
Garbage Modeling with Decoys for a Sequential
Recognition Scenario

Michael Levit 1, Shuangyu Chang2, Bruce Buntschuh3

Tellme, a Microsoft subsidiary
Mountain View, CA 94041, USA

1 michael.levit@microsoft.com
2 shawn.chang@microsoft.com

3 brubunt@microsoft.com

Abstract—This paper is concerned with a speech recogni-
tion scenario where two unequal ASR systems, one fast with
constrained resources, the other significantly slower but also
much more powerful, work together in a sequential manner. In
particular, we focus on decisions when to accept the resultsof
the first recognizer and when the second recognizer needs to be
consulted. As a kind of application-dependent garbage modeling,
we suggest an algorithm that augments the grammar of the first
recognizer with those valid paths through the language model
of the second recognizer that are confusable with the phrases
from this grammar. We show how this algorithm outperforms a
system that only looks at recognition confidences by about 20%
relative.

Index Terms—parallel and sequential speech recognition,
application-dependent garbage modeling

I. I NTRODUCTION

It is widely accepted in the scientific and engineering
community that technical progress obeys Moore’s law which
predicts exponential growth for many available resources like
processor speed and storage space. However, the other fact of
life is that increased technical capabilities lead to more so-
phisticated services and as a result, our demands for resources
grow exponentially as well.

Applied to the field of commercial speech recognition and
understanding, this observation emphasizes importance ofeffi-
cient control mechanisms that maximize recognition accuracy
while keeping the required resources at bay. For instance, in
the domain of speech-enabled services on mobile devices,
certain recognition tasks such as command and control and
voice activated dialing can be carried out directly on the device
using embedded speech recognizers (which are typically more
light-weight but also faster because the network transmission
factor is eliminated from the loop). Other requests, like in
street address or business name recognition tasks, need to be
directed to a network recognizer because recognizing them
requires access to more resources than typically offered bya
mobile device. One consequence of such separation is that the
two ASR systems have different language models, whereby the
embedded language model is typically much smaller than the
language model of the network ASR, which also contributes
to a faster response from the former. Another example is a
recognition scenario where prior distribution of sentences in

the task language is highly skewed. We can split their language
models in two unequal parts: one very small but accounting
for a high fraction of all requests, and the other taking careof
the long tail of low probability phrases. Here also, one could
run two separate recognition processes with these language
models.

In a tandem recognition system like that, we can either start
by running the light-weight recognizer (“first recognizer”) and
then run the high-coverage recognizer (“second recognizer”)
only if needed, or we can kick off two recognition processes
at the same time and wait till the first recognizer returns.
Assuming the first recognizer returns faster than the second, if
needed, we can then wait for the second recognizer to return,
otherwise the result of the first one will be accepted.

Here, the crucial point is providing a gainful formalization
of the “if needed” condition. Indeed, the first recognizer can
only recognize sentences that are in its small language model
(in other words,it only knows what it knows), but the decision
to consult the second recognizer should also take into account
the language models of the latter, a kind of knowledge that
the first recognizer lacks (it does not know what it does not
know).

In this paper, we describe an algorithm that helps the
decision making process by augmenting the first recognizer’s
language model with valid paths through the second recognizer
language model that are most likely to cause confusions. The
augmentation happens offline, prior to the recognition process
and can be viewed as application-dependent garbage modeling.

The remainder of this paper is organized as follows: Section
II describes the problem and reviews relevant research. Next,
in Section III we introduce our approach to use application-
dependent garbage model”decoys” in a two-stage recognition
process. We then suggest alternative ways of decoy generation
in Section IV and present results of a pilot experiment to
demonstrate the power of decoys in Section V. The paper is
concluded with ideas for future work and a summary.

II. M OTIVATION : GARBAGE MODELING IN AUTOMATIC

SPEECHRECOGNITION

While Statistical Language Models (SLMs) estimated asn-
grams probabilities or PCFG, are essential for natural user-



machine dialogs and can contribute to a better user experience,
a lot of the commercial speech recognition for call centers,
directory assistance and other applications still relies on di-
rected dialog models with handcrafted, phrase-based grammars
for speech recognition due to the practical efficiency of the
latter [1]. Grammars specify exactly which user responses
are admissible and assume all others to beout-of-grammar
(OOG). However, even in the case of very clear and restrictive
system prompts (e.g. those expecting either“yes” or “no”
answers), there will always be uncooperative users defying
these expectations. If we are not prepared to handle such
unexpected utterances, as well as side speech that is not
actually addressing the system, misrecognitions are likely to
occur. To prevent this from happening, garbage models can
be introduced in ASR systems that serve as false accept
magnets. The more open the prompt (and sophisticated the
corresponding grammar), the more opportunities are there
for the users to say something out of grammar, and as a
consequence, the acuter the need for a good garbage model.
Even in the case of SLM recognition, there can still be
many words that are out of vocabulary (OOV), which, if not
modeled appropriately, can degrade the recognition accuracy
of surrounding words. Garbage model is also a natural choice
for capturing OOV words.

Garbage modeling is usually addressed in the literature from
either acoustic or language modeling perspective. The acoustic
modeling approach [2], [3] is aiming at building special filler
models to represent non-speech and task-irrelevant speech
audio. For instance, in [3], to assist a single digit recognition
task in a challenging environment, special HMMs are trained
on noise and non-keywords to minimize a number of error
metrics.

The language model based garbage modeling [4], [5], [6]
focuses on relevant keyword phrases but attempts to recognize
every word (or phoneme) in an utterance even where it is not
relevant for the task. One advantage of such methods is that
they alleviate the need for additional acoustic model training
when porting across different tasks. Instead,n-grams at word
or subword levels are trained to account for the utterance parts
surrounding keywords and phrases.

Related to this approach is application-dependent garbage
modeling where the system acts on the assumption that the
application itself determines how to construct garbage models
[7], [8]. For instance, for a connected digit verification task,
Rahim et al. in [7] explored usability of generic filler models
(one for non-speech and another for non-digits) as well as a
number of anti-keyword models, each of them being trained
on all digits but a specific one.

Sometimes garbage models combine acoustic and language
model elements. For instance, in [9] acoustic models for
phonemic or syllabic fillers are trained and then introduced
into a language model via training data where they are
used to replace occurrences of out-of-vocabulary words. In
[10] a relatively small number of phone-based filler models
introduced in a bigram language model produced competitive
keyword spotting results compared to a much slower LVCSR

recognition system.
The approach we are suggesting in this paper is vastly

different from the ones listed above as we are not limiting
ourselves to word- or phone- filler models but instead select
entire phrases as false recognition magnets, guided by the
known application structure.

Finally, we should mention the related task of detection of
spoken out-of-domain utterances, where determination of ad-
missible versus unsupported requests is based not on whether
they are covered by the employed recognition grammar (which
in these cases is rather a large SLM) but on a broader concept
of topic. The decision is usually made after the recognition has
taken place and can be facilitated either by explicit modeling
of out-of-domain utterances (e.g. [11]) or, if obtaining out-of-
domain data is cumbersome, by considering topic classification
scores (e.g [12]).

III. A PPLICATION-DEPENDENTGARBAGE MODELING

For the two-recognizer scenario that we are focusing on in
this paper, the need for garbage modeling is eminent, since the
task definition itself implies that there will be many OOGs for
the first grammar-based recognizer, namely all those requests
that are not in its grammar, but can be understood by the
second recognizer1. Because of this prior knowledge, we can
do more than employing standard garbage modeling tech-
niques such as filler models that essentially “average” acoustic
characteristics of the language and therefore can be viewed
as a mesh of random false accept magnets. The schematic
representation of a recognizer without a garbage model and
of the standard garbage modeling is shown in Figure 1(a,b).
In contrast to this, the two-recognizer scenario allows foran
early insight into the language “outside” the first grammar but
still within the scope of the second language model. From the
magnitude of the phrases of this language we can select only
those phrases that appear confusable with the phrases from
the first grammar. We call these confusable phrasesdecoys.
The application-dependent garbage modeling with decoys is
schematically depicted in Figure 1(c). The number of decoys
can vary but it would typically be comparable in size with the
number of the phrases in the grammar of the first recognizer
in order to preserve the advantage of fast recognition.

Note that application-dependent and generic garbage models
can be efficiently combined together to take advantage of the
domain competence of the former and the robustness of the
latter. See Section V for details.

In the explanations above, we have yet not addressed the
important question of what “confusability” means in the con-
text of decoy selection. The next section will offer alternative
definitions of confusability and suggest practical ways of its
computation.

IV. D ETERMINING DECOYS

The notion of confusability we are interested in should be
defined in the following context. Given a setA of phrases{ai}

1Note that we make no assumptions about the nature of the language model
of the second recognizer which is not restricted to phrase-based grammars but
can be a statistical language model (SLM) as well.
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Fig. 1. Schematic representation of speech recognition (a) without garbage model (b) with traditional garbage model (c) application-
dependent garbage model. New audio is represented by a star,recognition candidates from the first grammar are circles and garbage model
is represented by dots that in the application-dependent scenario are located in the vicinity of the recognition candidates. Arrows indicate
recognition candidates for the new audio and the bold arrow marks the winner candidate. Assuming that the new audio in this example is
an OOG, only the decoys will correctly identify it as such.

from the grammar of the first recognizer, and a potentially
much larger setB of phrases{bj} from the language of
the second recognizer, for eachai ∈ A we need to find a
subsetBi ⊂ B of phrasesbj that the recognizer would have
difficulties telling apart fromai. There are several alternative
ways to estimate the confusability measure and hence to select
decoys candidates:

1) Acoustic (phonetic) similarity: produce pronunciations
of all candidatesbj and select those with phonetic
distances toai within a given threshold. Weighted or
Levenshtein edit distances between individual phones
can be used to compute distances between phrases, and
dynamic programming can be employed for agglomera-
tion.

2) Observed recognizer behavior: collect statistics about
misrecognitions (orn-best competitors) from an existing
application that uses both language models; select all
phrasesbj from the second language model that were
involved in competitions with some utterances ofai.

3) Directed recognition test: recognize some acoustic
realization ofai one or several times with the second
recognizer; accept recognition results as decoys.

All three alternatives have to struggle with practical feasi-
bility issues. It might be reasonable to assume that the number
of phrasesai ∈ A is relatively small and we can indeed iterate
over the entire list, but making the same assumption about the
second setB would be very presumptuous, since the second
recognizer can operate with a large SLM. Thus, we would not
be able to consider all phrase pairs(ai, bj), i = 1 . . . I, j =
. . . J to compare their phonetic representations. Similarly,
we need to dismiss the second option as it implies that we
have access to a transcribed corpus large enough to include
eachai at least once (better several times). The third option,
does not make any assumptions about an existing data set;
instead it deliberately creates one. Furthermore, it dropsthe
first language model from the recognition, in order to forestall

interference of language model weights, while boosting the
chance of getting more confusable candidates at the same time.

Yet even this option has the bottleneck of possibly not
having acoustic realizations for allai ∈ A. Next we suggest
two approximations to get around this problem: the employed
ASR in a simulation mode and a text-to-speech engine.

A. ASR in the Simulation Mode

While we cannot rely on availability of audio samples for all
phrases from the first grammar, the ASR engine itself has an
idea of what acoustic representation to expect for each word
phrase. Using its internal acoustic models, it can draw one or
several samples from the distributions that define them and
thus generate feature vectors that can then be recognized as
if they were coming from regular “naturally obtained” speech
[13]. We use Microsoft proprietary ASR engine to carry out
the feature vector generation process which we callsimulation.
It is worth mentioning that using the simulated data, one can
also compute acoustic confusability directly from the acoustic
models (HMMs), without a recognition pass [14].

One problem with using ASR acoustic models to generate
speech is the bias that the models are pre-wired with. For
instance, if there is not enough data to train a particular
distribution, then all acoustic representations involving it will
likely contain errors which will be further amplified during
recognition.

B. Using TTS to Produce Acoustic Representations

To avoid the issues with simulation, we need an independent
source of audio representation for all phrases in the first
grammar, and in Text-to-Speech engines we will find the most
natural candidate for that. Unlike the ASR simulation mode,
TTS tends to generate reproducible speech output and thus, in
order to obtain several audio samples, we can either change
voices within a TTS engine, or try alternative engines. The
approach we will be evaluating in Section V will have both.



V. EXPERIMENTS AND RESULTS

In this section we present a pilot experiment to deliver
a proof of concept for the decoy framework. We set up
baselines and evaluate advantage of application-dependent
garbage modeling with decoys.

The notion of recognition confidenceis central to un-
derstanding the experiments. Confidence values are trained
to predict the expected average utterance accuracy for all
utterances recognized with the same confidence. Statistical
regression methods are often used to derive confidences from
a number of features such as maximum-likelihood scores of
the highest scoring hypotheses, number of the hypotheses etc.

All of our experiments consist of two stages. First, we
employ the first language model (possibly augmented with
garbage models) to recognize all utterances. Those recognition
results that possess high confidence values are accepted and
the rest is recognized using the second language model, after
which the two recognition confidences are compared to select
the final result for the utterances in question.

A. Data and Experimental Setup

For our pilot experiments we selected two domains: Voice
Activated Dialing (VAD) and business search. VAD is a perfect
candidate to provide a grammar for the first recognizer as a
typical personal address book is small to moderate in size
(1081 distinct entries in our experiments). On the contrary,
business listings can become very large in size, a great choice
of a language model for the second recognition stage. For our
experiments, we compiled a grammar that comprises some
68K company names.

Our test set contains 570 utterances, both domains repre-
sented by an equal number of examples. In addition, for the
sake of a better generalization, we required that no names
appear in the corpus more than once.

Both language models were represented by grammars in
SRGS format [15] and employed by Microsoft speech rec-
ognizer [16] that was also used to produce decoys in the
simulation mode. For TTS experiments we used a proprietary
Microsoft TTS engine conforming to SAPI API [17] and
AT&T Natural Voices [18].

B. Evaluation Metrics

We use semantic error rateas the principle evaluation
metric. Since the objective of any practical application isto
successfully accomplish its task, using the traditional measure
of word error rate is often inadequate. Instead, recognized
text is compressed to its meaning by dismissing occasional
non-salient elements like hesitations, pre-fillers and post-fillers
like ”please”, “I need to” etc. and compensating for spelling
alternatives. In the pilot experiments we are reporting on in
this paper, all utterances contain only salient information and
meaning is just the recognized word string.

Then, we computefalse accept(FA) and false reject(FR)
rates in terms of the meaning-representations:

FA =
#meaning is wrong

#utterances

FR =
#no recognition

#utterances

and compute the final error rate as a weighted average of the
two2.

By raising the confidence threshold for skipping the second
recognition (see above) we increase the percentage of utter-
ances that are sent to the second recognition stage, and thus
improve final error rate. We plot the final error rate against
the fraction of utterances for which second recognizer had
to be consulted, and call itSpeed-to-Error (S2E)curve. The
further down-and-to-the-left the curve the better the overall
performance of the combined system.

C. Generating Decoys

Because of a simple structure of the first grammar (a
disjunction of 1081 name alternatives), seeding decoys with
entries from the first grammar is quite simple. Using the ASR
simulation mode, up to 21 alternative recognitions have been
obtained for each of the 1081 seeds (five decoys per seed
on average), producing a total of 2136 distinct decoys after
eliminating redundancies.

For TTS-based decoys, we used four voices (one male and
one female per TTS engine) to vocalize each of the seeds and
recognized them in a 5-best mode producing a total of 2617
decoys.

The generated decoys are then compiled into a new grammar
as a disjunction with individual entry weights as determined
by the second language model that they all came from.

D. Effect of Decoys on Semantic Error Rate

First of all, we have observed that the first recognizer was
only marginally slower due to the added decoys (about 5%
relative), which is inline with our goal to improve overall
recognition latency. In Figure 2 we plot the S2E error curves
for four experiments where the first recognition is conducted
with:

1) only VAD grammar
2) VAD augmented with a traditional acoustic garbage

model
3) VAD and simulation-generated decoys
4) VAD and TTS-generated decoys
The plots show that while generic garbage model and

simulation-based decoys both contributed to lower error rates,
the TTS-based decoys provided by far the best results, espe-
cially in the “interesting” range of re-recognition percentage

2Typically, business logics require that false accepts haveslightly lower
weight than false rejects (0.7:1.0 in all of our experiments).
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Fig. 3. Importance of a good decoys selection strategy.

around the prior (=0.5) where the original error rate was cut
by almost 18%. We explain the improvement of the TTS-
generated decoys over the simulation-based ones by the ability
of the former to provide ASR-independent and thus better
representative audio samples.

As an additional proof that decoy selection strategy matters,
in Figure 3 we re-plotted the S2E curves for the VAD only case
and the TTS-generated decoys, and added results of another
experiment where 2600 decoys were selected at random from
the second language model. Again, the TTS-generated decoys
exhibited a much better recognition accuracy.

E. Combining Decoys and Acoustic Garbage Models

In line with our expectations, the previous experiment
showed that a traditional acoustic garbage model can also
improve recognition. On the other hand, the decoys, though ef-
fective as demonstrated, can still make mistakes, for instance,
due to imperfect TTS. We thus expect that the generic garbage
model trained on a large amount of representative data for
the language will be a good counterpart to decoys that focus
specifically on confusable phrases. As a next step, we try
combining the generic garbage model with our application-
dependent decoys. .

Figure 4 demonstrates that the combination of the two
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Fig. 4. Combining application-dependent decoys and language-
specific garbage model.

models does indeed make sense, and an additional small
improvement can be achieved due to this combination that
brings the overall reduction of the original error rate by almost
20%.

We also experimented with language model based garbage
models (such as syllable loops) and were able to achieve
further improvements for re-recognition percentages around
the domain prior.

VI. CONCLUSION AND FUTURE WORK

We presented an algorithm to efficiently combine two
uneven ASR systems that cover different discourse domains.
Assuming that the first recognizer only understands a limited
number of phrases, and the language models of the second
recognizer is much more inclusive, we would like to minimize
the need for the second recognizer after the results of the
first recognizer become available. Our algorithm augments
the first recognizer’s grammar with “decoys”, i.e. those valid
paths through the language model of the second, slower
recognizer, that are confusable with phrases from the first rec-
ognizer. The approach is tantamount to application-dependent
garbage modeling. Determining decoys by computing acoustic
confusability for TTS-generated audio representations ofthe
phrases from the first grammar resulted in the best tradeoff
between accuracy and the fraction of times where the second
recognizer had to be used. In combination with a generic
garbage model and compared to a baseline that decides to
call the second recognizer based on the first recognizer’s
recognition confidence, our approach reduced the error rateby
almost 20%. As a next step, we plan to extend the algorithm
to support arbitrary language models for the first recognizer.
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