale 
computation and data processing operations. Building 
on prior work on Grid and cluster computing [14], it 
offers an evolutionary paradigm that approaches utility 
computing [4, 16]. The advantages of cloud computing 
are well known: it offers resources on demand and in a 
scalable manner, it allows users to pay as they go 
avoiding costly capital costs, it provides competitive 
pricing due to economies of scale, and it uses simple 
service interfaces for easy access and management. 
Commercial Clouds providing these features have been 
available for some time from different vendors, such as 
Amazon, RackSpace, and Microsoft, running out of 
large data centers that are geographically distributed. 
There is also active research on open source [5] and 
private clouds [17] and improving cloud operations [8].  

Scientific applications have historically been major 
users (if not drivers) of next generation computation 
and data resources. Cloud computing has benefits [9] 

for eScience applications that range from those running 
on the local desktop to those that can only run at 
supercomputing centers [7]. The different scales of 
applications benefit differently.  

 For desktop users whose applications have 

outgrown single machine resources, the prospect of 

building, operating, and porting their applications to 

a (distributed) cluster can be prohibitive. While 

Moore’s Law improves workstation compute 

capacity and disks capacity continue to increase, 

that rate of growth is still dwarfed by the needs of 

scientific computation and data analyses. The cloud 

could provide a migration path to better scalability 

over a longer period of time as long as any changes 

to the programming models or interfaces remain 

simple. The cloud also provides on-demand access 

to resources at any time [12]. Not all scientific 

analyses are performed continuously. For example, 

an environmental scientist performing a field 

campaign may large computation and data resources 

during and immediately after the campaign for the 

initial data reduction but not thereafter.  

 The cloud helps existing users of local clusters at 

universities or research groups reduce the cost of 

running a cluster and scale beyond local resources. 

Cloud computing provides a lower real (non-

subsidized) total cost of ownership than private 

clusters by reducing the operations people cost, peak 

networking bandwidth requirements, and 

technology upkeep through constant machine 

upgrades [6]. For cluster users considering a step up 

to national supercomputing centers, paperwork and 

eligibility requirements may restrict access and 

delay account creation. With cloud computing, all it 

takes is a credit card to open a new account online 

and a few minutes wait. While national labs provide 

technical support on the clusters or Grids, they also 

impose security restrictions that may limit the 

software stack on the nodes or services that can that 

can be deployed. Applications often have to be 

modified to be compatible with a center’s user 

policies and/or scheduler which differ from the local 

clusters. While a similar challenge may exist for 

cloud services, the leap can be less disruptive and 

may give the user full control over compute nodes.  



 Users of supercomputing centers can also find 

benefits from the on-demand nature of cloud 

computing. The queue wait times at supercomputing 

centers can be long and clouds provide resources 

near-instantaneously. Anecdotal evidence [12] 

shows that despite a lower throughput, cloud 

computing can have a faster time to completion 

when including queue wait times. Clouds can also 

be used as a resource surge when centers hit peak 

load by shedding smaller jobs to clouds. For 

example, clouds can be used when running tutorials 

or hands-on workshops that require large resources 

for a short period of time especially since guest 

accounts for all attendees can be a challenge. Lastly, 

users can easily share large datasets generated 

within the cloud to be analyzed and processed 

within or outside the cloud, democratizing access to 

scientific analysis. Supercomputing centers may 

restrict ad hoc hosting of these datasets or limit their 

analysis at the center to authorized users. 
Cloud computing comes in several favors, 

primarily Infrastructure as a Service (IaaS), Platform as 
a Service (PaaS) and Software as a Service (SaaS). The 
former abstracts the hardware resources to give 
equivalent of barebones machine that typically runs as 
a virtual machine, Amazon’s EC2 being a popular 
example. PaaS provides a restricted sandbox or runtime 
environment with additional native services, such as 
Google’s AppEngine. SaaS provides applications as 
scalable services that can be used to compose other 
applications, one example being SalesForce.com’s 
business applications. Since SaaS does not yet offer a 
broad set of composable scientific services, IaaS and 
PaaS are the relevant flavors for building or porting 
science applications in the cloud. Such applications 
may themselves be offered as a public service, thus in 
effect evolving into eScience SaaS. The focus of our 
paper is on effective use of existing commercial clouds 
that are widely available to run scientific application. 

While Cloud computing provides desirable features 
for scaling science applications, there are significant 
challenges for users to easily access and efficiently use 
it for existing applications [15]. In this article, we focus 
on tools to build an effective platform for eScience 
applications in the cloud while limited by the 
abstractions that it provides. Specifically, we identify 
three issues that pose an overhead to a broad category 
of scientists: (1) Ease of porting and running of science 
applications in the cloud, (2) Efficient data 
management across applications within and outside the 
cloud, and (3) Effective tracking of application and 
data provenance. These problems motivate the need for 
a Generic Worker framework, we propose, that lowers 
the barrier to entry for cloud computing. We implement 
the proposed framework for the Microsoft’s Azure 
Cloud platform that straddles IaaS and PaaS, and 
evaluate the framework’s performance and ease of use 
in a real world genome sequencing application.  

The rest of the paper is structured as follows: in 
Section 2, we motivate problems for eScience on the 
Cloud using Amazon and Microsoft’s cloud services 
and discuss related work; in Section 3, we introduce 
the generic worker design for application deployment 
and execution; Section 4 delves into efficient transfer 
of scientific data between cloud and desktop 
applications; provenance tracking of cloud applications 
is featured in Section 5; Section 6 presents a qualitative 
and empirical evaluation of the framework for a 
genome phasing science application; and Section 7 
presents our conclusions and future work. 

II. BACKGROUND AND RELATED WORK  

Among the commercial clouds available, Amazon’s 
Elastic compute and storage infrastructure as a service 
have been popular in the research and scientific 
communities for several years [11]. Microsoft’s Azure 
provides a .NET platform as a compute service with 
some features of a Windows infrastructure as a service, 
along with storage and queue services. Azure has been 
in public beta (Community Technology Preview) for 
the past year and, as of writing, is due to be released 
next week. These two are examples of IaaS and PaaS 
clouds that can run scientific applications and 
discussing their limitations in running science 
applications in this section to motivate our paper. We 
later present related work on enabling tools for science 
applications in cloud and grid computing. 

A. Amazon Elastic Cloud and Microsoft Azure  

The scalable cloud infrastructure services provided 
by Amazon to run applications are Elastic Compute 
Cloud (EC2) barebones virtual machines (VM); Simple 
Storage Service (S3) for flat file store, Elastic Block 
Service (EBS) for file system storage and SimpleDB 
for a hashtable of attributes; and Simple Queue Service 
(SQS) for reliable message passing, typically between 
clients outside the cloud and applications within. EC2 
allows any OS image to be installed in their VMs along 
with any of the user’s software and tools. This provides 
the flexibility of being able to run virtually any 
application the user runs on their desktop with the 
requirement that the user is responsible for managing 
the software stack in the VMs or forming a cluster out 
of the VM instances. Public IP addresses are provided 
for up to 5 EC2 instances. S3 provides a REST API for 
reliably storing files in a flat collection of buckets, 
while EBS provides a robust virtual disk that can be 
mounted on an EC2 instance and run a file system of 
the user’s choosing.  

Microsoft’s Azure cloud platform provides 
Window Server 64bit virtual machines that use the 
.NET runtime as the platform for running applications. 
VMs fall in either a Web role that have public IP 
address and run IIS server or a Worker role that runs a 
.NET application. Worker roles can be used to fork 
processes that run executables in a restricted Windows 
VM to provide IaaS. The Windows Server OS is 



managed automatically by the Azure fabric while users 
are responsible for the .NET applications they run in 
the roles. Like Amazon, Azure also provides a reliable 
Blob storage service for flat files collected in 
containers, durable Queues for message passing and 
indexed tables for attribute lookup. Unlike EBS, Azure 
does not offer disk volumes for network file access.  

B. Challenges of Running Applications on the Cloud  

Running a science application in the cloud presents 
three different challenges: initial application 
deployment, subsequent application execution, and 
data transfers to/from the cloud. Simplistically, 
deploying an application in the cloud requires that the 
application be installed on an existing or new virtual 
machine image. That image is then and deployed in the 
Cloud so that new instances of that virtual machine can 
be created. Data transfers to and from the application 
also need to be handled by the (non-cloud) client and 
the cloud application instances using cloud data 
services or other network protocols.  
1) Application Deployment.  

Amazon’s EC2 and Microsoft Azure deploy 
applications differently. Amazon EC2 IaaS images 
(AMI) are built from the ground up by the user by 
reusing an existing or installing an fresh OS image, 
along with all software, libraries, and tools necessary to 
run the application. This image is packaged and 
uploaded to S3 cloud storage, from where EC2 VM 
instances of the image can be started.  Windows 
Azure’s PaaS differs by requiring users to implement a 
.NET worker role interface for each virtual machine 
image. The interface implementation can be the 
application itself, or it can start the application as a 
separate commandline process. The worker role 
implementation, external application and dependency 
files are deployed to the cloud through a web interface. 

Both platforms require the scientist user to manage 
application dependencies, maintain their applications in 
an image/role, and recreate and redeploy that image in 
the event of any change to an application. Scientists 
often have little knowledge of application dependency 
“dll/jar hell” – a version of MatLab depends on specific 
language and Java runtime versions.  This becomes 
more complicated when multiple applications need to 
be managed in a single VM to optimally use the VM 
resources. This makes managing transient applications 
in a cloud fairly challenging to a scientist.  

Amazon’s EC2 has the additional drawback that the 
scientist user is responsible for managing everything in 
the VM, including the operating system and standard 
software stack. While this gives the flexibility of a 
familiar computing platform with any OS or software 
installed in the VM image, having to deal directly with 
OS images often requires a system administrator to be 
engaged. Also, the large size of the OS image can be 
costly and time consuming to transfer between client 
and cloud unless updated in place over the network.   

Azure reduces the OS and "DLL hell" management 
at the cost of flexibility. Azure directly maintains the 
Windows Server OS and the .NET runtime as part of 
the platform. Users need to only manage their own 
applications through worker roles. However, this also 
means that the OS and language runtime is fixed within 
the VM. Security restrictions on the Azure worker roles 
limit the software that can be installed on the VM to 
those not requiring administrative rights to install or 
run. Lastly, users cannot directly connect to a running 
virtual machine instance (e.g. SSH/Remote Desktop). 
2) Application Execution.  

Applications available in cloud VM instances need 
to be invoked from outside that VM instance. These 
user clients may be in other VMs or, often, outside the 
cloud as commandline tools or workflow engines that 
orchestrate cloud applications. Reliable queues in the 
cloud are often used to pass application execution 
requests that are picked up and processed by one of the 
VM instances having the deployed application. 
However, the client application or its proxy running in 
the VM instances must listen for these messages, 
interpret their payload, run the application and return 
the response. Users end up modifying their application 
to listen and process execution requests, or writing 
proxy agents or web services that do parameter 
marshalling and unmarshalling. This becomes tedious 
as applications increase or change over time.  

Amazon’s EC2 allows public IP addresses for VM 
instances and clients can invoke the (commandline) 
application on a specific IP address (e.g. using SSH). 
But EC2 limits the number of public IPs, hindering 
application scalability across multiple VM instances. 
.Microsoft Azure fits the above pattern by having users 
implement a worker role for each application that uses 
queues to pass messages for that application.  
3) Data Transfer.  

Passing files as input and output to cloud 
application introduces additional problems of 
managing data transfers between client and VM 
instances. Science applications and their clients 
normally use local or network files like NFS or CIFS 
for data exchange. However, S3 and Blob storage, 
while providing reliability and collocation with the 
VMs, do not support a network file system. VM 
instances themselves are transient, so their local disks 
are not reliable network stores. Using a public network 
share near the client breaks co-locality with the cloud 
applications. Users can either use a cloud network file 
system like Amazon’s EBS, or explicitly change their 
applications/clients to transfer input and output files 
between client and cloud applications through Blob/S3 
storage while being cognizant of network speed 
bottlenecks and transfer costs outside the cloud. 

C. Related Work  

Grid computing has used the factory pattern to 
dynamically instantiate stateful grid service instances, 
which can invoke an application on the cluster, using 



factory services [1]. While it does not prescribe how 
grid service instance is created, the GFac [2] and Opal 
[3] toolkits uses an application description document as 
metadata to dynamically instantiate a web service to 
invoke a commandline application, while also staging 
input and output data over network shares. Application 
descriptions can be a deployed at runtime for a binary 
application available in the grid. GADe uses a detailed 
application description model to capture dependencies 
for complex applications in Grids [20]. 

Our proposed model is similar to GFac and Opal 
but has key differences to meet specific challenges 
posed by cloud computing. We do not assume that the 
applications are already present locally in the VM or 
executable ever the network. Part of the problem we 
address is dynamically deploying the application 
binaries and its files to a VM for execution to reduce 
changes to the VM image. Also, we cannot assume that 
input and output files to the application are accessible 
over a network file system. We support cloud storage 
protocols for transparently staging data between client, 
persistent cloud storage and VM’s local storage that 
also supports passing data by value or reference to 
reduce data transfers between client and cloud 
applications. For .NET applications, we use reflection 
to automatically create an application configuration file 
instead of requiring users to fill input and output 
parameters for the application. While we do not 
generate a web service for the application, our XML 
based request/response messages that use Azure 
Queues are similar to SOAP messages for future 
compatibility. We envisage handling simpler 
applications self-contained in a VM than the complex 
software dependencies supported by GADe since those 
are more likely to be ported to and scaled in the cloud. 
However, supporting predefined runtime platforms 
dependencies would be useful. 

The Blob Caching that we present is similar to 
other distributed master/slave caches in the cloud like 
Google MemCache for objects or Elastic MapReduce’s 
DistributedCache for static files. Unlike the in memory 
object caching of the former, we support disk caching 
in the VM for files, which are more common 
input/output parameters for science applications. The 
files our Worker roles cache is determined dynamically 
unlike the static specification of DistributedCache.  

III. GENERIC WORKERS FOR CLOUD APPLICATIONS 

 Porting a science application that runs on a local 
machine to the cloud means answering these questions:  
1. How do we (easily) upload our application and its 

dependency libraries into the cloud? E.g. Are the 

DLLs for my executable available? 

2. How do we ensure that the application’s runtime 

environment is available and current when the 

application is invoked? E.g. Is JRE 1.6 present? 

3. How do we make efficient use of Cloud resources 

with minimal application impact? 

4. How do we load and run multiple, diverse 

applications simultaneously within a single virtual 

machine instance in the Cloud? 

5. How do we track and monitor applications? 

6. How do we scale the application across cloud 

resources? 
We address the first five questions here. The last 

question is not key to our goal of taking existing 
applications and easily running them in the cloud with 
little code change or administrative overhead. We 
focus on the gap between cloud IaaS/PaaS and 
conventional local desktop/cluster computing.  

We achieve this for Microsoft Azure by creating a 
“Generic” Worker Role that reduces common glue 
code that science users have to write to deploy and 
manage their application in the Azure cloud. We 
believe the same Generic Worker Role pattern applies 
to Amazon’s EC2 and other IaaS/PaaS clouds, albeit 
with somewhat different underlying implementation.. 

Our Generic Worker is a wrapper for existing 
science applications that are either command line 
executables, or present as a method within a .NET 
library. Worker Roles are the entry point for 
performing computation on Azure and typically, a 
worker role is implemented for each application.  
While this may work for a science application written 
from scratch, the ability to run existing applications 
with little overhead is crucial. Also, there is sufficient 
common glue code across cloud applications that can 
be avoided and applications written specifically for a 
cloud platform becomes difficult to switching to other 
clouds or the desktop. Using the Generic Worker 
pattern decouples the application logic from the cloud 
dependencies.  

Our Generic Worker role is “generic” because it is 
can execute any application that is dynamically 
registered with the framework. It provides four key 
functions: application deployment, client:cloud 
application communications, application execution,  
and reliable scaling.  

A. Application Deployment 

Applications undergo a two step deployment 
process with the generic worker framework before 
execution by a generic worker instance. The first step, 
Application Upload, copies the application binaries and 
dependency libraries into cloud storage that makes it 
accessible to the generic worker instance at runtime. 
The second step, Application Registration, informs the 
generic workers of the application file location and the 
set of runtime input and output parameters used for the 
application. Registration information is persisted in a 
Generic Worker Registry stored in Azure tables.   

During application upload, users copy the 
application binary and libraries to a directory 
(container) in Azure Blob store (Figure 1, step R1). 
This container is later copied to the Generic Worker 
instance as a local directory and acts as the “bin” 
directory for the application when it is executed. The 



current implementation shares the same security 
credentials for the Blob store holding the application 
container and the Generic Worker role. Since Azure 
Blob and Amazon S3 are limited to a flat directory 
structure, if applications require nested directories, the 
Generic Worker supports storing the application 
directory as a zip file Blob that is later expanded. 

During application registration, the user supplies 
the generic worker with the information necessary to 
launch the application (Figure 1, step R2-3) via a 
command line utility. The information includes the 
application type, application container location, 
invocation target, and/or parameter types to be passed. 
The application type is used both to identify and 
configure common runtime libraries and to determine 
the invocation mechanics. Our current application 
types include .NET, Java, MatLab and generic 
Windows commandline executable.  As an example, 
the Generic Worker ensures that the JRE is available to 
Java applications.  

Our Generic Worker currently supports two 

invocation mechanisms: .NET method and Windows 

executable. For .NET applications, the users specify 

the fully qualified class name and the method name 

and the registration utility uses .NET reflection to 

determine the typed input and output parameters from 

the application DLLs. Similarly, Java applications will 

leverage Java reflection in future. For other 

applications, the users specify the commandline 

executable to invoke along with a list of commandline 

parameters. The parameters are passed as mappings 

between the typed input parameters passed from the 

client and the string parameter passed to the 

commandline. Output parameters include the return 

value of the executable process and/or files or 

directories that the application may create in the 

working directory. In addition, users can specify the 

each parameter’s value/reference type and serialization.  
The registration utility saves the registration 

information in the App and Param Azure Tables of the 
Generic Worker Registry. The user may also specify a 
unique logical name for the application to refer to that 
application in future, use the original fully qualified 
name, or an auto-generated Application ID.. These 
deployment steps for applications supported by the 
Generic Worker framework are much simpler than the 
normal cloud application deployment process provided 
by Microsoft Azure and Amazon EC2. 

B. Client:Cloud Communications 

The Generic Worker includes an intuitive way for 
clients to invoke a cloud application registered with the 
framework that hides the queue-based, asynchronous 
execution model normally used to run cloud 
applications. Typically, Azure Worker Role instances 
wait for work request messages to arrive in a 
predetermined queue, clients put these messages with 
work details in the queue, and likewise for responses. 

Besides imposing an asynchronous model of 
invocation, queues also require clients and applications 
to serialize and deserialize the parameters, and cannot 
handle large message sizes. Azure Web Roles provide 
a way to hide the queue using an application specific 
web service, but require the web service to be manually 
defined. Amazon’s EC2 offers similar capabilities as 
Azure Queues with the same issues. Amazon also 
provides Elastic IP – a feature that exposes a public IP 
address to the EC2 instance that blurs the distinction 
between public Web and private Worker roles of 

 

Figure 1. Generic Worker Architecture on Microsoft Azure. Numbered arrows are order of application deployment (R1-3) and execution (1-10). 
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Azure. This allows the use of a network socket for 
RPC calls applications in EC2; however, the number of 
elastic IPs available is limited. 

We provide a client library with a common Invoke 
method to run any application that mitigates the 
additional complexity and overhead of dealing with 
queues, serializations or application-specific web 
services. The Invoke method takes the application 
identifier of a registered application and the list of 
parameters registered for that application and receives 
.NET objects on return. Invoke serializes the 
parameters using XML or string serialization as 
registered. Handling of files and large parameters is 
done by uploading them to Azure Blob store and 
passing their references. Invoke then type-verifies the 
application identifier and serialized parameters with the 
Registry and combines them with the name of a 
Response queue and Log table into a Job message. The 
Job message is then placed on the Request queue 
shared by all Generic Worker instances. Invoke then 
polls the Response queue waiting a Job response 
message. The Job response message is created by the 
Generic Worker instance that dequeued the original Job 
request and executed the application. The return 
parameters are serialized by the Generic Worker 
instance and deserialized by the client library into 
.NET objects. In case of an exception message, an 
Exception is thrown to the client. The progress of the 
Job execution can be monitored using the Application 
Log queue by spawning a separate thread or from a 
commandline utility.  

This client execution model makes it flexible 
enough to map it into a commandline utility, a web 
form, as a generic activity that can be used in a 
workflow, or directly for use by a .NET client. 

C. Application Execution 

The primary task of the generic worker is to 
execute any registered application without restricting 
the number of registered applications in a single virtual 
machine or imposing a specific mix of applications. 
This means that the application must be instantiated 
dynamically on the VM by the Generic Worker. That 

includes deploying the required application runtime 
environment and binaries on the VM from persistent 
cloud storage, deserializing and staging the input 
parameters and files from the client, invoking the 
application, persisting its output parameters and files, 
and returning the serialized outputs or an exception 
back to the client. Generic Workers capture common 
template code thus freeing users from these concerns. 

On-demand, pay-as-you-go execution creates a 
need for dynamic instantiation of Generic Workers. 
When a worker instance starts up, it is running in a 
clean virtual machine that was originally deployed, and 
the only local files available to the Generic Worker are 
its own libraries. Once instantiated, the Azure Fabric 
calls the Initialize() method of the Worker role 
interface which in the Generic Worker case initializes a 
Control Log queue for publishing the instance’s status 
and ensures that the Job request queue exists. 
Following this, the Start() method of the Worker role is 
called by the Azure Fabric and the mainline code of the 
Generic Worker starts. The new Generic Worker starts 
polling the Job request queue within an infinite loop 
looking for work (Figure 2).  

Job request messages are processed first in, first 
out. The Generic Worker instance picking up the top 
message verifies the application ID or logical name 
present in the Job message, verifies its parameter 
against the registry tables, and transmits the status of 
the Job onto the Application Log queue present in the 
message. Depending on the type of application (e.g. 
.NET, Java, MatLab, Windows Executable), the 
worker may have to prepare the virtual machine 
instance to run that particular application type. For 
example, in the case of Java applications, this involves 
copying the Java Runtime Environment files from a 
well known location in Azure Blob store to a directory 
in the local virtual machine and ensuring that java.exe 
is present in the commandline execution path. For 
.NET and Windows commandline executables, no 
preparation is needed. 

Next, the worker creates a working directory for the 
application execution and downloads the application 
libraries from the Application Blob container listed in 
its registry entry. If compressed, the files are extracted 
to duplicate the directory structure expected by the 
application. The input parameters present in the Job 
Request message are deserialized and optionally 
dereferenced from Blob store in case of files or large 
objects. If the application is a .NET method, the target 
class is instantiated using reflection and the method 
invoked using the deserialized .NET objects in the 
same process. For other types, the invocation is done 
by mapping the input parameters to the appropriate 
commandline specific to that platform and application 
and the commandline forked as a separate process for 
which the Worker instance process busy-waits. 

Once application execution completes, successfully 
or not, the results from the invocation are collected and 
serialized back into output parameters. While the 

 

Figure 2: Program lifecycle of a Generic Worker instance 
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outputs are defined by the return and “out” parameters 
for .NET methods, for other platforms, the output 
parameters are typically the return code from processes 
or files defined in the application registry mapping.  

Finally, the Generic Worker performs a number of 
cleanups and persistence. A log file of console output 
as well as any files generated by the invocation are 
uploaded from the VM instance to Azure Blob store. 
The serialized output parameters and references to any 
output blobs are enqueued to a response queue as  a Job 
response message. The original Job request message is 
then permanently deleted. The Generic Worker 
instance returns to polling the Job request queue. 

Generic Workers can run any registered 
application. So application loads is distributed across 
all worker instances allowing load averaging, rather 
than having to reserve specific instances for specific 
applications, whether those applications are being run 
or now.. For simplicity, we currently do not support 
running multiple Jobs simultaneously by the Generic 
Worker, so this may cause the VM to be underutilized. 
As future work, we plan to concurrent application in 
the same VM as multiples threads (.NET) or processes 
(Java/Windows executable). 

Our Generic Worker also guarantees reliable 
completion of job requests by leveraging the  the Azure 
queue behavior that revives messages when they are 
not deleted within a certain period. By performing a 
non-destructive read of the request message and 
deleting the request message only after completion of 
the application execution, the Generic Worker instance 
ensures that if it crashes when running, the read 
message will reappear after a predetermined timeout 
for another generic worker instance to process the 
message. One drawback of this is the time delay 
between the crash of the Worker instance and the 
reappearance of the Job request message. For high 
priority jobs that need reliable and timely completion, 
we support multiple worker instances working on the 
same Job request simultaneously by posting two copies 
of it and the first response being used by the client. 
While this causes twice the work to be done, it ensures 
that there is a higher probability that the application 
execution completes successfully. The generic worker 
client picks the first response message that arrives for 
the job request and returns it to the user, who is 
unaware that multiple job were run. 

IV. DATA ACCESS FOR CLOUD APPLICATIONS 

Files located on local disks or network shares form 
an important and often primary form of data used as 
input and output to science applications. Applications 
that run in the Cloud need to access local files on the 
client outside the cloud, and vice versa, in a reliable 
manner without significant performance or user/code 
overhead. Scientists write their applications using 
simple local or network file paths but local file paths 
on VM instances exist only during the lifetime of the 
VM, and not all cloud platforms provide a shared 

network file system like Amazon EBS. This 
necessitates data movement between the client and the 
VM using shared cloud storage service interfaces that 
are cumbersome and unintuitive for science 
applications. That movement carries a performance and 
cost penalty. We address these data management issues 
in this section. 

As such, the challenge is to enable cloud 

applications to transparently access client local files, 

VM local files, and persisted cloud storage with 

minimal user coding effort overheads and no more 

than modest performance impacts. Our Generic 

Worker includes mechanisms to reduce the code 

overhead by automatically persisting and transferring 

input and output files between client and the VM, and 

reduces the performance impacts with intelligent local 

file caching of on VMs and just-in-time data transfers. 

Again, we use Microsoft Azure as an example though 

the same is applicable to Amazon EC2 and S3 (but not 

EC2 and EBS). 

A. Sharing Files between Client & Cloud Application 
Our Generic Worker and client library enables 

clients and cloud applications to pass local files as 
parameters by transparently copying files between 
client/VM local disk, cloud persistent store and 
VM/client remote disks as necessary. Passing local 
files and large objects between client and the 
application running in the VM usually requires 
additional data movement since clients and VMs 
cannot directly access each other’s local files. Though 
the VM instances are in the cloud, they do not provide 
reliable local storage and their output data has to be 
moved to cloud storage for persistence. Similarly, large 
in-memory objects that overflow the queue request and 
response message size have to be mapped to cloud 
storage and transmitted between client and application.. 

When an application is registered, the parameters 
that correspond to input or output files are marked as a 
special file type. File parameters of the .NET built-in 
type FileInfo (which wraps a local file path) or  
BlobFile (an .NET object we provide) are 
automatically recognized through reflection. All file 
types are passed as references in the Job request and 
response messages. The references are URLs to Azure 
Blob that are uploaded to a (pre-defined or 
configurable) container in cloud storage when the file 
parameter is serialized at the client or VM. The 
difference between FileInfo/”string” file path 
parameters and BlobFile objects is that BlobFiles track 
both local file path and Azure Blob URLs as replicas of 
each other with either replica being accessible and 
downloaded on-demand when explicitly used. The 
FileInfo/string file paths, however, are only accessible 
by their local path – the Blob URL is used internally by 
the Generic Worker and client library in the 
request/response messages – and hence always 
downloaded locally from cloud store when they are 
deserialized, whether the files are actually used or not 



There are a several advantages to the file handling 
we provide. The science application and clients can 
always use local files as parameters and not worry 
about uploading and downloading them to/from cloud 
storage. The application also does not have to concern 
itself about the directories to upload and download the 
files as Blob container creation and local path rewriting 
is done automatically by the Generic Worker and client 
library. Lastly, using BlobFiles ensures data is not 
downloaded from cloud storage unless used by the 
client/cloud application. For e.g., if a scientific 
workflow is running on the desktop client and uses 
several cloud applications, the intermediate BlobFile 
data does not have to be downloaded to the client and 
can be passed between the cloud applications as 
references. Only the final data product generated by the 
workflow need be downloaded to the client if required. 

The Generic Worker and client library treat large in 
memory objects similar to files by serializing them to 
local files, uploading them to Blob storage, passing 
their Blob URLs in the request/response messages and 
deserializing them back to objects at the remote end. 

B. Efficient File Management 

Runtime platform files and application binary 
/library files required to run the application need to be 
present within the local storage of the VM before 
application execution. These files can either be present 
as part of the virtual machine image when it is 
instantiated, or downloaded from persistent storage as 
required to run an application. The advantage of the 
former is that it avoids the cost of downloading the 
application dependency files from persistent cloud 
storage to local disk at application runtime, and allows 
fine grained management of the files in the VM image. 
This, however, persists the problem of manually 
deploying and maintaining applications in VM images 
and can bloat the image size if there are several 
applications. 

The generic worker uses a just-in-time download to 
deploy  application and platform files. Application files 
are downloaded on demand when the application 
execution request is received by the generic worker 
instance. We mitigate some of the performance 
penalties associated with downloading the application 
and platform files by using a caching mechanism and 
by allowing all application binaries and libraries to be 
compressing into a single tarball package when they 
are registered. This reduces the observed performance 
overhead associated with downloading multiple small 
files.   

We provide a Blob Cache service that runs in the 
Generic Worker instance to mitigate the performance 
penalties of uploading and downloading files to/from 
the reliable cloud store. All Blob operation in the 
Generic Worker goes through our Blob Caching library 
that uses the local VM disk to cache files indexed by 
the Blob ID and tracks dirty entries using the ETag 
version number assigned by Azure Blob store. These 

Blob files may be may be application inputs, 
application outputs, application binaries, or runtime 
platform files. The cost of reading a file from cloud 
storage is often several times slower than local disk 
access so caching commonly used files is a 
performance savings. For example, when several 
applications or multiple invocations of the same 
application share reference files that are often static, it 
helps to download them just once and reuse them. 
Also, applications that execute in a sequential pipeline 
where the output of one is passed as input to the next 
benefit from uploading each intermediate file once for 
persistence to cloud storage and reusing the local copy 
as the input to avoid the download.  

The Blob Cache is writethrough to avoid data loss. 
The library uploads any updated file into Azure Blob 
store and updates the local cache – creating a new 
cache entry if the files did not exist before – with the 
new version number assigned by the Blob store. This 
ensures that the copy of the blob file in cloud storage is 
always the latest version and all VM caches are 
coherent with this copy. Also, a crash of the virtual 
machine instance will not cause a loss of data.  

V. PROVENANCE COLLECTION AND LOGGING  

Cloud computing presents additional provenance 
challenges due to the inherent distribution across the 
cloud and the local client. Science applications running 
in the cloud need to be monitored to track their 
execution progress, to collect provenance on data, and 
to audit application execution for resource usage. 
Cloud resources can be prone to failures as with most 
distributed systems. Monitoring services from cloud 
providers, such as Amazon CloudWatch and Azure 
Diagnostics, help track the infrastructure status like 
VMs that are running and CPU or I/O usage, but do not 
inform users about the specific applications that are 
affected by this. Also, the inability to remote logon to 
Azure VMs limits the ability to run desktop monitoring 
tools to check application status or browse local files. 

Applications that run in the Generic Worker 
instances are automatically tracked and monitored. 
There are three types of monitoring: tracking the 
control flow between desktop clients and cloud 
applications in the VM, the tracking the data 
provenance across client/VM local store and Blob 
store, and tracking the status of the VMs themselves.  

The Generic Worker instances publish the status of 
their liveliness on a Control Log queue. Each worker 
publishes timestamped status messages with its identity 
that tracks the instance liveliness, Job statistics, and 
resource usage. Any traceable exception in the VM is 
also published. This log can be persisted to Azure 
tables and supplements diagnostics provided by Azure.  

The application Jobs are tracked on an Application 
Log queue created for each job and shared by the client 
and the Generic worker. This log tracks the control 
flow between client to cloud application and back to 
client, recording realtime state changes such as client 



placing Job in work request queue and the Generic 
Worker instance that picks it up for application 
execution. Users can monitor this log queue to track 
their Job progress. 

Application provenance is determined by the 
combination of the Job request/response and 
application log messages. Since all input and outputs 
to/from the cloud application are typed and files are 
identified, this allows us to track the location and 
copies of all files that were part of the application 
execution: on the client local store, cloud storage and 
VM disk. We also provide a way to record the 
provenance to Azure table store for simple queries and 
will later support their export using the Open 
Provenance Model [19] schema for provenance 
tracking across the cloud and non-cloud applications. 

VI. EVALUATION FOR SCIENCE APPLICATION 

We apply the generic worker framework we have 
implemented to a genomics application to evaluate the 
efficacy of our Generic Workers for porting a real 
world genomics phasing application science 
application to run in Azure. We evaluate two aspects:  

 The coding and deployment overhead to port the 

application to the Cloud,  

 The performance tradeoff between running the 

application on a local machine versus in the cloud 

using the generic workers,  
Human genome phasing is the process of separating 

the two haplotypes sequences contributed by each 
parent as part of sequencing an individual. Haplotype 
identification plays an important role in predicting 
diseases predisposition and phasing is a compute 
intensive application. We use the HapCUT phasing 
algorithm from UCSD [18] which is implemented as a 
.NET library containing the 3 sequential stages of the 
phasing pipeline: Initialize, TrimSparse and 
DoHapCUT. A client running calls each of these 
methods in succession, passing files between them to 
simulate a sequential workflow. The input to the 

pipeline is a chromosome sequence (~40MB) and a 
reference database file (~120MB) and the output is a 
pair of haplotype sequence files (~1MB). The 
intermediate files are about 50MB at each stage. 

A. Ease of Porting Science Application to Cloud 

The tasks required to port the local phasing pipeline 
to run in the Cloud using the generic worker model 
involved registering the application with the generic 
worker registry and modifying the client pipeline to use 
the Generic Worker client library to invoke the 
methods instead of directly invoking them, and 
changing the methods to use BlobFile types for file 
parameters instead of FileInfo. We wrote a trivial 
wrapper to achieve this to improve the performance. 

Application registration involves uploading the 
phasing library and dependency DLL files to a unique 
/PhasingSteps container in Azure Blob store using a 
COPY-CD shell script from Azure. Next, the three 
applications are registered with the Generic Worker 
Registry using the AppRegistryUtil commandline tool 
we provide. This takes the fully qualified method name 
as parameter and the name of the application Blob 
container, and returns the ID of the registered 
application. The input and output parameters for these 
methods are simple integer, float and string value 
types, or files defined as BlobInfo types using the 
wrapper. Once registered, these three applications are 
run in as cloud applications by calling the Invoke 
method in the client library using their fully qualified 
method names and .NET objects as parameters, with a 
method signature similar to the original methods. 

The effort required for this is minimal as compared 
to rewriting all the phasing steps to run in the Azure 
Cloud as separate worker roles. Wrapping each method 
to use the BlobFiles instead of FileInfo parameters was 
the costliest human operation done to optimize file 
transfers. Using the original FileInfo objects would 
have entailed unnecessary data transfers between client 
and the cloud application for each intermediate step.   

 
 

Figure 3(a). Performance of the Azure pipeline application against quad core 

workstation and Azure monolithic application for 3 chromosomes.  

Figure 3(b). Performance of Azure pipeline 

application against quad core workstation with 

increasing parallelism. 
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B. Performance Comparison of Local and Cloud 

Versions of Science Application 

We run two experiments, the first to measure the 
overhead of running the application in the cloud as a 
pipeline and as a monolithic application as compared to 
a local workstation. Next, we measure the scalability of 
the Azure workers with increasing numbers of 
chromosomes sequences processed in parallel. 

The first set of experiments compare the 
performance of the phasing pipeline by running the 
pipeline and the applications on a quadcore 3GHz 
Xeon workstation with 16GB RAM for 3 
chromosomes. This is a baseline for local execution. 
We then run the client pipeline on a local workstation 
while using the cloud applications registered with the 
Generic Workers, and using BlobFiles – only the final 
output of the pipeline is accessed as local files. Lastly, 
we wrap the three methods into a single method that is 
registered as a separate application that is then invoked 
as a cloud application from the workstation. 

The averaged results of these runs are shown for 3 
different chromosomes in Figure 3(a). The graph 
shows that the workstation uniformly performs better 
than the other two, and this is due to two reasons. (1) 
the workstation has a higher CPU rating of 3GHz than 
the ones running Azure Worker Roles rated at 1.7GHZ, 
and (2) the time taken for data transfer of the inputs 
and outputs between client and the cloud application 
contributes to the total. Comparing the Azure pipeline 
version and the Azure monolithic version, we see that 
using the BlobFile objects keeps the performance of 
the two comparable since the BlobFile only transfers 
data on demand and we only access the output data on 
the client at the last stage. This is a more favorable 
model than running all three methods as a monolithic 
block in the cloud since it allows composition of 
science applications that are deployed in the cloud and 
their orchestration from any desktop client. If the 
FileInfo objects had been retained instead of BlobFiles, 
there would have been additional data transfer times 
for the intermediate files. 

Figure 3(b) shows the performance of the phasing 
application running multiple sequences in parallel on 
the quadcore workstation, and the client running those 
on concurrent Azure generic workers (up to 16 
instances). As can be seen, despite the network transfer 
overhead, Azure allows instant scalability of the 
application to as many worker instances as necessary 
and the increasing time is mainly due to the increased 
network transfers between client and cloud application. 

VII. CONCLUSION 

In this paper, we have shown the effectiveness of 

using cloud computing for scalable scientific 

applications and the benefits of using the Generic 

Worker model to easily deploy and execute 

applications in the cloud with minimal user effort. 

This further lowers the barrier to entry for science 

applications on the cloud. We have also shown 

techniques such as on-demand data transfers using 

BlobFiles that reduce the performance penalty for data 

transfer between desktop and cloud applications. 

As future work, we will support multiple 

application runs simultaneously in a Generic Worker 

role, and address interesting questions on which 

applications to concurrently schedule on a particular 

VM to optimize resource usage. Another scheduling 

problem for future work is to leverage the data cached 

in the Blob cache for data locality. If a worker role 

instance already has data in its local cache that 

matches the input parameter of a job request, then that 

worker should be given a higher priority in choosing 

that job request over others. 
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