
Catnap: Exploiting High Bandwidth Wireless Interfaces to
Save Energy for Mobile Devices

Fahad R. Dogar
Carnegie Mellon University

Pittsburgh, PA, US

fdogar@cs.cmu.edu

Peter Steenkiste
Carnegie Mellon University

Pittsburgh, PA, US

prs@cs.cmu.edu

Konstantina
Papagiannaki

Intel Labs, Pittsburgh, PA, US

dina.papagiannaki@intel.com

ABSTRACT

Energy management is a critical issue for mobile devices,
with network activity often consuming a significant portion
of the total system energy. In this paper, we propose Cat-
nap, a system that reduces energy consumption of mobile
devices by allowing them to sleep during data transfers. Cat-
nap exploits high bandwidth wireless interfaces – which offer
significantly higher bandwidth compared to available band-
width across the Internet – by combining small gaps between
packets into meaningful sleep intervals, thereby allowing the
NIC as well as the device to doze off. Catnap targets data
oriented applications, such as web and file transfers, which
can afford delay of individual packets as long as the overall
transfer times do not increase. Our evaluation shows that
for small transfers (128kB to 5MB), Catnap allows the NIC
to sleep for up to 70% of the total transfer time and for
larger transfers, it allows the whole device to sleep for a sig-
nificant fraction of the total transfer time. This results in
battery life improvement of up to 2-5x for real devices like
Nokia N810 and Thinkpad T60.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms

Design, Measurement, Performance, Experimentation

Keywords

Energy Efficiency, System Power Management, Traffic Shap-
ing, Wireless, Mobile Devices

1. INTRODUCTION
Energy efficiency has always been a critical goal for mo-

bile devices as improved battery lifetime can enhance user
experience and productivity [25, 23]. A well-known strat-
egy for saving power is to sleep during idle times. Prior

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’10, June 15–18, 2010, San Francisco, California, USA.
Copyright 2010 ACM 978-1-60558-985-5/10/06 ...$10.00.

work in this context exploits idleness at various levels, such
as sleeping during user think time [8] or when TCP is in
slow start [20]. Recent work also explores the possibility of
entering low power consuming states in the middle of data
transfers [21]. However, deeper sleep modes, such as 802.11
PSM or Suspend-to-RAM (S3), are assumed to be unusable
during data transfers when applications are constantly send-
ing data, as entering into these sleep states degrades appli-
cation performance due to the overhead of using these sleep
modes [5, 20].

In this paper, we propose Catnap, a system that saves
energy by combining tiny gaps between packets into mean-
ingful sleep intervals, allowing mobile clients to sleep during

data transfers. These tiny gaps arise when a high bandwidth
access link is bottlenecked by some slow link on the path to
the Internet. A typical example is a home wireless network
where 802.11 offers high data rates (54Mbps for 802.11g and
300Mbps for 802.11n) but the uplink to the Internet (Cable,
DSL) offers much lower bandwidth, typically in the range
of 1-6 Mbps. Catnap is targeted towards data oriented ap-
plications (e.g., web, ftp, etc) that consume data in blocks,
so combining small idle periods and hence delaying individ-
ual packets is acceptable if the data block is delivered on
time. These blocks are often called Application Data Units

(ADU) [10].
Catnap builds on three concepts. First, it decouples the

wired segment from the wireless segment, thereby allowing
the wireless segment to remain inactive even when the wired
segment is actively transferring data [14, 6]. We call the func-
tional component separating the wireless and wired segment
a “middlebox”, a capability that could easily be integrated
with a home wireless Access Point (AP)1. The middlebox
will batch packets when the mobile device is sleeping and
send them in a burst when the device wakes up. Second, it
uses an ADU (e.g., web object, telnet command, P2P chunk,
etc.) as the unit of transfer. This allows the middlebox to
remain application independent and yet be aware of appli-

cation requirements, thereby ensuring that delay sensitive
packets (e.g., telnet) are differentiated from delay tolerant
packets (e.g., web, ftp). Third, the middlebox uses band-
width estimation techniques [18] to calculate the available
bandwidth on the wired and wireless links. The bandwidth
estimates determine the amount of batching required for on-
time ADU delivery. These concepts have been used in dif-

1Note that such capability does not necessitate the introduc-
tion of a new device, but could easily be supported by other
existing devices on the path between the wireless client and
its intended wired destination.

107

Application Type Examples Catnap Strategy Expected Benefits Remarks
(Target Device)

Interactive VoIP None None Device and NIC remain up to
maintain user experience

Short Web Transfers facebook Batch Mode 30% NIC sleep time - Embedded objects rendered together
(<100kB) google (Small Devices: (Section 6) - Batching may require some app.

Smart Phones, specific support at the proxy
Tablets, etc.) (e.g., java scripts)

Medium Sized you-tube Normal Mode up to 70% NIC No impact on user experience
Transfers (128kB flickr images (Small Devices) sleep time (Section 5.4)
to 5MB) mp3 songs
Large Transfers maps & movies 1. Normal Mode 1. >70% NIC sleep time 1. No impact on user experience
(>5MB) software updates (Small Devices) 2. 40% device sleep 2. User permission to enter

ISR [19] 2. S3 Mode time for a 10MB transfer S3 mode is desirable (Section 7)
(All Devices) (Section 5.4)

Table 1: Energy Savings with Catnap for different types of applications. Evaluation numbers correspond
to an 802.11g wireless access network with a 1.5Mbps wired Internet connection. NIC sleep mode targets
smaller devices, such as tablets and smart-phones, where the NIC activity can consume up to 60% of the
total energy [25]. S3 mode is applicable for all mobile devices (including laptops) as the whole device goes
into sleep state, consuming negligible power.

ferent contexts but are combined in Catnap in a novel way
to create sleep opportunities.

We have implemented a prototype of Catnap as an appli-
cation independent process at the middlebox. This process
resembles the functionality of a proxy in acting as a “trans-
lational” functional component, but supports several other
functions as we explain later. For lack of a better term we
will call it a “proxy” in what follows.

The proxy uses traditional transport layer connection split-
ting to decouple wired and wireless segments, but supple-
ments OS buffers with extra storage capacity. This ensures
that data continues to flow on the wired segment even if the
client is in sleep mode for arbitrary long intervals of time.
Catnap further implements a novel scheduler that schedules
ADU transmissions on the wireless segment, ensuring max-
imum sleep time for the clients with little or no impact on
the end-to-end transfer time. The scheduler dynamically
reschedules transfers if conditions change on the wired or
wireless segments, or new requests arrive at the proxy. The
scheduler can further operate in two modes: i) one where no
increase in end-to-end transfer completion time is allowed,
and ii) a second one, that we call batch mode. In this lat-
ter case, multiple small objects are batched together at the

proxy to form one large object, allowing additional energy
savings at the cost of increased delay for individual objects.

1.1 Energy Savings with Catnap
Table 1 gives an overview of Catnap’s benefits for various

applications, also highlighting some of the possible issues
with using Catnap. As we can see from the table, for transfer
sizes larger than 128kB, Catnap can put the NIC to sleep for
almost 70% of the total transfer time without any impact on
user experience. For transfers larger than 10MB, S3 mode
provides significant system wide energy savings. However,
its use is limited to scenarios where the user is not involved
in other tasks. Our evaluation further demonstrates the
ability of Catnap to benefit existing application protocols,
such as HTTP and IMAP, without requiring modifications
to servers or clients. Performance and energy efficiency are
sometimes at odds in these application scenarios that often
involve transfer of very small blocks of data (e.g., short web
transfers). We demonstrate using the Catnap batch mode

that one can manage such a trade-off for very small trans-
fers by batching multiple objects at the proxy.

1.2 Contributions
The key contributions of this paper are:

• We design and implement Catnap which exploits the
bandwidth discrepancy between wireless and wired links
to improve energy consumption of mobile devices. The
key design components of Catnap include an applica-
tion independent proxy that decouples wired and wire-
less segments, and a scheduler that operates on ADUs
and attempts to maximize client sleep time without
increasing overall ADU transfer times.

• We conduct a detailed evaluation of Catnap using real
hardware, under realistic network conditions. We show
how Catnap can improve battery life of tablet PCs and
laptops by enabling various sleep modes. We also con-
sider case studies of how existing application protocols,
like HTTP and IMAP, can use and benefit from Cat-
nap.

Our results clearly attest to the promise of Catnap to
increase mobile client battery lifetime at no to little perfor-
mance impact.

1.3 Paper Organization
The rest of the paper is organized as follows. In Section 2,

we motivate the need for Catnap. We present the design and
implementation of Catnap in Sections 3 and 4. Section 5
presents the detailed evaluation of Catnap. In Section 6,
we present case studies that show how two legacy applica-
tion protocols (IMAP and HTTP) can use and benefit from
Catnap. We discuss the usability aspects of Catnap in Sec-
tion 7. Finally, we discuss some future extensions to Catnap
and present our conclusions.

2. MOTIVATION
We first motivate the need for a system wide view of en-

ergy management with a focus on why existing sleep modes
are often not very useful in practice. We then discuss an
opportunity for energy savings and how we can exploit it to

108

Suspend-to-RAM (S3) 802.11 PSM
10 sec Beacon Interval (≈ 100ms)

Table 2: Overhead of using different sleep modes.

enable various sleep modes without degrading application
performance.

2.1 Sleep Modes – Potential Benefits and Lim-
itations

Many devices today offer a range of sleep modes that al-
low sub-components of the system to be placed in various
sleep states. The benefits of putting specific sub-systems
into sleep mode depend on the contribution of each sub-
system to the overall energy consumption. For example,
802.11 consumes less than 15% of the total power on a laptop
but can consume more than 60% power of the total power
on a small hand-held device [25]. As a result, the benefits
of 802.11 power saving mode (PSM) depend heavily on the
device in use. On the other extreme are deep sleep modes
like S3 (Suspend-to-RAM) that benefit both small as well
as large devices, since they shut-off most of the device cir-
cuitry, thereby hardly consuming any power at all. There
are also other sleep modes that are becominge increasingly
more popular, such as a “reading mode” that keeps the dis-
play on but puts most of the other sub-systems into sleep
mode, or a “music mode” that can be used if the user is only
listening to music and not doing any other task. As network
activity is often an important part of the user’s interaction
with the device, managing it in an intelligent manner can be
critical for increasing the battery life of mobile devices.

Limitations of Power Saving Modes: In today’s Inter-
net, it is difficult to utilize the available sleep modes during

data transfers because of their associated overheads. Table 2
lists the overhead of entering and leaving the sleep state
when using Suspend-to-RAM(S3) and 802.11 PSM modes.
For the S3 mode, the associated overhead approaches 10
seconds [4], and is clearly unsuitable for TCP based applica-
tions. Similarly, for 802.11 PSM, the NIC wakes-up at the
granularity of beacon intervals (100ms); as packets can be
delayed by this interval, performance of applications like tel-
net, VoIP, distributed file access, or short web transfers can
be severely degraded if the NIC goes into sleep mode when
these applications are in use [5, 20]. Therefore, there is gen-
eral consensus that the NIC should not enter PSM mode
as soon as it encounters an idle period – rather it should
only enter sleep mode when this will not impact application
performance [5, 20, 21].

Making the PSM implementation aware of application la-
tency requirements is problematic for various reasons. First,
it hinders application innovation as policies for new appli-
cations have to be incorporated in the PSM. Second, a sin-
gle application, like web, could support streaming, instant
messaging, and file transfers, that have very different inter-
activity requirements. Therefore, most 802.11 cards use a
conservative policy of entering PSM only when there is no
network activity for a certain time (generally on the order of
100ms). This ensures that cards do not sleep in the middle
of an application session, even for applications that do not
send packets continuously (e.g., VoIP).

We conducted an experiment to verify this for a 802.11g
based network with a cable modem providing the uplink con-
nection. As shown in Table 3, applications like ping and ssh

ping ssh web-transfer ftp
Total Time (sec) 10 20 5 100
Sleep Time (sec) 7 12 0 0

Table 3: Transfer and NIC sleep times for differ-
ent applications in a typical home wireless scenario.
Applications that constantly send data (web and file
transfer) do not allow any NIC sleep time.

Figure 1: Data transfer in a typical home wireless
scenario. Idle periods on the wireless segment are
individually too short and remain un-utilized.

that have idle periods, either because of inherent 1sec gaps
between successive packets or due to user think time, can
indeed allow the NIC to sleep throughout their execution.
On the other hand, data intensive applications, like file or
web transfer, tend to send data as fast as possible and thus
will hardly lead to any significant idle periods that could
allow the NIC to enter sleep mode. As these data intensive
applications become increasingly more popular, we need to
find avenues where we can save power even while using these
applications.

2.2 Opportunity – High Bandwidth Wireless
Interfaces

Figure 1 depicts one such opportunity that can allow en-
ergy savings during the use of data oriented applications. It
shows a typical 802.11g based home wireless network that
connects to the Internet through a DSL connection. The
server is constantly sending packets to the access point (AP)
but packets sent on the wireless channel are roughly spaced
by the packet transmission time on the bottleneck link (DSL).
For the example scenario, this idle time is less than 4 mil-
lisecond. As discussed and shown earlier, 802.11 PSM does
not exploit these small idle opportunities and the NIC re-
mains up for the whole transfer duration. Of course, using
S3 mode in this scenario is impossible as TCP will likely
time-out during the time the client is in S3 state.

Discussion: It is difficult to exploit the above opportu-
nity in today’s Internet. The key reasons are as follows:

• It is difficult for the network/middlebox to differen-
tiate between packets that are needed immediately by
the client from packets that can be potentially delayed.
For example, a telnet packet should be delivered im-
mediately while a packet that is part of an HTTP re-
sponse message can be delayed until the whole message
is received. This implies that applications should be
able to provide a workload hint to the network/middlebox
indicating when the data is consumed by the applica-
tion.

• The current TCP based communication model assumes
strict synchronization between end-hosts. Not only the
two end-points need to be present at all times but they

109

Figure 2: Basic overview of Catnap.

also need to send regular messages (e.g., ACKs) in or-
der to sustain communication. This limits the oppor-
tunities to sleep for a mobile client, as going into sleep
mode could result in degradation in performance or
even loss of connection. The system should be able
to support relaxed syncronization between end-points,
allowing middleboxes to shape traffic in a way that al-
lows maximum sleep time for the mobile device.

3. CATNAP: DESIGN
Catnap addresses the above two problems, thereby exploit-

ing the opportunity created by bandwidth discrepancy be-
tween the wired and wireless segments. We first provide a
high level overview of Catnap followed by details on its main
components.

3.1 Overview
Figure 2 provides the high level overview of Catnap by

showing the key steps involved in a typical data transfer.
The client application establishes a transport connection
with the Catnap proxy. It then sends the request to the
proxy that checks whether the request can be served through
the local cache. If this is not the case, the proxy forwards the
request to the destination server over a separate transport
connection (proxy - server). The server sends the response
to the Catnap proxy that schedules the best time to initiate
the wireless transmission to the client, so as to minimize the
time the client is awake.

The timing of the transmission is based on what we term
as workload hints. Workload hints expose information on
the ADU boundaries in the provided server response and the
willingness of the client to suffer a slight increase in overall
transfer completion time for additional energy savings. The
former can be provided by the server itself or through an
application specific proxy on the middlebox. We go through
the workload hints in more detail later in this section.

The scheduler uses the workload hints along with infor-
mation about the wired and wireless bandwidth to calcu-
late the total transfer time and the length of the time slot
needed to transmit the block of data on the wireless side.
In the general case, the wireless time slot is scheduled as
late as possible while ensuring that transfer times do not in-
crease. Of course, the network conditions can change or new
requests overlapping with the previous time slot can arrive,
so the scheduler may need to update its scheduling decision
as new information becomes available. The Catnap sched-

uler can further operate in what we call the batch mode. If
the client is tolerant to a slight increase in the transfer com-
pletion time, then the scheduler can concatenate multiple
small slots into bigger ones, thus allowing for greater energy
savings. The workload hint will convey the willingness of
the client to employ the batch mode.

Finally, while this paper focuses on Catnap’s benefits in
download scenarios, the case of uploading data from the mo-
bile device to the Internet is even simpler and does not re-
quire the full Catnap functionality. In an upload scenario,
the device bursts the data to the proxy that buffers it and
sends it at the bottleneck rate to the destination. The Cat-
nap scheduler does not need to be involved in this case.

3.2 Example Scenarios
We discuss two example scenarios in which Catnap can

provide energy savings: i) small transfers where the NIC can
be put into sleep mode, ii) larg downloads where the whole
device can be put into sleep using the S3 mode. In both
examples, we quantify the potential energy savings under
the network configuration shown in Figure 1.

NIC energy savings for small transfers (< 1MB):
Examples of such small transfers include many web-pages,
high resolution images, and initial buffering requirements
of video streaming (e.g., you-tube). For a 128kB transfer,
the total time required to complete the transfer is 350ms
while it takes only 35ms to complete the transfer on the
wireless link. This means that the remaining time (315ms)
can be used by the mobile device to sleep. As we show in
Section 5, this time is long enough for the wireless NIC to
enter sleep mode and then return without any change to
the PSM implementation. As a result, the user does not
experience any change in response times.

S3 sleep mode for large transfers (> 5 MB): Exam-
ples of larg transfers include: downloading a song or a video,
downloading high resolution maps, file synchronization be-
tween devices, or downloading a virtual machine image to
resume a suspended session (e.g., ISR [19]). If we assume
a 10MB transfer, the total transfer time is 27 seconds. The
wireless transmission takes only 2.7 seconds. The mobile de-
vice can thus sleep for the remaining time (24.3 seconds). A
duration of tens of seconds is long enough to enter and exit
S3 mode. We show in Section 5 how S3 mode can provide
significant energy savings for large file transfers.

The important thing to note here is that we can only use
S3 mode if the user is not doing any other task while the
download is taking place. For example, the user starts the
download and leaves the device to grab coffee, or the user
stops at a gas station and starts downloading mp3 songs
while she refuels her car. In such cases, as the user is not
actively using the device, the system can easily use the S3
mode. In some scenarios, the user may be so short of battery
that she is willing to stop other tasks in order to get energy
savings from the S3 mode. We discuss the usability aspects
of the S3 mode later in Section 7.

3.3 Proxy
Catnap achieves decoupling between the wired and wire-

less segments by introducing a proxy at the middlebox. The
proxy uses a combination of split connection approaches [6]
and DTN-style in-network storage [14]. This is important
because in some cases we want the Catnap proxy to operate
in a cut-through way i.e., to forward data as soon as it re-

110

ceives it, which is similar to the split connection approaches.
However, in some cases the proxy may need to buffer a large
amount of data before sending it to the client. This case is
similar to the DTN-style store and forward approach that
requires extra storage to supplement the OS buffers.

Supporting the above form of decoupling allows Catnap
to leverage the well understood benefits of split connection
approaches like independent congestion and error control on
the two segments, and the high performance of cut through
data transfers [6]. In addition, extra storage at the middle-
box for buffering data also ensures that even if the wireless
segment is inactive, data continues to flow on the wired seg-
ment at the maximum rate and is not flow controlled. This
form of decoupling, however, may create problems due to
the additional state at the middlebox. Specifically, it can
introduce new middlebox failure modes that can break ap-
plication semantics or make it difficult to handle mobility
across different subnets [6]. Such problems already exist due
to the widespread deployment of middleboxes (e.g., NATs)
and can be addressed using enhancements to the Internet
architecture [12].

Deployment Scenarios: As data oriented applications
get more popular, the storage requirements of a Catnap
proxy will increase. Many modern APs already support the
addition of USB sticks that can provide this extra storage
for Catnap [1]. In certain deployments (e.g., enterprise set-
tings) that use thin APs and a centralized controller, we
expect the Catnap functionality and the storage to be co-
located with the centralized controller. This provides an
easy way to deploy Catnap without modifying all the APs
in an enterprise. The main point is that the Catnap proxy
should be placed at a point that can decouple the end-to-
end path into two segments: a bottleneck segment on the
one side and a high bandwidth segment on the other side.
So the proxy need not always be physically co-located with
the wireless AP. This implementation strategy also naturally
handles mobility within a subnet, as data is buffered at the
central controller rather than at individual APs. However,
the scheduling decision may need to be updated after a hand-
off, as the wireless bandwidth available to the new AP may
significantly differ from the bandwidth available to the old
AP.

3.4 Workload Hints
Catnap relies on the concept of ADU to identify when a

certain data block will be used by an application [10]. The
concept of ADU is well known in the networking community
as it is a natural unit of data transfer for applications. Differ-
ent applications use different ADUs – for example, P2P ap-
plications can define a chunk as an ADU because the down-
load and upload decisions in P2P applications are made at
the granularity of a chunk. Similarly, a file transfer applica-
tion can define the whole file as an ADU because a partial file
is generally useless for the users. In some contexts, defining
an ADU may vary depending on the scenario. For exam-
ple, a web server can define all objects embedded within a
web-page as one ADU if all the objects are locally stored or
as separate ADUs if these objects need to be fetched from
different servers. ADUs also have other advantages – for
example, they are a natural data unit for caching at the
middlebox

While applications naturally operate on ADUs, data trans-
fer is based on byte streams (TCP based sockets) rather than

ADUs. In order for Catnap to estimate the oncoming work-
load, we need to identify the boundary between ADUs. Such
information can be provided by the application or through
an application specific proxy on the middlebox. Note that
most applications have an implicit notion of ADUs embed-
ded in their byte stream. For example, as we discuss in
Section 6, both HTTP and IMAP implicitly define their re-
sponses as ADUs – they also have headers that include the
length of the ADUs in them. Such information could be
easily extracted by an application specific proxy on the mid-
dlebox.

In the case when workload hints are provided by the servers,
each ADU is preceded by a short header. The header com-
prises three fields: (ID, Length, Mode). The Length field
is the most important as it allows the proxy to identify ADU
boundaries, enabling the proxy to know when the ADU will
be “consumed” by the application. The Mode field indicates
the client’s willingness to use batch mode. In our current de-
sign, knowledge on Mode is sent from the client to the proxy
and played back by the server. The default mode is not to
use batching. Finally, the ID field is optional and is used to
identify and cache an ADU.

3.5 Scheduler
The scheduler is the heart of Catnap as it determines how

much sleep time is possible for a given transfer. The goal
is to maximize the sleep time without increasing the total
transfer time of requests. This requires precision in schedul-
ing and the ability to dynamically reschedule requests if the
conditions change. The rescheduling of requests also ensures
fairness amongst requests as old requests can be multiplexed
with a new request that arrives later in future.2

As we do not want to increase the transfer time, we rule
out the simple store and forward technique where the mid-
dlebox receives the whole ADU and then transfers it to the
mobile client. As this strategy is agnostic of network condi-
tions, it could add significant delay if the wireless medium
is temporarily congested. In some cases, however, the client
may be willing to tolerate additional delay if this improves
the battery life. The user would, however, want control over
this option, so it can be used in a judicious manner. Based
on these requirements, the scheduler provides two modes:
in the normal mode it allows maximum sleep time without
increasing the transfer time, while in the batch mode it pro-
vides savings on top of the normal mode by batching (and
thus delaying) data. We will first focus on the normal mode
and then discuss how we provide additional support in the
form of batching.

How much can we sleep? There are four variables
that determine the amount of sleep time that is possible for
a given transfer: i) the size of the transfer, ii) the cost (in
terms of time) of using a sleep mode, iii) the available band-
width on the wired segment, and iv) the available bandwidth
on the wireless segment.

The first two variables are easier to determine. The hints
provide the Catnap proxy with the size of the transfer. Sim-
ilarly, the cost of entering a sleep mode is generally fixed for
a certain sleep mode and device. The last two factors i.e.,
available bandwidth on the wired and wireless segments, are

2For fairness amongst different stations (different Catnap
proxies or legacy 802.11 stations), we rely on the fairness
provided by 802.11.

111

more difficult to determine. Given these four variables, the
sleep time for a given transfer is given by:

TSleep =
SizeADU

BWWired

− (
SizeADU

BWWireless

+ CostSleepMode) (1)

The first term is the time required to complete the transfer
on the wired segment. If the wired segment is the bottleneck
then this time is also the total transfer time. We can only
sleep if this time is greater than the sum of the transfer
time on the wireless segment and the cost of using the sleep
mode. The equation provides some intuition for Catnap.
For example, sleep mode is only possible when the wireless
bandwidth is more than the wired bandwidth. Similarly,
because of the fixed cost of using a sleep mode we need a
minimum size for the ADU to get benefits from sleeping. As
we increase the ADU size this cost is amortized and we can
get more time to sleep. The last observation provides the
motivation behind Catnap’s batch mode.

Challenges: Leveraging the above sleep time benefits
involves several challenges. First, calculating the available
bandwidth is difficult, especially for the wireless medium,
which is a shared resource. Conditions on the server side
can also change due to extra load that may impact the fin-
ish time of transfers. A second, but related, challenge is
that transfer requests come in an online manner – the proxy
does not have a-priori information about future requests. So
Catnap’s policy of waiting and batching data may prove sub-
optimal as new requests may arrive during the batching pe-
riod. In summary, the Catnap scheduler has to account for
unpredictability in network conditions as well as the online
nature of the requests arriving at the proxy.

1. Estimate Capacity of Wired Link

2. Estimate Available BW for this transfer

3. Calculate finish time (FT) of transfer

4. Estimate Wireless Capacity

5. Calculate Virtual Slot Time (VST)

6. Schedule Transfer at (FT − VST)

Shift or Merge Slots, if required

7. Periodically check for Rescheduling

Figure 3: Basic steps of the scheduling algorithm.

3.5.1 Algorithm

Figure 3 lists the basic steps of Catnap’s scheduling al-
gorithm. It accounts for conditions on both the wired and
wireless medium in deciding when to schedule a transfer.
Furthermore, it reschedules requests based on changes in
network conditions (both wired and wireless) or the arrival
of new requests.

The two key features of the scheduling algorithm are: i) it
mostly relies on information that is already present with the
Catnap proxy to estimate the finish time of the transfer, as
well as the slot time on the wireless segment and ii) it avoids
multiplexing time slots for different clients on the wireless
side, as this results in extending the slot time for all the
clients that are multiplexed.3

3As an example, consider two clients with a transfer dura-
tion of 3ms each. Multiplexing them together means that
both of them are up for approximately 6ms whereas without
multiplexing they only need to be up for 3ms.

We now describe the scheduling steps in detail. Recall
that the scheduling decision is made when the Catnap proxy
receives the response that has the workload hint about the
length of the transfer. With this information, the scheduler
performs the following steps:

Step 1 – Estimate wired capacity. On the wired side,
the bottleneck could be the access link, a core Internet link,
or the server. Earlier studies have shown that broadband ac-
cess links are often the bottleneck in the end-to-end path [11].
Therefore, as our main target is home wireless scenarios, it
is reasonable to start-off with the assumption that the ac-
cess link is the bottleneck in the wired path. We can use
a fixed value if the access capacity remains constant (e.g.,
DSL) or we can periodically use an existing bandwidth esti-
mation tool to estimate the capacity of the access link [17].
To account for the case that the bottleneck is elsewhere,
e.g., on the server, the Catnap proxy continuously monitors
the throughput that is actually achieved on the server-proxy
path.4 If the observed throughput differs from the initial
bandwidth estimate, the transfer is re-scheduled (Step 7)
using the observed throughput as the new estimate.

Step 2 – Estimate Available BW for the transfer.
When estimating the available bandwidth for a transfer, we
need to account for the fact that multiple transfers may be
using the access link at the same time. This is necessary
when we use the access link bandwidth as an initial estimate
of available bandwidth. To this end, the proxy identifies all
active transfers and splits the access bandwidth among these
transfers in different proportions. As the transfers are TCP
based, we divide the bandwidth in an RTT-proportional way
amongst the ongoing transfers. Note that bandwidth esti-
mates based on observed throughput automatically account
for the sharing of the access link, so if this estimate is in-
correct, it will be updated based on actual observed perfor-
mance (Step 7).

Step 3 – Calculate transfer finish time. Recall that
the scheduler already knows the length of the transfer (Length).
Step 2 also provides information about the available band-
width for the transfer on the wired side. So combining these
two pieces of information allows the scheduler to determine
the finish time (FT) of the transfer. This time is important
since it constitutes the scheduler’s deadline for the client
transfer.

Step 4 – Estimate wireless capacity. Based on steps
1-3 we know how long the transfer will take on the wired
server-proxy segment. We also need a similar estimate for
the wireless segment and estimating the available wireless
capacity is a first step in this direction. Note that the condi-
tions may change, but we use the current available capacity
as a guide to what we will likely experience in the future. As
wireless is a shared resource and the proxy can potentially
overhear other transmissions in its neighbourhood, our pro-
totype uses the medium busy/idle time as the basis for wire-
less capacity estimation. We provide more details on our
specific implementation in Section 4.3.

Step 5 – Calculate Virtual Slot time. Estimating
the wireless capacity allows the proxy to know how much
channel access it will get on the wireless medium (Step 4).
We then combine this information with the bit-rate used
between the client and the AP to estimate the expected
throughput between the proxy and the client. Finally, based

4We ignore this step for short transfers due to the effects of
TCP slow start.

112

Figure 4: Different cases of virtual time slot schedul-
ing.

on the expected throughput and the size of the transfer, we
know the time required to burst the whole transfer on the
wireless segment. We call this the virtual slot time (VST).
Note that we also add a small padding time to each vir-
tual time slot as a safety measure to account for unexpected
changes to the network conditions.

Step 6 – Schedule the Virtual Slot. Ideally, we want
to schedule the virtual time slot as late as possible so that its
end time aligns exactly with the finish time of the request.
If there is no other transfer scheduled at that time then we
can simply schedule the virtual time slot at this position
(Figure 4: Case 1).

However, there will be cases when multiple transfers con-
tend for wireless transmission time, e.g., a new transfer over-
laps with a previously scheduled transfer. In such cases, if
the new and old slots belong to the same client then we
simply multiplex them together and make a bigger time slot
(Case 2). The case where the slots partially overlap is also
handled naturally in this case.

In contrast, if the two slots belong to different clients,
then multiplexing them together is not the best strategy as
it increases the up time for both clients. So if the time slots
correspond to different clients then we should schedule them
at non-overlapping times. However, non-overlapping time
slots mean that at least one of the time slots is scheduled
after its original finish time (Case 3). We can pick any
order for scheduling the requests (A-B or B-A), if the slots
perfectly overlap. If the slots partially overlap then we first
schedule the transmission that has an earlier deadline.

We adopt this strategy of non-overlapping time slots if
the increase in delay is less than a certain threshold, other-
wise we multiplex the two time slots. This threshold can be
tuned to achieve greater energy savings at the cost of some
increase in delay.5 For example, a very small value of the
threshold can be used if the user is not willing to tolerate
any additional delay and a higher value of the threshold may
be fine if the user is running short of battery. We discuss
possible ways to capture such user preferences in Section 7.

A final point is that multiplexing two slots increases the

5Our current implementation uses a fixed value for this
threshold.

slot length and the new, bigger time slot may start overlap-
ping with some other slot, so this decision needs to be made
recursively. In practice, implementations can put a limit
to the number of slots that can be disturbed. If this limit
is exceeded, then a slot is scheduled even if the scheduled
completion time exceeds the finish time of the request.

Step 7 – Reschedule. As network conditions can change
or our initial estimates can prove wrong, we need to period-
ically re-evaluate our scheduling decisions. That’s what we
aim to achieve through the monitoring of real time system
performance. We monitor conditions on both the wired and
wireless segments and readjust our scheduling decision if the
available bandwidth on either of these segments change. Sec-
tion 4.3 provides details on our specific implementation for
monitoring wired and wireless conditions.

Note that despite our best efforts our transfer finish times
are not strict guarantees but educated guesses based on cur-

rent conditions. As we show in our evaluation, Catnap is
able to finish transfers on-time or with minimal delay in a
variety of test scenarios. There could be other reasons why
rescheduling may be required (e.g., arrival of new requests).
As we allow new requests to be multiplexed with previously
scheduled slots, there is no issue of un-fairness caused due
to earlier scheduling decisions.

1. Calculate batch size B

2. Estimate MAX WAIT THRESHOLD

3. Batch data until batch size >= B OR

No packet for MAX WAIT THRESHOLD

4. Burst data

Figure 5: Basic steps performed in the batch mode.

3.5.2 Batch Mode

Figure 5 lists the basic steps performed by the batching
algorithm. These steps are performed for each client that
wants batched transfers. In step 1, we calculate the batch
size that can ensure a certain sleep interval for the device,
computed through Equation 1. Of course, our target sleep
time also depends on the delay that can be tolerated by the
user. For example, if the user is short of battery she may
be willing to tolerate more delay, while in other scenarios
she may not tolerate any additional delay. In the current
design, the user gives a binary indication i.e., whether it
wants to use the batch mode or not. If batch mode is desired,
then the proxy uses a fixed pre-determined threshold for the
maximum additional delay that a transfer can bear (set to
a fixed value of 2 sec in the current implementation).

In step 2 we consider situations where we may never get
enough data for batching. To address these cases, we esti-
mate MAX WAIT THRESHOLD, which is the maximum
interval of time we should wait for new data to arrive for a
certain batch. If we do not get any packet for this long, we
send the partial batch to the client. In our current imple-
mentation, we set this threshold to twice the RTT between
the client and proxy – as no packet during this duration is
a good indicator that no more data will arrive in the near
future. The above two steps determine how long we batch
data for a given client.

113

4. IMPLEMENTATION
We have implemented a prototype of Catnap in C for the

Linux environment. It works as a user level daemon and im-
plements the core design components of Catnap while using
simple and convenient alternatives for modules that are not
central to the working of Catnap. We give a brief overview
of the important parts of the implementation.

4.1 Proxy
The proxy uses TCP on both the wired and wireless seg-

ments of the end-to-end path. It listens for client requests
on multiple ports – there is one port for all Catnap-enabled
applications and separate ports for every legacy application
that is not Catnap enabled. Each incoming port has an as-
sociated forwarding rule that determines the destination of
the request. For legacy applications, like HTTP and IMAP,
the request is forwarded to the corresponding application
proxy running on the middlebox. For new Catnap enabled
applications, the client also sends information about the des-
tination which is used by the proxy to forward the request
to the appropriate server.

The proxy maintains separate state for each request. This
includes the two sockets – one in each direction (proxy -
server, proxy - client), a buffer associated with each socket,
and other control information that helps in making schedul-
ing decisions. There is a separate thread for each request
that is responsible only for reading data from both the sock-
ets and writing it to the buffer. The writing of data to
sockets is handled by the scheduler.

4.2 Sleep Modes
Our implementation supports the use of two types of sleep

modes: i) 802.11 PSM and ii) S3 mode. We enabled the PSM
mode on the client device – as a result it goes into sleep
state whenever it encounters an idle period longer than a
pre-determined duration. The minimum value of this dura-
tion varies for different NICs and was generally found to be
between 30ms to 250ms for many popular wireless NICs. In
the sleep mode, the NIC wakes up at every beacon interval
to check for incoming traffic. In summary, we used the stan-
dard PSM implementations supported by the NICs, without
any Catnap specific modifications.6

Like the 802.11 PSM, we used standard mechanism of en-
abling S3 mode in client devices. In our current implemen-
tation, the client device goes into S3 state without notifying
the user. However, in practice, we expect a proper user
interface that can involve the user in this decision. In or-
der to wake-up a sleeping client device, the proxy sends a
Wake-On-LAN [2] magic packet to the client. Many recent
wireless NICs do support the wireless WOL feature [3], but
we did not have access to this hardware, so we used the
wired ethernet interface for the magic packet. With the
wireless WOL support, mobile devices will use their wireless
interface in PSM mode to listen for magic packets from the
Catnap proxy i.e., the client wireless NIC will wake up at
every beacon interval to check for any magic packet from
the proxy.

4.3 Scheduler
The centralized scheduler within the proxy is responsible

for all scheduling decisions in both directions. We have im-

6How to optimize the PSM implementation for Catnap is an
interesting future research direction.

plemented three types of schedulers: i) normal scheduler,
which is not Catnap enabled, ii) Catnap-normal mode, and
iii) Catnap-batch mode. On the wired side we use the nor-
mal scheduler while on the wireless side we use one of the
two Catnap enabled modes. This implementation strategy
allows us to use the same proxy at the client side as well.
For example, we could have the client NIC sleep even longer
if the client itself batched its own traffic towards the server.

Wired Bandwidth Estimation Module: This module
assumes that the access link bandwidth is known and fixed
(e.g., DSL). Future implementations can be extended to peri-
odically use existing bandwidth estimation tools to estimate
the access link bandwidth [17]. Once the transfer starts,
this module keeps track of the throughput of the transfer –
this allows identification of cases where the access link may
not be the bottleneck (e.g., server being bottlenecked). This
process is only applied to long transfers (> 1 sec) because
their throughput information is likely to be more accurate
and also because larger transfers have more impact on other
ongoing transfers.

Wireless Bandwidth Estimation Module: Our wire-
less bandwidth estimation method is inspired by prior work
that utilizes medium busy time information, along with the
bit-rate used between the client and AP, to estimate the
available capacity [16, 22]. The product of these two terms
i.e., (bit-rate * medium free time), is often a good estimate
of the capacity, as it captures the channel conditions as
well as the overall load on the network. For the medium
free time, we use a passive approach of overhearing data
transmissions in monitor mode and calculating the medium
busy time based on a moving 1 sec window. In this win-
dow, we calculate the sum of the bytes corresponding to the
overheard frames and the transmission time of these frames
(based on the bit-rate of the transmission). Note that we
need to ignore the time that the proxy uses the medium
for its own transmissions. The medium free time informa-
tion is combined with the bit-rate information7 – that can
be retrieved from most 802.11 drivers – to get the available
capacity.

Note that the above mechanism relies on looking at a win-
dow of time to decide on the available bandwidth. Naturally,
this does not account for cases where an unexpected burst of
traffic from another station overlaps with a scheduled time
slot. The underlying fairness provided by 802.11 helps in re-
ducing the negative impact of such cross traffic. In addition,
we inflate the virtual time slot by 10% as padding time to
deal with such unexpected cross traffic. In our evaluation,
we show that this approach works well under a variety of
cross traffic scenarios.

5. EVALUATION
The goal of our evaluation is to quantify the energy sav-

ings made possible by Catnap for different scenarios. Our
evaluation can be divided into two parts. First, we con-
sider several micro-benchmark scenarios related to Catnap’s
scheduling. In the second half of the evaluation, we evaluate
the energy savings possible through Catnap on actual de-
vices and for a variety of scenarios. Our experiments use a
simple custom request-response application, which allows us
to measure the benefits of Catnap without worrying about

7The actual achievable throughput is lower because of some
fixed protocol overhead of 802.11 and TCP.

114

Figure 6: Network configuration used in the experi-
ments.

the complexities of different application protocols. Section 6
presents two case studies that show how Catnap can be lever-
aged by legacy application protocols: HTTP and IMAP.

5.1 Evaluation Summary
The key points of our evaluation are as follows:

• Scheduling: We show that the scheduler accurately
estimates conditions on the wired and wireless seg-
ments, thereby ensuring maximum sleep time to clients
with no added delay in transfer times. (Section 5.3.1)

• Rescheduling: We show how Catnap can efficiently
address the challenge of rescheduling transfers. We
consider several cases where rescheduling is required:
i) server getting bottlenecked, ii) presence of wireless
cross traffic, and iii) arrival of new requests at the
proxy. (Section 5.3.2)

• Energy Benefits: Through experiments, we quantify
the sleep time for both the wireless card and the device
itself and how it translates into battery life improve-
ment for real devices. Table 1 presents the summary
of the evaluation. The benefits with Catnap get more
pronounced as we increase the size of transfers. Specif-
ically, Catnap allows the NIC to sleep for almost 70%
of the time for a 5MB transfer while the device can
sleep for around 40% of the time for a 10MB transfer.
These energy savings translate into up to 2-5x battery
life improvement for Nokia N810 and IBM Thinkpad
T60. (Section 5.4)

5.2 Setup
Figure 6 shows the network configuration used in the ex-

periments; it represents a typical residential wireless access
scenario. The wired WAN connection is emulated using the
traffic control module of Linux. On the wireless side two dif-
ferent configurations are used. We used the Emulab wireless
testbed for some of the experiments while for other experi-
ments we used an actual AP connected to a Catnap enabled
laptop via a 100Mbps connection. The main reason for us-
ing the Emulab testbed was the convenience of introducing
cross traffic on the wireless segment (as it provides multi-
ple wireless nodes), so we can evaluate the scheduler under
different conditions.

We used three client devices in our experiments. The
first one is a Nokia N810 Internet Tablet which runs a light-
weight Linux distribution. It has a 400Mhz processor with
128MB DDR RAM and also supports a 802.11g wireless in-
terface with PSM capability. The tablet was running the
default background processes during our experiments. The
second device is a standard IBM thinkpad T60 laptop with

 0

 800

 0 3000 6000

S
e
q
 N

o

Time (ms)

Catnap
TCP

(a) Transfer Progress from start to end.

 800

 1000 1020 1040 1060 1080 1100

S
e
q
 N

o

(b) Zooming into 1000-1100 ms period.

 800

 6060 6080 6100 6120 6140 6160
S

e
q
 N

o

(c) Zooming into last 100 ms of transfer.

Figure 7: Single Transfer. Finish time is the same
in both cases (a). Middle graph zooms into a middle
period while the bottom graph zooms into the last
100ms of the transfer.

support for 802.11 PSM and Ethernet Wake-on-LAN. Fi-
nally, some of the experiments also involve an Emulab desk-
top node that is equipped with Wifi.

Our evaluation compares different modes of Catnap with
standard end-to-end TCP-based transfers (TCP)8. Also, un-
less otherwise stated we present the mean of five runs, and
the min and max values are within 5% of the mean.

5.3 Scheduler - Microbenchmarks
We conduct an evaluation of the efficacy of the scheduler

using simple and realistic scenarios that a Catnap proxy will
likely face. We first establish the accuracy of the sched-
uler and then show how it adapts to different situations by
rescheduling transfers. All the results in this section show
the sequence number of packets received by the client as a
function of time.

5.3.1 Scheduler Accuracy

In this experiment the network conditions are stable and
there is only one transfer. The main goal is to test the
accuracy of the wireless bandwidth estimation module. Fig-
ure 7(a) shows that transfer times are the same for both Cat-
nap and TCP. Figure 7(b) zooms into the middle period of
the transfer. We see that with TCP each packet arrives after

8In our network configuration, the performance of end-to-
end TCP and of using separate TCP sessions over the wired
and wireless paths was similar.

115

 0

 800

 0 20000

S
e
q
 N

o

TCP

 0

 800

 0 20000

S
e
q
 N

o

Catnap

 0

 800

 0 20000

S
e
q
 N

o

Time (ms)

Catnap-Adapt

Figure 8: Reacting to a server being bottlenecked
(500Kbps whereas access link is 1.5Mbps). Middle
graph shows Catnap without adaptation – less batch-
ing due to estimation for earlier transfer completion.
Last graph shows Catnap with adaptation.

a gap of a few milliseconds while Catnap is batching packets
during this time. Figure 7(c) zooms into the last 100ms of
the transfer. We see that Catnap is bursting packets to the
client. The tail at the end shows Catnap’s conservative ap-
proach that slightly inflates each virtual time slot to ensure
that Catnap does not exceed the transfer deadline.

5.3.2 Adaptation and Rescheduling

We now consider several scenarios where adaptation is
required.

Adapting to changes in server bandwidth: We now
consider the case where the server becomes the bottleneck
soon after the start of the transfer. In the experiment, the
server gets bottlenecked at 500Kbps. Figure 8(b) shows the
case where the Catnap proxy does not adjust to the lower
server throughput and continues to consider the bottleneck
bandwidth to be 1.5Mbps. As a result, it sleeps less because
it expects the transfer to end soon. In contrast, adjusting to
the lower server bandwidth allows approximately 200% more
sleep time to the client (Figure 8(c)). Note that the adap-
tation is accurate enough to ensure that the transfer time
does not increase. Finally, because we constantly monitor
the progress of the transfer, we can adjust to the conditions
at any point during the transfer.

Adapting to wireless cross traffic: We now consider
different cases where we explicitly induce cross traffic on
the wireless side. In the first experiment, we start a long-
lived TCP flow (cross traffic) during the batching phase of
the Catnap transfer. In this scenario, the wireless medium
is heavily congested as the TCP background traffic uses a
wireless bit rate of 1Mbps. Figure 9(c) shows that Catnap
adapts to the cross traffic by rescheduling the time slot at

 0

 800

 0 8000

S
e
q
 N

o

TCP

 0

 800

 0 8000

S
e
q
 N

o

Catnap

 0

 800

 0 8000

S
e
q
 N

o

Time (ms)

Catnap-Adapt

Figure 9: Reacting to TCP wireless cross traffic.
Top graph shows TCP while middle one shows Cat-
nap without adaptation. It anticipates more bw on
the wireless side and therefore exceeds the transfer
time while Catnap with adaptation is able to adjust
(bottom graph).

an earlier time. Without such adaptation (Figure 9(b)), the
transfer time is increased by around 15%.

We also conduct two experiments where the behavior of
the cross traffic is less predictable i.e., ON-OFF behavior. In
the web-like scenario, there is an OFF-period of 2 seconds
after an ON period during which there are 5 transfers each
of size 100kB. In the Catnap-like scenario, the cross traffic
starts at the exact time as the Catnap proxy has scheduled
the virtual time slot – in this case it is too late for the proxy
to react. Both the above scenarios are more challenging
cases because bandwidth estimation is less likely to work
in scenarios where the cross traffic is bursty. We conduct
10 runs for these experiments, with each run starting at a
random time.

Mean Max

Web-like Traffic < 2% (120ms) 5% (300ms)

Catnap-Like Traffic 8% (480ms) 18% (≈1sec)

Table 4: Mean and Max increase in transfer times
under two different background traffic scenarios.
With web-traffic, there is hardly any impact on Cat-
nap transfers. If another Catnap-like AP starts a
burst in the background then transfer is delayed by
8% on average.

Table 4 summarizes the results for the above two scenar-
ios. In the web-like scenario, there is hardly any impact on
transfer times because of the light load of the cross traffic.
As our bandwidth estimation considers the bytes transferred
in a window of time, the OFF periods dominate the ON pe-

116

 0

 800

 0 13500

S
e
q
 N

o

TCP-1
TCP-2

 0

 800

 0 13500

S
e
q
 N

o

Catnap-1
Catnap-2

 0

 800

 0 13500

S
e
q
 N

o

Time (ms)

Catnap-Diff-Clients-1
Catnap-Diff-Clients-2

Figure 10: Two Overlapping Transfers. The middle
graph shows multiplexing of time slots in Catnap if
both the requests are from the same client (both
transfers overlap so only one is visible) The bottom
graph shows how requests from different clients will
be allotted non-overlapping time slots in Catnap.

riods and therefore there is little impact on the available
capacity. The worst case occurs when the Catnap time slot
overlaps with the start of the ON period. However, as the
results indicate, even the maximum increase in delay is just
5%. In contrast, the Catnap-like cross traffic can increase
the transfer time by up to 18%. Again, the average increase
is less (8%) because the extra padding with time slots allows
us some leeway to deal with such unexpected cross traffic.
These results show that, while we cannot provide a hard
guarantee that the transfer time will not increase, we can
minimize this chance and the impact is generally limited.

Adapting to multiple requests: We now consider sce-
narios where a Catnap proxy has to deal with multiple re-
quests. We report the experimental results of the more chal-
lenging scenario where the virtual time slots of a future re-
quest overlaps with a previously scheduled transfer. Fig-
ure 10 shows the results of two overlapping requests. TCP
multiplexes the two requests naturally whereas Catnap can
handle them in two different ways (see Figure 4). Figure 10(b)
shows the case where the requests are from the same client
and are combined in a bigger time slot, while ensuring that
transfer times do not increase. In contrast, Figure 10(c)
shows the case where the requests are from different clients.
In this case, we assign non-overlapping slots to both clients,
which reduces the up time of both clients. However, it results
in increased transfer delay for the second transfer – if this
delay is not acceptable then we multiplex the two requests
(similar to Figure 10(b)).

5.3.3 Discussion

The above experiments show that Catnap’s bandwidth

 0

 2

 4

 6

 8

 10

TC
P

C
atnap

TC
P

C
atnap

TC
P

C
atnap

 0

 5

 10

 15

 20

 25

 30

T
im

e
 (

s
e
c
)

T
im

e
 (

s
e
c
)

Transfer Size

Active Sleep

5MB1MB128kB

Figure 11: NIC Sleep time for Nokia N810. Catnap
allows even 1 second long transfers to sleep, while
leading to the same overall transfer completion time
across all tested transfer sizes.

estimation is accurate and allows the scheduler to adapt to
changes in network conditions as well as handle multiple
requests that may overlap with each other. The results also
show that variations on the wireless side are less critical
as long as the available bandwidth on the wireless side is
significantly higher than the bottleneck link bandwidth.

5.4 Energy Savings
We conducted several experiments to characterize the po-

tential energy benefits of using Catnap. We have quantified
both 802.11 PSM savings as well as savings using S3 mode.
For the N810 platform we focus on PSM savings as network
activity is the major power consumer and S3 mode does not
offer much additional savings. In contrast, for T60 we focus
only on S3 mode as PSM alone does not offer any worthwhile
power savings.

5.4.1 NIC PSM Energy Savings

First, we want to evaluate how well Catnap performs in
terms of energy benefits by allowing the NIC to sleep in-
between transfers. For the experiments, we used the deepest
PSM mode available in N810, which offers the greatest en-
ergy savings and enters sleep mode if there is an idle period
of 200ms (we call this psm_cost).

How long can the NIC sleep. We evaluated the trans-
fer time and the proportion of transfer time spent sleeping
for TCP and Catnap. Figure 11 shows this comparison for
different transfer sizes. Catnap amortizes the psm_cost over
the total transfer time and therefore performs better as the
transfer duration increases. As we can see from the figure,
the transfer time does not increase with Catnap and yet it is
able to sleep for around 30% of the time for a 128kB transfer,
which is roughly the size of many popular web-pages. Fur-
thermore, it can sleep for around 50% of the time for a 1MB
transfer, which is roughly the pre-buffering requirement of
a you-tube video, and around 70% of the time for a 5MB
transfer, which is the size of a typical mp3 song.

Does increased NIC sleep time improve battery
life? Here we want to quantify how increased NIC sleep
times with Catnap translate into battery life improvement
for the N810. This experiment uses two different workloads:

117

 0

 5

 10

 15

 20

 25

 30

 35
B

a
tt
e
ry

 L
if
e
 (

H
o
u
rs

)

Transfer Size

TCP-H
Catnap-H

TCP-L
Catnap-L

5MB1MB128kB

Figure 12: Battery life improvement for N810 due
to NIC savings under heavy (H) and light (L) work-
loads.

 0

 0.2

 0.4

 0.6

 0.8

 1

N
o
rm

a
liz

e
d
 T

im
e

Transfer Size

Energy Savings - 12% 38% 5x

Active (26W)
Transition (40W)
Sleep (1W)

100MB10MB5MB

Figure 13: Catnap’s transfer time and energy costs
using S3 mode (normalized wrt TCP) for T60. TCP
based transfers remain in active state for the whole
duration.

i) heavy load (H) where transfers are made continuously, and
ii) light load with an idle time of 5 seconds between transfers.
We evaluate how long the battery lasts by fully charging it
before the experiment and letting the experiment continue
until the battery power completely drains out. The N810
automatically switches off the display back-light if there is
no human activity, so all reported results are under this
setting.

As Figure 12 shows, greater sleep opportunities in Catnap
translate into significant battery life improvement over TCP.
Our results confirm the N810 specifications that the device
consumes negligible power in idle state. As a result, we
notice that NIC power savings are beneficial for both heavy
and light workloads, with up to 2x improvement in battery
life.

5.4.2 Deep Sleep Mode (S3) Energy Savings

We wanted to evaluate the energy benefits of using Cat-
nap with S3 mode for a laptop. As we noted earlier, S3

mode takes roughly 10 seconds to suspend and resume back,
and is therefore only suitable for longer transfers. Future
reduction to the S3 mode overhead could possibly make it
useful even for smaller transfers. Note that Catnap just cre-
ates more opportunities to use S3 mode, so issues such as
how to deal with incoming traffic when the client device is in
S3 mode are orthogonal and can be addressed using existing
mechanisms [4].

For this experiment, the client makes a request and then
enters S3 mode. The proxy continues with the transfer,
caches the data in its storage, and at the appropriate time
wakes up the client by sending a wake-on-lan magic packet.
The client wakes up and downloads the cached data from the
middlebox. Figure 13 shows the normalized transfer times
with respect to baseline TCP transfers for different file sizes.
It also shows the proportion of time Catnap spends in each
of the three states: Active, Transition, and Sleep, in addition
to the power consumed in these three states. Note that TCP
transfers remain in active state for the whole duration but
Catnap allows significant sleep time without increasing the
total time to complete a transfer. More specifically, even for
a 5MB transfer that only lasts for 30 seconds, Catnap is able
to spend around 20% of the time in S3 mode while for larger
transfers (100MB) the proportion of sleep time increases to
around 85%, which translates into 5x energy savings. If files
are constantly downloaded, these energy savings correspond
to up to 5x improvement in battery life.

6. CASE STUDIES
The goal of the case studies is to gain some understanding

of how different applications can benefit from Catnap. We
pick two popular application protocols: IMAP and HTTP.
Our goal is to make these protocols work with Catnap with-
out modifying standard clients or servers. Furthermore, we
are interested in evaluating the energy benefits when these
applications use Catnap. Specifically, we focus on the chal-
lenging cases of short web transfers and small email message
exchanges, which require the use of Catnap’s batch mode in
order to get energy benefits.

Catnap-batch TCP
Start-up Phase (≈ 3 sec) Same Same

Download Phase (3.6 sec) 650 ms 3.6 sec

Table 5: Comparison of NIC up time for an email
session involving 20 messages of 20kB each. In the
start-up phase, both TCP and Catnap-batch per-
form the same but in the download phase, Catnap-
batch results in around 80% less NIC up time.

.

6.1 IMAP
We enabled the use of standard IMAP clients and servers

with Catnap. This required the use of a modified IMAP
proxy at the middlebox that parsed the responses from the
IMAP server and added the length information as a hint for
the Catnap proxy. The modification process was simple and
required approximately 50 additional lines of code. All the
features that were supported by the IMAP proxy worked
fine with Catnap.

We observed that the IMAP behavior in practice is more
complex than a simple request-response protocol. Broadly,

118

there are four steps that a typical client follows in download-
ing email messages from the server: authentication, checking
inbox status, downloading message headers, and download-
ing message bodies. We refer to the first three steps as
the start-up phase and the last step as the download phase.
Most clients only download the body when it is required,
which means that for every message there is a separate re-
quest to download it. However, this option can be changed
by setting the client to work in offline mode where the client
downloads all unread messages.

The start-up phase involves the exchange of short control
messages that are not large enough to get energy benefits.
In the download phase, if the client is downloading large
messages (e.g., attachments) then the cost of the start-up
phase gets amortized and we observe energy benefits that are
similar to our results in the previous section. However, most
messages that do not have attachments are smaller than
100kB, which makes it difficult to get any energy benefits if
we treat each message as a separate ADU. Here, we focus
on how we can get energy benefits for small messages by
batching them using Catnap’s batch mode.

We conduct a simple experiment where we consider a trav-
eller who has multiple unread messages to download (e.g., a
professor checking her e-mail at the airport on her way to a
conference). We consider the case when the email account
has 20 unread messages of 20Kb each. This is a typical size
of a call for paper announcement or an email belonging to
a discussion thread on a mailing list. We compare the NIC
up-time for Catnap’s batch mode with that of using TCP.
Table 5 shows that in the start-up phase, the up time is
the same for both the schemes because there is not enough
data for the batch mode to get any real benefit. However,
once the download phase starts, the NIC is only active for
650ms with Catnap’s batch mode whereas it is up for 3.6
seconds with TCP. This shows that if there are more mes-
sages – even if they are individually small – then the batch
mode can combine them to get energy benefits.

6.2 HTTP
Catnap with web browsers and servers: As a first

step we focused on using Catnap with standard web browsers
and servers. We installed a modified squid proxy on the mid-
dlebox – the Catnap proxy interacted with the squid proxy
rather than with servers. The modification to the squid
proxy involved adding the Catnap hint (i.e., transfer length)
that is used by the Catnap proxy for scheduling. Adding this
hint was simple as HTTP responses from servers already con-
tain the length of the responses in the HTTP header.9 The
whole modification process involved the addition of 20 lines
of code. We verified that the client browser could view dif-
ferent kinds of web-pages (youtube, cnn, static and dynamic
pages, pages with SSL, etc) while using Catnap. Note that
we could make the same changes to the web server, eliminat-
ing the need for the web proxy.

Why smaller web pages may not benefit. Typical
HTTP protocol interactions between the browser and server
are much more complex than a simple request-response ex-
change. A webpage has many embedded objects and they
are usually fetched using separate requests over different
TCP connections. We observed that for large transfers the
cost of these multiple requests gets amortized and the energy

9Even dynamic content is sent as a chunk in HTTP and the
response contains the length of the chunk.

Total Size Max Size Object
www.google.com 36kB 15kB

www.yahoo.com 540kB 48kB

www.amazon.com 580kB 60kB

www.nytimes.com 860kB 260kB

www.cnn.com 920kB 150kB

Table 6: Comparison of different popular web-pages
in terms of total size and the size of the largest em-
bedded object within that page. Individual objects
are generally too small (median object size of these
web-pages is also less than 50kB) to get any energy
benefits but the total size for most pages is large
enough to get energy benefits from Catnap.

savings were similar to the simple request-response protocol.
However, for normal web browsing, energy benefits with Cat-
nap were minimal. Table 6 provides an insight into the rea-
soning for this behavior. While most web-pages as a whole
are big enough to benefit from Catnap, individual objects
are usually smaller than 100kB, which makes it difficult to
get any energy benefits. This indicates that we should treat
the web page as one large block of data rather than separate
small objects.

Catnap Batch mode: We wanted to evaluate the effec-
tiveness of Catnap’s batching mode for web-pages that have
multiple embedded objects but no scripts. In such cases,
the browser first makes a request for the main page and af-
ter it gets the response, it makes parallel requests for all the
objects embedded within the page.

Catnap-batch TCP
Download Time 1.5 sec 1 sec

NIC up time 650 ms 1 sec

Table 7: Comparison of download time and NIC up
time for a small web-page download. Catnap batch
mode results in 35% less NIC up time compared to
TCP.

.

We conduct a simple experiment by selecting a web-page
with the above characteristics (www.cs.cmu.edu/~bmm). The
objects within the page are individually all smaller than
100kB but their combined size is close to 150kB, which is
large enough to get energy savings. Table 7 shows the down-
load time and the NIC up time for Catnap-batch mode and
TCP. Note that Catnap’s normal mode performs the same
in this case as TCP because the objects are individually too
small to get any energy benefits. Without Catnap it takes 1
sec to download the web-page and the NIC is active for the
whole duration. With the use of Catnap-batching, the down-
load time increases to 1.5 sec, however, the NIC is active for
only 650ms, which shows a reduction of 35% in up-time for
the NIC. In case of N810, which hardly consumes any power
when the NIC is sleeping, the NIC savings translate into
equivalent system level savings. However, because we are
increasing the total time of transfers, devices that consume
significant power even when their NIC is sleeping may not
get similar benefits from the batch mode.

Embedded Scripts and Application Specific Tech-
niques: In practice many web-pages have scripts that fur-
ther complicate the HTTP protocol as browsers make fur-

119

ther requests only after executing the script. The script ex-
ecution can itself generate requests for new objects, making
it difficult to batch large amount of data. Researchers have
proposed application specific approaches that can turn the
HTTP protocol into a single request-response exchange [28].
The general approach is to have the proxy respond with all
the embedded objects (including embedded scripts), in re-
sponse to a request for a web-page. Using such techniques
at the middlebox can extract maximum benefits out of Cat-
nap as they turn the complex protocol interaction between
the client and server into a simple protocol where the client
makes a request for the main page and receives all the rel-
evant objects in response. This could further improve the
energy savings with Catnap. For example, for the above web-
page experiment, the NIC up-time can be reduced to 450 ms
if we use application specific support at the middlebox.

7. USER CONSIDERATIONS
Increased Delay: Most of our evaluation focuses on the

case where Catnap does not add delay to transfers. However,
increases in delay are possible, for example, when using Cat-
nap’s batch mode or when there is a sudden surge in load on
the wireless network. Our results show that the additional
delay is small – of course, the users can even avoid this de-
lay if they do not want the extra energy savings. So there is
clearly a trade-off that users need to consider while deciding
on whether they want to use the batch mode or not.

Interface: Besides possible changes in delay, Catnap may
also affect the interface of some applications. The most im-
portant interfacing issue is how to expose the use of S3 mode
to the user. Most devices already have sensors to detect
whether a user is currently using the device or not. We can
leverage this support even though the user needs to be ulti-
mately involved in the decision to enter the S3 state. This
could be implemented in the same way as automatic reboots
are implemented for system updates i.e., allowing the user
to explicitly cancel the action within a certain time limit.

In addition to the S3 mode, there could be other cases
where the interface to the application needs to be changed.
For example, for large downloads, users expect a status bar
that shows the steady progress of the transfer. With Cat-
nap the transfer stalls at the start and finishes with a rapid
burst at the end. Despite such a change, the interface could
certainly expose the predicted completion time as estimated
by the scheduler, thus making the user experience more pre-
dictable.

Control: Note that many mobile devices already pro-
vide users with power-save options (e.g., dim screen, reduce
processor frequency) that affect the user experience. Cat-
nap naturally fits this model. The user interface for setting
Catnap preferences (e.g., use of batch mode, tolerance to ex-
tra delay, use of S3 mode) could be integrated with existing
power save applications. This will raise interesting questions
of how users address the trade-off between improved battery
life and possible increase in transfer time.

8. FUTUREWORK
We now discuss two possible extensions to Catnap.
UDP-Blast: Catnap can potentially sleep more if it could

send data faster on the wireless segment. Our current evalua-
tion shows results for TCP over standard 802.11, but several
optimizations are possible. Most of TCP’s reliability and

congestion control mechanisms are redundant for the wire-
less segment in a typical home setting. Similarly, standard
802.11 has noticeable overheads that limit throughput. In-
stead we can use what we term “UDP-Blast”. UDP-Blast is
a UDP-based protocol that runs over 802.11e block transmis-
sion mode. Our initial results show that UDP-Blast shortens
the up-time of the NIC by another 30% by achieving signif-
icantly higher throughput than TCP over standard 802.11.
Note that in an end-to-end transfer (without batching at the
middlebox), the 802.11e mode is not useful because there is
not enough data to send. We intend to add flow control and
light weight reliability to UDP-Blast so that it can be used
as a replacement for TCP on the wireless side.

Beyond energy savings: Though we focused on energy-
related benefits, Catnap can also help users in other ways.
One example is providing flexible mobility options. Con-
sider a user who wants to download a 700MB movie in the
morning. Assume that the download should take around
30 minutes. Without Catnap, the user device has to remain
connected for the whole duration, which means that the user
cannot take the device to her office. With Catnap, the user
can issue the download request, un-plug the device, and go
to office. Meanwhile, the middlebox continues to download
and cache the movie locally (possibly in a supplemental USB
storage device). When the user returns home, she can down-
load the movie in 3 minutes from her wireless middlebox.
This opens a plethora of pre-fetching opportunities: the usu-
ally idle wired connection can be used to pre-fetch data at
the middlebox and the fast wireless connection can later be
used to burst the data to the user device.

9. RELATED WORK
The problem of improving energy efficiency of mobile de-

vices has received considerable attention in the research com-
munity. Here, we discuss the work that is most relevant to
Catnap.

Exploiting Idle Opportunities: There have been sev-
eral proposals to exploit idle opportunities that are already

present at different levels. Most of these proposals are or-
thogonal to Catnap as they target a different application
or network scenario. For example, there are proposals that
target idle time between web requests or during TCP slow
start [20]. Similarly, some proposals focus on interactive
applications [23, 5], or consider power savings for sending
data over a GPRS link [28]. Catnap targets scenarios where
applications are constantly sending data but there are idle
opportunities due to the network characteristics i.e., band-
width discrepancy between wired and wireless segments.

A recent proposal by Liu and Zhong [21] is most relevant
to Catnap as it considers similar network settings. It ex-
ploits advances in modern 802.11 transceivers to enter low
overhead power saving states during the small idle intervals
between packets. Catnap takes a different approach: it com-

bines these small gaps between packets into larger sleep in-
tervals for applications that consume data in blocks – as
a result, Catnap can exploit deeper sleep modes such as
802.11 PSM and S3 mode. We believe that future mobile
devices will use both these techniques: for data oriented
applications, aggressive sleep approaches, like Catnap, are
more suitable, while for interactive applications, exploiting
low power saving states becomes important.

Traffic Shaping: There is a significant body of work
that uses traffic shaping in order to create more sleep op-

120

portunities for both the wireless NIC and the system [26,
13, 9, 24]. Most of these schemes shape traffic at the end-
points, in an application specific manner [9, 26]. Nedveschi
et al.[24] also consider traffic shaping within the network
core, but at the expense of added delay for all application
types. Unlike these proposals, Catnap shapes the traffic
considering the bandwidth discrepancy between the wired
and wireless segments. As a result, the traffic shaping can
only be done at the middlebox, rather than the end-points.
Furthermore, Catnaps takes into account the challenges of
scheduling and rescheduling transfers on the wireless seg-
ment – such challenges are not considered by existing proxy
based solutions [27]. Finally, as Catnap uses workload hints,
it can use sleep modes for long duration of time without
affecting user experience.

Deep Sleep Modes: The S3 mode for Catnap is similar
to the use of deep sleep modes in Somniloquoy [4] and Tur-
ducken [29]. The common theme is that the main system
sleeps while another device keeps up with the data trans-
fer. In case of Catnap, this device is the wireless AP while
the other two systems rely on additional low power hard-
ware that is co-located with the mobile device. Avoiding
the introduction of additional hardware on the mobile de-
vice, however, comes with its own challenges since we now
have to intelligently schedule transfers on the wireless seg-
ment. Another difference is that the aforementioned prior
systems use a pure store and forward approach which in-
creases the duration of a transfer. In contrast, Catnap uses
a cut through approach where the transfers over the wired
and wireless segments are overlapped in order to keep the
transfer time the same. However, this requires workload
hints from applications, which is not required in the other
systems.

Hints and Batch Mode: Many design decisions made
in Catnap are inspired by previous work in the area of energy
management for mobile devices. Anand et al. [5] use applica-
tion hints to determine the intent of applications while using
the NIC, which helps in keeping the NIC active for interac-
tive applications. However, for data oriented applications
that constantly send data, their approach always keeps the
NIC active. Catnap also uses hints from applications but
the hint relates to the length of the transfer. Similarly, Cat-
nap’s batch mode is based on the principle of trading appli-
cation performance for improved battery life – this principle
is well-understood, for example, in the context of lowering
the fidelity of multimedia information to improve energy con-
sumption [15]. Catnap applies this principle in the context
of increasing the transfer delay to get energy benefits. More
recently, TailEnder explores the use of batching multiple re-
quests at the client to improve energy efficiency of outgoing
transmissions [7]. In contrast, Catnap’s batching mechanism
has broader applicability as it can be used at both the proxy
and the client, thereby allowing batching of both incoming
and outgoing data at the client.

Discussion: In summary, Catnap’s uniqueness comes
from the following: i) unlike most work on energy manage-
ment, Catnap focuses on periods of peak network activity
when applications are constantly sending data, ii) it lever-
ages a range of sleep modes (NIC PSM, S3) rather than fo-
cusing on a specific one, and iii) it uses ADUs for application
independent and yet application aware energy savings. Cat-
nap therefore occupies a unique space in the energy saving
realm: it provides an alternate view of how data transfers

should be conducted over the Internet to maximize power
savings for mobile clients.

10. CONCLUSION
In this paper, we presented the design, implementation,

and evaluation of Catnap – a system that improves battery
life of mobile devices by exploiting the bandwidth discrep-
ancy between wired and wireless segments. Catnap is im-
plemented as an application independent proxy to decou-
ple wired and wireless segments, and schedules ADU trans-
missions on the wireless side using hints regarding the ap-
plication workload. Catnap also considers changes in net-
work conditions, as well as arrival of future transfer requests,
thereby addressing the key challenges associated with schedul-
ing/rescheduling of data transfers. We show that Catnap of-
fers several strategies to reduce energy consumption, which
accommodate a variety of applications, and provide benefits
for a range of mobile devices. Specifically, for medium to
large transfers, it allows both the NIC and the device to
sleep for a significant fraction of total transfer time, result-
ing in battery life improvement of up to 2-4x for Nokia N810
and Thinkpad T60. Finally, we believe that the benefits of
Catnap will get even more pronounced in future with the
continued growth of data intensive applications and further
increase in wireless access bandwidth.

Acknowledgements

Dave Andersen, Ihsan Qazi, Amar Phanishayee, M. Satya-
narayanan, Vyas Sekar, and Srinivasan Seshan provided use-
ful feedback on earlier versions of the paper. M. Satya-
narayanan also loaned out the Nokia N810 that was used
for the experiments. Jason Hong gave valuable feedback
on usability aspects of the batch mode. Finally, Alex Sno-
eren, our shepherd, and the anonymous MobiSys reviewers
provided detailed and critical feedback that helped us in im-
proving the presentation of this paper. We thank them all.
This research was funded in part by NSF under award num-
ber CNS 0855137 and by an HEC fellowship award to Fahad
R. Dogar.

References

[1] Linksys 350n router.
http://www.ubergizmo.com/15/archives/2006/10/

linksys_wrt350n_gigabit_80211n_router.html.
[2] Wake-on-lan.

http://en.wikipedia.org/wiki/Wake-on-LAN.
[3] Wake-on-wireless lan. http://www.intel.com/

support/wireless/wlan/sb/CS-029827.htm.
[4] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl,

and R. Gupta. Somniloquy: augmenting network
interfaces to reduce pc energy usage. In NSDI’09.
USENIX Association, 2009.

[5] M. Anand, E. B. Nightingale, and J. Flinn.
Self-tuning wireless network power management. In
MobiCom ’03, New York, NY, USA, 2003. ACM.

[6] A. V. Bakre and B. Badrinath. Implementation and
performance evaluation of indirect tcp. IEEE

Transactions on Computers, 46(3):260–278, 1997.
[7] N. Balasubramanian, A. Balasubramanian, and

A. Venkataramani. Energy Consumption in Mobile
Phones: A Measurement Study and Implications for

121

Network Applications. In Proc. ACM IMC, November
2009.

[8] L. S. Brakmo, D. A. Wallach, and M. A. Viredaz.
µsleep: a technique for reducing energy consumption
in handheld devices. In MobiSys ’04, pages 12–22,
New York, NY, USA, 2004. ACM.

[9] S. Chandra and A. Vahdat. Application-specific
network management for energy-aware streaming of
popular multimedia formats. In USENIX Annual

Technical Conference, Berkeley, CA, USA, 2002.
USENIX Association.

[10] D. D. Clark and D. L. Tennenhouse. Architectural
considerations for a new generation of protocols. In
SIGCOMM, New York, NY, USA, 1990.

[11] M. Dischinger, A. Haeberlen, K. P. Gummadi, and
S. Saroiu. Characterizing Residential Broadband
Networks. In IMC ’07, New York, NY, USA, 2007.
ACM Press.

[12] F. R. Dogar and P. Steenkiste. Segment based
internetworking to accommodate diversity at the edge.
CMU-CS-10-104, 2010.

[13] C. fabiana Chiasserini and R. R. Rao. Improving
battery performance by using traffic shaping
techniques. IEEE Journal on Selected Areas in

Communications, 19:1385–1394, 2001.
[14] K. Fall. A delay-tolerant network architecture for

challenged internets. In SIGCOMM ’03, pages 27–34,
New York, NY, USA, 2003.

[15] J. Flinn and M. Satyanarayanan. Energy-aware
adaptation for mobile applications. In SOSP ’99.
ACM, 1999.

[16] D. Gupta, D. Wu, P. Mohapatra, and C.-N. Chuah.
Experimental comparison of bandwidth estimation
tools for wireless mesh networks. In IEEE INFOCOM,
2009.

[17] M. Jain and C. Dovrolis. End-to-end available
bandwidth: measurement methodology, dynamics, and
relation with tcp throughput. In SIGCOMM ’02, New
York, NY, USA, 2002.

[18] S. Kandula, K. C.-J. Lin, T. Badirkhanli, and
D. Katabi. FatVAP: Aggregating AP Backhaul
Capacity to Maximize Throughput. In NSDI, San
Francisco, CA, April 2008.

[19] M. Kozuch and M. Satyanarayanan. Internet

suspend/resume. In WMCSA ’02, pages 40–48,
Washington, DC, USA, 2002. IEEE Computer Society.

[20] R. Krashinsky and H. Balakrishnan. Minimizing
energy for wireless web access using bounded
slowdown. In MOBICOM, Atlanta, GA, 2002.

[21] J. Liu and L. Zhong. Micro power management of
active 802.11 interfaces. In MobiSys ’08, pages
146–159, New York, NY, USA, 2008. ACM.

[22] R. Murty, J. Padhye, R. Chandra, A. Wolman, and
B. Zill. Designing high performance enterprise wi-fi
networks. In NSDI’08, pages 73–88, Berkeley, CA,
USA, 2008. USENIX Association.

[23] V. Namboodiri and L. Gao. Towards energy efficient
voip over wireless lans. In MobiHoc ’08, pages
169–178, New York, NY, USA, 2008. ACM.

[24] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy,
and D. Wetherall. Reducing network energy
consumption via sleeping and rate-adaptation. In
NSDI’08, pages 323–336, Berkeley, CA, USA, 2008.
USENIX Association.

[25] T. Pering, Y. Agarwal, R. Gupta, and R. Want.
Coolspots: reducing the power consumption of
wireless mobile devices with multiple radio interfaces.
In MobiSys, New York, NY, USA, 2006.

[26] C. Poellabauer and K. Schwan. Energy-aware traffic
shaping for wireless real-time applications. In RTAS

’04: Proceedings of the 10th IEEE Real-Time and

Embedded Technology and Applications Symposium,
page 48, Washington, DC, USA, 2004. IEEE
Computer Society.

[27] M. C. Rosu, C. M. Olsen, C. Narayanaswami, and
L. Luo. Pawp: A power aware web proxy for wireless
lan clients. In WMCSA ’04, 2004.

[28] A. Sharma, V. Navda, R. Ramjee, V. N.
Padmanabhan, and E. M. Belding. Cool-tether:
energy efficient on-the-fly wifi hot-spots using mobile
phones. In CoNEXT ’09, New York, NY, USA, 2009.
ACM.

[29] J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins.
Turducken: hierarchical power management for mobile
devices. In MobiSys ’05, pages 261–274, New York,
NY, USA, 2005. ACM.

122

