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Supplemental Material
All-Frequency Rendering with Dynamic, Spatially-Varying Reflectance

Figure 1: Comparison of SG, SH, and ZH bases for fitting the
clamped cosine function. “Number of terms” refers to the order
for the SH basis, and the number of lobes for the ZH and SG bases.
(a) Error curves. (b) Fitted results.

1 Fitting the Clamped Cosine

Figure 1 compares our mixture of spherical Gaussians (SG) basis
to spherical harmonics (SH) and zonal harmonics (ZH) [Sloan et al.
2005]. A simple 2-lobe fit with our basis provides good accuracy;
error decreases further with more lobes. Asymptotic error decrease
in our model compares favorably with increasing order of spherical
harmonics and with increasing order and number of lobes in the ZH
basis.

2 Fitting Isotropic Parametric Models

We tested our scheme on two parametric models for specular re-
flectance: Cook-Torrance (Gaussian lobe) and Blinn-Phong (co-
sine lobe). We also discuss the Ward model but because it is
Gaussian-like and similar to Cook-Torrance, we show only the
Cook-Torrance result. We separate each model into two factors:
the normal distribution function (NDF) D(h), and the rest of the
factors Mo(i). The NDF is fitted by SGs while Mo has an analytical
form deduced in the following. Note that cosθ = h ⋅n. Parameters
α , m, n are roughness constants for different models respectively.
Also note that in canonical coordinates, n is just the positive z axis.

Cook-Torrance Model [Cook and Torrance 1981] has the form:

ρs(i,o) =
F(i,o)S(i,o)
π(n ⋅ i)(n ⋅o) ⋅e

−(θ/m)2
(1)

Mo(i) =
F(i,o)S(i,o)
π(n ⋅ i)(n ⋅o) (2)

D(h) = e−arccos2(h⋅n)/m2 ≈ e−2(1−(h⋅n))/m2
(3)

Figure 2: Single-lobe SG fit to isotropic parametric models. The
solid curve represents the results of nonlinear optimization, while
the dashed curve uses a simple analytic model. (a) Fitted λ related
to Cook-Torrance’s roughness parameter m. (b) Fitted λ related to
Blinn-Phong’s shininess parameter n.

Ward Model [Ward 1992] has the form:

ρs(i,o) =
1√

(i ⋅n)(o ⋅n)
e− tan2 θ/α2

4πα2 (4)

Mo(i) =
1

4πα2
√

(i ⋅n)(o ⋅n) (5)

D(h) = e−
1−(h⋅n)2
α2(h⋅n)2 ≈ e−2(1−(h⋅n))/α2

(6)

Blinn-Phong Model [Blinn 1977] has the form:

ρs(i,o) =
n+2
2π

cosn θ (7)

Mo(i) =
n+2
2π

(8)

D(h) = (h ⋅n)n ≈ e−n(1−(h⋅n)) (9)

Figure 2 shows results from fitting a single-lobe SG to the NDF
of the Cook-Torrance and Blinn-Phong models. Since the maxi-
mum value is 1 in both cases, we assign µ = 1. To fit the lobe
sharpness parameter, λ , we find that an analytic formula based on
a simple two-term (linear) Taylor expansion of the exponentiated
function matches the fitted curve very well, as illustrated in the
figure. The formula is given by λ = 2/m2 for the Cook-Torrance
model, λ = 2/α2 for the Ward model, and λ = n for the Blinn-
Phong model.

Comparison with BRDF Factorization

The previously best-known method for representing BRDFs in PRT
is to factorize the BRDF function into a light-dependent compo-
nent and a view-dependent component [Wang et al. 2004; Liu et al.
2004; Wang et al. 2006], via:

ρs(i,o) =
n

∑
k=1

φk(i)ψk(o) (10)

We compare reconstruction error from our SG mixture fitted re-
sult to that from BRDF factorization, using the following weighted
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Figure 3: Error comparison of single-lobe SG fitted model with
BRDF factorization. (a) Error related to Cook-Torrance’s rough-
ness parameter m. (b) Error related to Blinn-Phong’s shininess pa-
rameter n.

sum of squares measure:

∑i,o
(
ρs(i,o)−ρR

s (i,o)
)2(

(i ⋅n)(o ⋅n))2

∑i,o
(
ρs(i,o)(i ⋅n)(o ⋅n)

)2 . (11)

As shown in Figure 3, error from BRDF factorization increases with
increasing specularity, while the error of our method is basically
constant for a single-lobe model, regardless of its specularity.

To compare visual quality, we selected three Cook-Torrance
BRDFs with different specular sharpness as shown in Figure 4.
Even with 256 terms, a very heavyweight representation that can
not be rendered interactively, BRDF factorization provides a poor
approximation. On the other hand, our single-lobe SG model
matches the ground truth very well.

3 Fitting Anisotropic Parametric Models
Anisotropic models require multiple-lobe SGs. All parameters of
the SG mixture, including its lobe axes, are determined on the
fly given the BRDF model parameters. The Ashikhmin-Shirley
[Ashikhmin and Shirley 2000] anisotropic model, for example, has
the form:

ρs(i,o) =
√

(nu +1)(nv +1)
8π

(n ⋅h)nu cos2 φh+nv sin2 φh

(h ⋅ i)max(i ⋅n,o ⋅n) F(h ⋅ i)

Mo(i) =
√

(nu +1)(nv +1)F(h ⋅ i)
8π(h ⋅ i) max(i ⋅n,o ⋅n) (12)

D(h) = (n ⋅h)nu cos2 φh+nv sin2 φh (13)

where φh is the azimuthal angle formed by the half-angle vector h
and the Fresnel factor F is defined in equation (12) in the paper.

As in the case of isotropic models, we keep the analytic form
of Mo and fit the NDF D using an SG mixture. Without loss of
generality, we assume nu > nv; the opposite case follows by rotating
the model π/2 azimuthally. Given nu, nv, and the number of SG
lobes to be fit N (odd), we distribute the SGs along the longer length
corresponding to the v tangent direction. We use a constant lobe
sharpness λi = nu for all lobes.

As shown in Figure 5b, lobe axes pi are evenly distributed along
the v direction using an angular interval θi defined by:

θv = arccos
(

ε
1

nv

)
, θi =

2θv

N +1
. (14)

The parameter θv represents the angular distance from the overall
specular lobe center where D is 1 to where D = ε; the total angular
extent of the lobe’s longer axis is thus 2θv. We use ε = 0.1. Finally
the lobe amplitudes µi are determined by sampling the NDF at the
lobe center; i.e., µi = D(pi). Figure 5c compares error between

Figure 4: Rendering comparison with parametric, isotropic BRDFs:
(a) ground truth, (b) single-lobe SG model, and BRDF factorization
with (c) 256 terms, (d) 64 term, and (e) 16 terms.

Figure 5: Fitting anisotropic BRDF models with SG mixtures. (a)
The anisotropic NDF. (b) SG mixture fit. (c) Fitting error and com-
parison with BRDF factorization.
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Figure 6: Rendering comparison with parametric, anisotropic
BRDFs: (a) ground truth, (b) 7-lobe SG model, BRDF factoriza-
tions with (c) 256 terms, and (d) 64 terms.

SG mixtures and BRDF factorization when fit to this anisotropic
model. The error is calculated as in equation (11). Visual quality is
compared in Figure 6.

4 Fitting Measured BRDFs

We also tested our model on a database of real, measured BRDFs
from [Matusik et al. 2003]. For each BRDF, we first fit a microfacet
BRDF model as in [Ngan et al. 2005]. We then fit an SG mixture to
the derived NDF, while keeping analytic expressions for the other
factors (shadowing and Fresnel). Figure 8 compares reconstruction
error. We achieve lower error in all cases compared to a BRDF
factorization with 256 terms.

5 SG Warping

Our approximation warps reflectance lobes in order to extract the
BRDF view slice. Error arises in this warp because we represent
the resulting lobe using a spherical Gaussian and thus assume it
remains isotropic. We quantify this error based on a single-lobe
fit to the Cook-Torrance BRDF, using the sum of squares measure
in equation (11). The plot in Figure 9 shows that this error drops
quickly as lobe sharpness increases. The visual error is small re-
gardless of lobe sharpness, as can be seen in the rendered images of
a sphere in the figure, for various values of roughness m.

6 SSDF Product and Compression

To investigate error in approximating products between SGs and
SSDFs, we randomly selected visibility functions and their corre-
sponding SSDFs, V d

i , from N vertices in the scene shown in Fig-
ure 10, as well as M lobe directions p j . Given lobe sharpness λ ,
we calculated the squared error (vs. brute force integration with ac-
curate visibility) for inner and vector products over all vertices and

Figure 7: SSDF product error.

lobe directions. Approximation error drops rapidly as a function of
lobe sharpness, as shown in Figure 7.

Figure 10 compares our method with the method in [Ng et al.
2004] based on Haar wavelet compression of visibility cubemaps.
Moderately tessellated geometry (13.3k vertices) and densely tes-
sellated geometry (1M vertices) particularly for wavelet compres-
sion are used. The wavelet method uses the same cubemap resolu-
tion, 256×256×6, that we used to sample visibility in our method,
but requires denser geometry to obtain smooth shading result. To
be conservative, we use 400 wavelet terms to compress the BRDF
for the wavelet method, more than can be handled in a real-time
implementation.

Our result is more accurate than the wavelet method, based on an
equal compressed size (equal number of compression terms per ver-
tex), Furthermore, our method supports better per-pixel interpola-
tion, providing greater fidelity in the detailed highlight and shadow
boundaries.
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Figure 9: SG warping error.
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Figure 10: PCA-compressed SSDFs vs. wavelets on visibility cubemaps.
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