
Alternative Routes in Road Networks

Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck

Microsoft Research Silicon Valley
{ittaia, dadellin, goldberg, renatow}@microsoft.com

Abstract. We study the problem of finding good alternative routes in
road networks. We look for routes that are substantially different from
the shortest path, have small stretch, and are locally optimal. We for-
mally define the problem of finding alternative routes with a single via
vertex, develop efficient algorithms for it, and evaluate them experimen-
tally. Our algorithms are efficient enough for practical use and compare
favorably with previous methods in both speed and solution quality.

1 Introduction

We use web-based and autonomous navigation systems in everyday life. These
systems produce driving directions by computing a shortest path (or an ap-
proximation) with respect to a length function based on various measures, such
as distance and travel time. However, optimal paths do not necessarily match
the personal preferences of individual users. These preferences may be based on
better local knowledge, a bias for or against a certain route segment, or other
factors. One can deal with this issue by presenting a small number of alternative
paths and hoping one of them will satisfy the user. The goal of an algorithm is
to offer alternative paths often, and for these alternatives to look reasonable.

Recent research on route planning focused on computing only a single (short-
est) path between two given vertices (see [4] for an overview). Much less work
has been done on finding multiple routes. Some commercial products (by compa-
nies such as Google and TomTom) suggest alternative routes using proprietary
algorithms. Among published results, a natural approach is to use k-shortest
path algorithms [8], but this is impractical because a reasonable alternative in a
road network is probably not among the first few thousand paths. Another ap-
proach is to use multi-criteria optimization [13, 14], in which two or more length
functions are optimized at once, and several combinations are returned. Efficient
algorithms are presented in [5, 9]. Our focus is on computing reasonable alterna-
tives with a single cost function. In this context, the best published results we
are aware of are produced by the choice routing algorithm [2], which we discuss
in Section 4. Although it produces reasonable paths, it is not fully documented
and is not fast enough for continental-sized networks.

In this work, we study the problem of finding “reasonable” alternative routes
in road networks. We start by defining in Section 3 a natural class of admissible
alternative paths. Obviously, an alternative route must be substantially different
from the optimal path, and must not be much longer. But this is not enough:

2 I. Abraham, D. Delling, A.V. Goldberg, R.F. Werneck

alternatives must feel natural to the user, with no unnecessary detours (formally,
they must be locally optimal : every subpath up to a certain length must be a
shortest path). Even with these restrictions, the number of admissible paths
may be exponential, and computing the best one is hard. For efficiency, we focus
on a more limited (yet useful) subset. Given an origin s and a target t, we
restrict ourselves to single via paths, which are alternative routes obtained by
concatenating the shortest paths from s to v and from v to t, for some vertex v.
Section 4 discusses how the best such path can be computed in polynomial time
using the bidirectional version of Dijkstra’s algorithm (bd).

In practice, however, just polynomial time is not enough—we need sublinear
algorithms. Modern algorithms for computing (optimal) shortest paths in road
networks, such as those based on contraction hierarchies [10] and reach [11], are
often based on pruning Dijkstra’s search. After practical preprocessing steps,
they need to visit just a few hundred vertices to answer queries on continental-
sized graphs with tens of millions of vertices—orders of magnitude faster than
bd. In fact, as shown in [1], their performance is sublinear on graphs with small
highway dimension, such as road networks. Section 5 shows how to apply these
speedup techniques to the problem of finding alternative routes, and Section 6
proposes additional measures to make the resulting algorithms truly practical.

Finally, Section 7 evaluates various algorithms experimentally according to
several metrics, including path quality and running times. We show that finding
a good alternative path takes only five times as much as computing the shortest
path (with a pruning algorithm). Moreover, our pruning methods have similar
success rates to a variant of choice routing, but are orders of magnitude faster.

Summarizing, our contributions are twofold. First, we establish a rigorous
theoretical foundation for alternative paths, laying the ground for a systematic
study of the problem. Second, we present efficient algorithms (in theory and in
practice) for finding such routes.

2 Definitions and Background

Let G = (V,E) be a directed graph with nonnegative, integral weights on edges,
with |V | = n and |E| = m. Given any path P in G, let |P | be its number of
edges and `(P) be the sum of the lengths of its edges. By extension `(P ∩ Q)
is the sum of the lengths of the edges shared by paths P and Q, and `(P \ Q)
is `(P)− `(P ∩Q). Given two vertices, s and t, the point-to-point shortest path
problem (P2P) is that of finding the shortest path (denoted by Opt) from s to
t. Dijkstra’s algorithm [7] computes dist(s, t) (the distance from s to t in G) by
scanning vertices in increasing order from s. Bidirectional Dijkstra (bd) runs a
second search from t as well, and stops when both search spaces meet [3].

The reach of v, denoted by r(v), is defined as the maximum, over all shortest
u–w paths containing v, of min{dist(u, v), dist(v, w)}. bd can be pruned at all
vertices v for which both dist(s, v) > r(v) and dist(v, t) > r(v) hold [12]. The
insertion of shortcuts (edges representing shortest paths in the original graph)
may decrease the reach of some original vertices, thus significantly improving

Alternative Routes in Road Networks 3

the efficiency of this approach [11]. The resulting algorithm (called re) is three
orders of magnitude faster than plain bd on continental-sized road networks.

An even more efficient algorithm (by another order of magnitude) is contrac-
tion hierarchies (ch) [10]. During preprocessing, it sorts all vertices by impor-
tance (heuristically), then shortcuts them in this order. (To shortcut a vertex,
we remove it from the graph and add as few new edges as necessary to preserve
distances.) A query only follows an edge (u, v) if v is more important than u.

3 Admissible Alternative Paths

In this paper, we are interested in finding an alternative path P between s and
t. By definition, such a path must be significantly different from Opt : the total
length of the edges they share must be a small fraction of `(Opt).

This is not enough, however. The path must also be reasonable, with no
unnecessary detours. While driving along it, every local decision must make
sense. To formalize this notion, we require paths to be locally optimal. A first
condition for a path P to be T locally optimal (T -LO) is that every subpath P ′

of P with `(P ′) ≤ T must be a shortest path. This would be enough if P were
continuous, but for actual (discrete) paths in graphs we must “round up” with a
second condition. If P ′ is a subpath of P with `(P ′) > T and `(P ′′) < T (P ′′ is
the path obtained by removing the endpoints of P ′), then P ′ must be a shortest
path. Note that a path that is not locally optimal includes a local detour, which
in general is not desirable. (Users who need a detour could specify it separately.)

s t
Opt

u

w

v

Fig. 1. Rationale for UBS.
The alternative through w
is a concatenation of two
shortest paths, s–w and w–
t. Although it has high lo-
cal optimality, it looks un-
natural because there is a
much shorter path between
u and v.

Although local optimality is necessary for a path
to be reasonable, it is arguably not sufficient (see
Figure 1). We also require alternative paths to have
limited stretch. We say that a path P has (1+ε) uni-
formly bounded stretch ((1+ε)-UBS) if every subpath
(including P itself) has stretch at most (1 + ε).

Given these definitions, we are now ready to de-
fine formally the class of paths we are looking for.
We need three parameters: 0 < α < 1, ε ≥ 0, and
0 ≤ γ ≤ 1. Given a shortest path Opt between s
and t, we say that an s–t path P is an admissible
alternative if it satisfies the following conditions:

1. `(Opt ∩ P) ≤ γ · `(Opt) (limited sharing);
2. P is T -locally optimal for T = α · `(Opt) (local optimality);
3. P is (1 + ε)-UBS (uniformly bounded stretch).

There may be zero, one, or multiple admissible alternatives, depending on
the input and the choice of parameters. If there are multiple alternatives, we can
sort them according to some objective function f(·), which may depend on any
number of parameters (possibly including α, ε, and γ). In our experiments, we
prefer admissible paths with low stretch, low sharing and high local optimality,
as explained in Section 6. Other objective functions could be used as well.

4 I. Abraham, D. Delling, A.V. Goldberg, R.F. Werneck

Note that our definitions can be easily extended to report multiple alternative
paths. We just have to ensure that the ith alternative is sufficiently different
from the union of Opt and all i− 1 previous alternatives. The stretch and local
optimality conditions do not change, as they do not depend on other paths.

4 Single Via Paths

Even with the restrictions we impose on admissible paths, they may still be too
numerous, making it hard to find the best one efficiently. This section defines a
subclass of admissible paths (called single via paths) that is more amenable to
theoretical analysis and practical implementation. Given any vertex v, the via
path through v, Pv, is the concatenation of two shortest paths, s–v and v–t (recall
that we are looking for s–t paths). We look for via paths that are admissible. As
we will see, these can be found efficiently and work well in practice.

Note that single via paths have interesting properties. Among all s–t paths
through v (for any v), Pv is the shortest, i.e., it has the lowest stretch. Moreover,
being a concatenation of two shortest paths, the local optimality of Pv can only
be violated around v. In this sense, via paths are close to being admissible.

Although all n− 2 via paths can be implicitly generated with a single run of
bd (in O(m + n log n) time), not all of them must be admissible. For each via
path Pv, we must check whether the three admissibility conditions are obeyed.

The easiest condition to check is sharing. Let σf (v) be the sharing amount
in the forward direction (i.e., how much s–v shares with Opt , which is known).
Set σf (s) ← 0 and for each vertex v (in forward scanning order), set σf (v) to
σf (pf (v)) + `(pf (v), v) if v ∈ Opt or to σf (pf (v)) otherwise (here pf denotes
the parent in the forward search). Computing σr(v), the sharing in the reverse
direction, is similar. The total sharing amount σ(v) = `(Opt∩Pv) is σf (v)+σr(v).
Note that this entire procedure takes O(n) time.

In contrast, stretch and local optimality are much harder to evaluate, re-
quiring quadratically many shortest path queries (on various pairs of vertices).
Ideally, we would like to verify whether a path P is locally optimal (or is (1+ ε)-
UBS) in time proportional to |P | and a few shortest-path queries. We do not
know how to do this. Instead, we present alternative tests that are efficient, have
good approximation guarantees, and work well in practice.

s t
Opt

v

v′

x y

x′ y′

Fig. 2. Example for two T -tests. The
T -test for v fails because the short-
est path from u to w, indicated as a
dashed spline, does not contain v. The
test for v′ succeeds because the short-
est path from u′ to w′ contains v′.

For local optimality, there is a quick 2-
approximation. Take a via path Pv and a
parameter T . Let P1 and P2 be the s–v and
v–t subpaths of Pv, respectively. Among all
vertices in P1 that are at least T away from
v, let x be the closest to v (and let x = s if
`(P1) < T). Let y be the analogous vertex
in P2 (and let y = t if `(P2) < T). We say
that Pv passes the T -test if the portion of
Pv between x and y is a shortest path. See
Figure 2 for an example.

Alternative Routes in Road Networks 5

Lemma 1. If Pv passes the T -test, then Pv is T -LO.

Proof. Suppose Pv passes the test and consider a subpath P ′ of Pv as in the
definition of T -LO. If P ′ is a subpath of P1 or P2, then it is a shortest path.
Otherwise P ′ contains v and is a subpath of the portion of Pv between x and y
(as defined in the T -test), and therefore also a shortest path. ut

This test is very efficient: it traverses Pv at most once and runs a single
point-to-point shortest-path query. Although it may miss some admissible paths
(a T -LO path may fail the T -test), it can be off by at most a factor of two:

Lemma 2. If Pv fails the T -test, then Pv is not 2T -LO.

Proof. If Pv fails the test, then the x–y subpath in the definition of the test is
not a shortest path. Delete x and y from the subpath, creating a new path P ′′.
We know `(P ′′) < 2T (v divides it into two subpaths of length less than T),
which means Pv is not 2T -LO. ut

We now consider how to find the smallest ε for which a given path is (1 + ε)-
UBS. We cannot find the exact value efficiently, but we can approximate it:

Lemma 3. If a via path Pv has stretch (1 + ε) and passes the T -test for T =
β · dist(s, t) (with 0 < ε < β < 1), then Pv is a β

β−ε -UBS path.

Proof. Consider a subpath P ′ of Pv between vertices u and w. If v 6∈ P ′, or both
u and w are within distance T of v, then P ′ is a shortest path (as a subpath of
a shortest path). Assume v is between u and w and at least one of these vertices
is at distance more than T from v. This implies `(P ′) ≥ T = β · dist(s, t).
Furthermore, we know that `(P ′) ≤ dist(u,w)+ε ·dist(s, t) (the absolute stretch
of the subpath P ′ cannot be higher than in Pv). Combining these two inequalities,
we get that `(P ′) ≤ dist(u,w) + ε · `(P ′)/β. Rearranging the terms, we get that
`(P ′) ≤ β · dist(u,w)/(β − ε), which completes the proof. ut

BDV algorithm. We now consider a relatively fast bd-based algorithm, which
we call bdv. It grows shortest path trees from s and into t; each search stops
when it advances more that (1 + ε)`(Opt) from its origin. (This is the longest
an admissible path can be.) For each vertex v scanned in both directions, we
check whether the corresponding path Pv is approximately admissible: it shares
at most γ · `(Opt) with Opt , has limited stretch (`(Pv) ≤ (1 + ε)`(Opt)), and
passes the T -test for T = α · `(Opt). Finally, we output the best approximately
admissible via path according to the objective function.

The choice routing algorithm. A related method is the choice routing algorithm
(cr) [2]. It starts by building shortest path trees from s and to t. It then looks
at plateaus, i.e., maximal paths that appear in both trees simultaneously. In
general, a plateau u–w gives a natural s–t path: follow the out-tree from s to u,
then the plateau, then the in-tree from w to t. The algorithm selects paths cor-
responding to long plateaus, orders them according to some “goodness” criteria
(not explained in [2]), and outputs the best one (or more, if desired). Because
the paths found by cr have large plateaus, they have good local optimality:

6 I. Abraham, D. Delling, A.V. Goldberg, R.F. Werneck

Lemma 4. If P corresponds to a plateau v–w, P is dist(v, w)-LO.

Proof. If P is not a shortest path, then there are vertices x, y on P such that
the length of P between these vertices exceeds dist(x, y). Then x must strictly
precede v on P , and y must strictly follow w. This implies the lemma. ut

Note that both cr and bdv are based on bd and only examine single-via
paths. While bdv must run one point-to-point query to evaluate each candi-
date path, all plateaus can be detected in linear time. This means cr has the
same complexity as bd (ignoring the time for goodness evaluation), which is
much faster than bdv. It should be noted, however, that local optimality can be
achieved even in the absence of long plateaus. One can easily construct exam-
ples where bdv succeeds and cr fails. Still, neither method is fast enough for
continental-sized road networks.

5 Pruning

A natural approach to accelerate bd is to prune it at unimportant vertices (as
done by re or ch, for example). In this section, we show how known pruning
algorithms can be extended to find admissible single-via paths. The results of
[1] suggest that pruning is unlikely to discard promising via vertices. Because
of local optimality, an admissible alternative path P contains a long shortest
subpath P ′ that shares little with Opt . Being a shortest path, P ′ must contain
an “important” (unpruned) vertex v.

For concreteness, we focus on an algorithm based on re; we call it rev. Like
bdv, rev builds two (now pruned) shortest paths trees, out of s and into t.
We then evaluate each vertex v scanned by both searches as follows. First, we
perform two P2P queries (s–v and v–t) to find Pv. (They are necessary because
some original tree paths may be suboptimal due to pruning.) We then perform
an approximate admissibility test on Pv, as in bdv. Among all candidate paths
that pass, we return the one minimizing the objective function f(·).

The main advantage of replacing bd by re is a significant reduction in the
number of via vertices we consider. Moreover, auxiliary P2P queries (including
T -tests) can also use re, making rev potentially much faster than bdv.

An issue we must still deal with is computing the sharing amount σ(v). re
adds shortcuts to the graph, each representing a path in the original graph. To
calculate σ(v) correctly, we must solve a partial unpacking subproblem: given
a shortcut (a, c), with a ∈ Opt and c 6∈ Opt , find the vertex b ∈ Opt that
belongs to the a–c path and is farthest from a. Assuming each shortcut bypasses
exactly one vertex and the shortcut hierarchy is balanced (as is usually the case
in practice), this can be done in O(log n) time with binary search.

Running time. We can use the results of [1] to analyze rev. Our algorithms and
their implementations work for directed graphs, but to apply the results of [1]
we assume the input network is undirected in the analysis.

Alternative Routes in Road Networks 7

Suppose we have a constant-degree network of diameter D and highway di-
mension h. The reach-based query algorithm scans O(k logD) vertices and runs
in time O((k logD)2), where k is either h or h log n, depending on whether
preprocessing must be polynomial or not. For each vertex v scanned in both
directions, rev needs a constant number of P2P queries and partial unpackings.
The total running time is therefore O((k logD)3 + k logD log n), which is sub-
linear (unlike bdv or cr). The same algorithm (and analysis) can be applied if
we use contraction hierarchies; we call the resulting algorithm chv.

Relaxed reaches. Pruning may cause rev and chv to miss candidate via vertices,
leading to suboptimal solutions. In rare cases, they may not find any admissible
path even when bdv would. For rev, we can fix this by trading off some effi-
ciency. If we multiply the reach values by an appropriate constant, the algorithm
is guaranteed to find all admissible single-via paths. The resulting algorithm is
as effective as bdv, but much more efficient. It exploits the fact that vertices in
the middle of locally optimal paths have high reach:

Lemma 5. If P is T -LO and v ∈ P , then r(v) ≥ min{T/2,dist(s, v), dist(v, t)}.

Proof. Let v be at least T/2 away from the endpoints of P . Let x and y be
the closest vertices to v that are at least T/2 away from v towards s and t,
respectively. Since P is T -LO, the subpath of P between x and y is a shortest
path, and v has reach at least T/2. ut

Corollary 1. If P passes the T -test and v ∈ P , then r(v) ≥ min{T/4,dist(s, v),
dist(v, t)}.

Let δ-rev be a version of rev that uses original reach values multiplied by
δ ≥ 1 to prune the original trees from s and to t (i.e., it uses δ · r(v) instead of
r(v)). Auxiliary P2P computations to build and test via paths can still use the
original r(v) values. The algorithm clearly remains correct, but may prune fewer
vertices. The parameter δ gives a trade-off between efficiency and success rate:

Theorem 1. If δ ≥ 4(1 + ε)/α, δ-rev finds the same admissible via paths as
bdv.

Proof. Consider a via path Pv that passes the T -test for T = α · dist(s, t).
Then by Corollary 1 for every vertex u ∈ Pv, r(u) ≥ min{dist(s, v),dist(v, t), α ·
dist(s, t)/4}. When δ ≥ 4(1 + ε)/α, then δ · r(u) ≥ min{dist(s, v),dist(v, t), (1 +
ε)dist(s, t)}. Therefore no vertex on Pv is pruned, implying that dist(s, v) and
dist(v, t) are computed correctly. As a result Pv is considered as an admissible
via path. ut

The analysis of [1] implies that multiplying reach values by a constant in-
creases the query complexity by a constant multiplicative factor. Hence, the
asymptotic time bounds for rev also apply to δ-rev, for any constant δ ≥ 1.
Note that Theorem 1 assumes that δ-rev and bdv are applied on the same
graph, with no shortcuts.

8 I. Abraham, D. Delling, A.V. Goldberg, R.F. Werneck

6 Practical Algorithms

The algorithms proposed so far produce a set of candidate via paths and explic-
itly check whether each is admissible. We introduced techniques to reduce the
number of candidates and to check (approximate) admissibility faster, with a
few point-to-point queries. Unfortunately, this is not enough in practice. Truly
practical algorithms can afford at most a (very small) constant number of point-
to-point queries in total to find an alternative path. Therefore, instead of actually
evaluating all candidate paths, in our experiments we settle for finding one that
is good enough. As we will see, we sort the candidate paths according to some
objective function, test the vertices in this order, and return the first admissible
path as our answer. We consider two versions of this algorithm, one using bd
and the other (the truly practical one) a pruned shortest path algorithm (re
or ch). Although based on the methods we introduced in previous sections, the
solutions they find do not have the same theoretical guarantees. In particular,
they may not return the best (or any) via path. As Section 7 will show, however,
the heuristics still have very high success rate in practice.

The practical algorithms sort the candidate paths Pv in nondecreasing order
according to the function f(v) = 2`(v)+σ(v)−pl(v), where `(v) is the length of
the via path Pv, σ(v) is how much Pv shares with Opt , and pl(v) is the length of
the longest plateau containing v. Note that pl(v) is a lower bound on the local
optimality of Pv (by Lemma 4); by preferring vertices with high pl(v), we tend
to find an admissible path sooner.

We are now ready to describe x-bdv, an experimental version of bdv that
incorporates elements of cr for efficiency. Although much slower than our prun-
ing algorithms, this version is fast enough to run experiments on. It runs bd,
with each search stopping when its radius is greater than (1 + ε)`(Opt); we also
prune any vertex u with dist(s, u) + dist(u, t) > (1 + ε)`(Opt). In linear time,
we compute `(v), σ(v), and pl(v) for each vertex v visited by both searches. We
use these values to (implicitly) sort the alternative paths Pv in nondecreasing
order according to f(v). We return the first path Pv in this order that satis-
fies three hard constraints: `(Pv \ Opt) < (1 + ε)`(Opt \ Pv) (the detour is not
much longer than the subpath it skips), σ(v) < γ · `(Opt) (sharing is limited),
and pl(v) > α · `(Pv \ Opt) (there is enough local optimality). Note that we
specify local optimality relative to the detour only (and not the entire path, as
in Section 3). Our rationale for doing so is as follows. In practice, alternatives
sharing up to 80% with Opt may still make sense. In such cases, the T -test will
always fail unless the (path-based) local optimality is set to 10% or less. This is
too low for alternatives that share nothing with Opt. Using detour-based local
optimality is a reasonable compromise. For consistency, ε is also used to bound
the stretch of the detour (as opposed to the entire path).

The second algorithm we tested, x-rev, is similar to x-bdv but grows reach-
pruned trees out of s and into t. The stopping criteria and the evaluation of each
via vertex v are the same as in x-bdv. As explained in Section 4, re trees may
give only upper bounds on dist(s, v) and dist(v, t) for any vertex v 6∈ Opt . But
we can still use the approximate values (given by the re trees) of `(v), σ(v), and

Alternative Routes in Road Networks 9

pl(v) to sort the candidate paths in nondecreasing order according to f(v). We
then evaluate each vertex v in this order as follows. We first compute the actual
via path Pv with two re queries, s–v and v–t (as an optimization, we reuse the
original forward tree from s and the backward tree from t). Then we compute the
exact values of `(v) and σ(v) and check whether `(Pv \Opt) < (1+ε)`(Opt \Pv),
whether σ(v) < γ · `(Opt), and run a T -test with T = α · `(Pv \ Opt). If Pv
passes all three tests, we pick it as our alternative. Otherwise, we discard v as
a candidate, penalize its descendants (in both search trees) and try the next
vertex in the list. We penalize a descendant u of v in the forward (backward)
search tree by increasing f(u) by dist(s, v) (dist(v, t)). This gives less priority to
vertices that are likely to fail, keeping the number of check queries small.

A third implementation we tested was x-chv, which is similar to x-rev but
uses contraction hierarchies (rather than reaches) for pruning.

7 Experiments

We implemented the algorithms from Section 6 in C++ and compiled them with
Microsoft Visual C++ 2008. Queries use a binary heap as priority queue. The
evaluation was conducted on a dual AMD Opteron 250 running Windows 2003
Server. It is clocked at 2.4 GHz, has 16 GB of RAM and 2 x 1 MB of L2 cache.
Our code is single-threaded and runs on a single processor at a time.

We use the European road network, with 18 million vertices and 42 million
edges, made available for the 9th DIMACS Implementation Challenge [6]. It uses
travel times as the length function. (We also experimented with TIGER/USA
data, but closer examination revealed that the data has errors, with missing arcs
on several major highways and bridges. This makes the results less meaningful,
so we do not include them.) We allow the detour to have maximum stretch
ε = 25%, set the maximum sharing value to γ = 80%, and set the minimum
detour-based local optimality to α = 25% (see Section 6).

x-rev and x-chv extend the point-to-point query algorithms re [11] and
ch [10]. Since preprocessing does not change, we use the preprocessed data given
in [10, 11]. In particular, preprocessing takes 45 minutes for re and 25 for ch.

We compare the algorithms in terms of both query performance and path
quality. Performance is measured by the number of vertices scanned and by
query times (given in absolute terms and as a multiple of the corresponding P2P
method). Quality is given first by the success rate: how often the algorithm finds
as many alternatives as desired. Among the successful runs, we also compute
the average and worst uniformly-bounded stretch, sharing, and detour-based
local optimality (reporting these values requires O(|P |2) point-to-point queries
for each path P ; this evaluation is not included in the query times). Unless
otherwise stated, figures are based on 1 000 queries, with source s and target t
chosen uniformly at random.

In our first experiment, reported in Table 1, we vary p, the desired number of
alternatives to be computed by the algorithms. There is a clear trade-off between
success rates and query times. As expected, x-bdv is successful more often, while

10 I. Abraham, D. Delling, A.V. Goldberg, R.F. Werneck

Table 1. Performance of various algorithms on the European road network as the
number of desired alternatives (p) changes. Column success rate reports how often the
algorithm achieves this goal. For the successful cases, we report the (average and worst-
case) quality of the p-th alternative in terms of UBS, sharing, and detour-based local
optimality. Finally, we report the average number of scanned vertices and query times
(both in milliseconds and as a multiple of the corresponding point-to-point variant).

path quality performance
success UBS[%] sharing[%] locality[%] #scanned time slow-

p algo rate[%] avg max avg max avg min vertices [ms] down

1 x-bdv 94.5 9.4 35.8 47.2 79.9 73.1 30.3 16 963 507 26 352.0 6.0
x-rev 91.3 9.9 41.8 46.9 79.9 71.8 30.7 16 111 20.4 5.6
x-chv 58.2 10.8 42.4 42.9 79.9 72.3 29.8 1 510 3.1 4.6

2 x-bdv 81.1 11.8 38.5 62.4 80.0 71.8 29.6 16 963 507 29 795.0 6.8
x-rev 70.3 12.2 38.1 60.3 80.0 71.3 29.6 25 322 33.6 9.2
x-chv 28.6 10.8 45.4 55.3 79.6 77.6 30.3 1 685 3.6 5.3

3 x-bdv 61.6 13.2 41.2 68.9 80.0 68.7 30.6 16 963 507 33 443.0 7.7
x-rev 43.0 12.8 41.2 66.6 80.0 74.9 33.3 30 736 42.6 11.7
x-chv 10.9 12.0 41.4 59.3 80.0 79.0 36.1 1 748 3.9 5.8

x-chv is fastest. Unfortunately, x-bdv takes more than half a minute for each
query and x-chv finds an alternative in only 58.2% of the cases (the numbers are
even worse with two or three alternatives). The reach-based algorithm, x-rev,
seems to be a good compromise between these extremes. Queries are still fast
enough to be practical, and it is almost as successful as x-bdv. In only 20.4 ms,
it finds a good alternative in 91.3% of the cases.

Alternative paths, when found, tend to have similar quality, regardless of the
algorithm. This may be because the number of admissible alternatives is small:
the algorithms are much more successful at finding a single alternative than at
finding three (see Table 1). On average, the first alternative has 10% stretch, is
72% locally optimal, and shares around 47% with the optimum. Depending on
the success rate and p, the alternative query algorithm is 4 to 12 times slower
than a simple P2P query with the same algorithm. This is acceptable, considering
how much work is required to identify good alternatives.

As observed in Section 5, we can increase the success rate of rev by multi-
plying reach values by a constant δ > 1. Our second experiment evaluates how
this multiplier affects x-rev, the practical variant of rev. Table 2 reports the
success rate and query times of δ-x-rev for several values of δ when p = 1. As
predicted, higher reach bounds do improve the success rate, eventually match-
ing that of x-bdv on average. The worst-case UBS is also reduced from almost
42% to around 30% when δ increases. Furthermore, most of the quality gains
are already obtained with δ = 2, when queries are still fast enough (less than 10
times slower than a comparable P2P query).

The original reach values used by x-rev are not exact: they are upper bounds
computed by a particular preprocessing algorithm [11]. On a smaller graph (of
the Netherlands, with n ≈ 0.9M and m ≈ 2.2M), we could actually afford to

Alternative Routes in Road Networks 11

Table 2. Performance of x-rev when varying the multiplier (δ) for reach values.

path quality performance
success UBS[%] sharing[%] locality[%] #scanned time slow-

algo δ rate[%] avg max avg max avg min vertices [ms] down

x-rev 1 91.3 9.9 41.8 46.9 79.9 71.8 30.7 16 111 20.4 5.6
2 94.2 9.7 31.6 46.6 79.9 71.3 27.6 31 263 34.3 9.4
3 94.2 9.5 29.2 46.7 79.9 71.9 31.2 53 464 55.3 15.2
4 94.3 9.5 29.3 46.7 79.9 71.8 31.2 80 593 83.2 22.8
5 94.4 9.5 29.3 46.7 79.9 71.8 31.4 111 444 116.6 31.9

10 94.6 9.5 30.2 46.8 79.9 71.7 31.4 289 965 344.3 94.3

x-bdv – 94.5 9.4 35.8 47.2 79.9 73.1 30.3 16 963 507 26 352.0 6.0

compute exact reaches on the shortcut-enriched graph output by the standard
re preprocessing. On this graph, the success rate drops from 83.4% with the
original upper bounds to 81.7% with exact reaches. Multiplying the exact reaches
by δ = 2 increases the success rate again to 83.6%. With δ = 5, we get 84.7%,
very close to the 84.9% obtained by x-bdv. Note that the Dutch subgraph tends
to have fewer alternatives than Europe as a whole.

+ +
+

+
+

+

+
+

+

+
+

+ + +
+ + +

+
+

+

+
+

+

Dijkstra Rank

su
cc

es
s

ra
te

 [%
]

x x
x

x
x

x

x
x

x

x
x

x x x
x x x

x
x

x

x
x

x

25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

0
20

40
60

80
10

0

+
x

X−BDV
X−REV
X−CHV
2−X−REV
10−X−REV

Fig. 3. Success rate for x-bdv, x-rev, 2-x-
rev, 10-x-rev, and x-chv when varying the
Dijkstra rank of queries for p = 1.

To examine this issue in detail,
Figure 3 reports the success rate of
our algorithms for p = 1 and vari-
ous Dijkstra ranks on Europe. The
Dijkstra rank of v with respect to s
is i if v is the ith vertex taken from
the priority queue when running a
Dijkstra query from s. The results
are based on 1 000 queries for each
rank. We observe that the suc-
cess rate is lower for local queries,
as expected. Still, for mid-range
queries we find an alternative in
60% to 80% of the cases, which
seems reasonable. (Recall that an
admissible alternative may not ex-
ist.) Multiplying reach values helps
all types of queries: 2-x-rev has almost the same success rate as x-bdv for all
ranks and number of alternatives examined.

8 Conclusion

By introducing the notion of admissibility, we have given the first formal treat-
ment to the problem of finding alternative paths. The natural concept of local
optimality allows us to prove properties of such paths. Moreover, we have given
theoretically efficient algorithms for an important subclass, that of single via

12 I. Abraham, D. Delling, A.V. Goldberg, R.F. Werneck

paths. We concentrated on making the approach efficient for real-time applica-
tions by designing approximate admissibility tests and an optimization function
biased towards admissible paths. Our experiments have shown that these sim-
plified versions are practical for real, continental-sized road networks.

More generally, however, our techniques allow us to do optimization con-
strained to the (polynomially computable) set of admissible single via paths. We
could optimize other functions over this set, such as fuel consumption, time in
traffic, or tolls. This gives a (heuristic) alternative to multi-criteria optimization.

Our work leads to natural open questions. In particular, are there efficient
exact tests for local optimality and uniformly bounded stretch? Furthermore, can
one find admissible paths with multiple via vertices efficiently? This is especially
interesting because it helps computing arbitrary admissible paths, since any
admissible alternative with stretch 1+ε and local optimality α ·`(Opt) is defined
by at most d(1 + ε)/αe − 1 via points.

References

1. I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck. Highway Dimension,
Shortest Paths, and Provably Efficient Algorithms. In SODA, pages 782–793, 2010.

2. Cambridge Vehicle Information Technology Ltd. Choice Routing, 2005. Available
at http://www.camvit.com.

3. G. B. Dantzig. Linear Programming and Extensions. Princeton Univ. Press, Prince-
ton, NJ, 1962.

4. D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering Route Planning
Algorithms. In J. Lerner, D. Wagner, and K. Zweig, editors, Algorithmics of Large
and Complex Networks, volume 5515 of LNCS, pages 117–139. Springer, 2009.

5. D. Delling and D. Wagner. Pareto Paths with SHARC. In J. Vahrenhold, editor,
SEA’09, volume 5526 of LNCS, pages 125–136. Springer, June 2009.

6. C. Demetrescu, A. V. Goldberg, and D. S. Johnson, editors. 9th DIMACS Imple-
mentation Challenge - Shortest Paths, 2006.

7. E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1:269–271, 1959.

8. D. Eppstein. Finding the k shortest paths. In Proceedings of the 35th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’94), pages 154–165, 1994.

9. R. Geisberger, M. Kobitzsch, and P. Sanders. Route Planning with Flexible Ob-
jective Functions. In ALENEX, pages 124–137. SIAM, 2010.

10. R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction Hierarchies:
Faster and Simpler Hierarchical Routing in Road Networks. In C. C. McGeoch,
editor, WEA’08, volume 5038 of LNCS, pages 319–333. Springer, June 2008.

11. A. V. Goldberg, H. Kaplan, and R. F. Werneck. Reach for A*: Shortest Path Algo-
rithms with Preprocessing. In C. Demetrescu, A. V. Goldberg, and D. S. Johnson,
editors, The Shortest Path Problem: Ninth DIMACS Implementation Challenge,
volume 74 of DIMACS Book, pages 93–139. American Mathematical Society, 2009.

12. R. J. Gutman. Reach-Based Routing: A New Approach to Shortest Path Algo-
rithms Optimized for Road Networks. In ALENEX, pages 100–111. SIAM, 2004.

13. P. Hansen. Bricriteria Path Problems. In G. Fandel and T. Gal, editors, Multiple
Criteria Decision Making: Theory and Application, pages 109–127. Springer, 1979.

14. E. Q. Martins. On a Multicriteria Shortest Path Problem. European Journal of
Operational Research, 26(3):236–245, 1984.

