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Abstract

Computer vision has grown tremendously in the last two decades. Despite all efforts,

existing attempts at matching parts of the human visual system’s extraordinary ability

to understand visual scenes lack either scope or power. By combining the advantages of

general low-level generative models and powerful layer-based and hierarchical models,

this work aims at being a first step towards richer, more flexible models of images. After

comparing various types of RBMs able to model continuous-valued data, we introduce

our basic model, the masked RBM, which explicitly models occlusion boundaries in

image patches by factoring the appearance of any patch region from its shape. We then

propose a generative model of larger images using a field of such RBMs. Finally, we

discuss how masked RBMs could be stacked to form a deep model able to generate more

complicated structures and suitable for various tasks such as segmentation or object

recognition.



1 Introduction

Despite much progress in the field of computer vision in recent years, interpreting and

modeling the bewildering structure of natural images remains a challenging problem.

The limitations of even the most advanced systems become strikingly obvious when

contrasted with the ease, flexibility, and robustness with which the human visual system

analyzes and interprets an image. Computer vision is a problem domain where the

structure that needs to be represented is complex and strongly task dependent, and the

input data is often highly ambiguous. Against this background, we believe that rich

generative models are necessary to extract an accurate and meaningful representation

of the world, detailed enough to make them suitable for the wide range of visual tasks.

This work is a first step towards building such a general-purpose generative model able

to perform varied high-level tasks on natural images. The model integrates concepts

from computer vision that combine some very general knowledge about the structure of

our visual world with ideas from “deep” unsupervised learning. In particular it draws

on ideas such as:

• the separation of shape and appearance and the explicit treatment of occlusions;

• a generic, learned, model of shapes and appearances;

• the unsupervised training of a generative model on a large database, exploiting

graphical models that allow for efficient inference and learning;

• the modeling of large images using a field of more local experts;

• the potential for a hierarchical latent representation of objects.

Some of these ideas have been explored independently of each other, and in models

that focused on particular aspects of images or that were applied to very limited (e.g.

category specific) datasets. Here we demonstrate how these techniques, in combination,

give rise to a promising model of generic natural images.

One premise of the work described in the remainder of this paper is that generative

models hold important advantages in computer vision. Their most obvious advantage

over discriminative methods is perhaps that they are more amenable to unsupervised

learning, which seems of crucial importance in a domain where labeled training data is
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often expensive while unlabeled data is nowadays easy to obtain. Equally important,

however, is that in vision we are rarely interested in solving a single “task” such as

object classification. Instead we typically need to extract information about different

aspects of an image and at different levels of abstraction, e.g. recognizing whether an

object is present, identifying its position and those of its parts, and separating pixels

belonging to the object from the background or occluding objects (segmentation), etc.

Many lower-level tasks, such as segmentation, are not even well defined without refer-

ence to more abstract structure (e.g. the object or part to be segmented), and information

in natural images, especially when it is low-level and local, is often highly ambiguous.

These considerations strongly suggests that we need a model that is able to represent

and learn a rich prior of image structure at many different levels of abstraction, and that

also allows to efficiently combine bottom-up (from the data) with top-down (from the

prior) information during inference. Probabilistic, generative models naturally offer the

appropriate framework for doing such inference. Furthermore, unlike in the discrimi-

native case, they are trained not with respect to a particular, task-specific, label (which

in most cases provides very little information about the complex structure present in an

image) but rather to represent the data efficiently. This makes it much more likely that

the required rich prior can ultimately be learned, especially if a suitable, e.g. hierarchi-

cal model structure is assumed. In the following we will briefly review the most closely

related works even though such a review will necessarily have to remain incomplete.

Some generative models can extract information about shape and appearance, illu-

mination, occlusion and other factors of variation in an unsupervised manner (Frey and

Jojic, 2003; Williams and Titsias, 2004; Kannan et al., 2005; Winn and Jojic, 2005;

Kannan et al., 2006). Though these models have successfully been applied to sets of

relatively homogeneous images, e.g. images of particular object classes or movies of a

small number of objects, they have limited scope and are typically not suitable for more

heterogeneous data, let alone generic natural images.

Generic image structure is the domain of models such as the sparse coding ap-

proach by Olshausen & Field (Olshausen and Field, 1996; Lewicki and Olshausen,

1999; Hyvärinen et al., 2001; Karklin and Lewicki, 2009) or the more recent work,

broadly referred to as deep learning architectures (Osindero and Hinton, 2008; Lee

et al., 2008). Unlike the models in the previous category, these models of generic im-
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age structure have very little “built-in” knowledge about the formation of natural images

and are trained on large unlabeled image databases. In particular, for the second group

of models the hope is that by learning increasingly deep (i.e. multi-layered) represen-

tations of natural images these models will capture structures of increasing complexity

and at larger scales. Although this line of work has produced interesting results, so

far the models are typically limited to small image patches (with some exceptions, see

for instance Lee et al. (2009) and Raina et al. (2009)). Furthermore, most models so

far, including hierarchical ones, appear to learn only very simple, low-level properties

of natural images and are far from learning more abstract, higher-level concepts, sug-

gesting that these models might still be too limited to capture the wealth of structure in

natural images.

The question as to what kind of models are suitable for modeling the very different

types of structure occurring in natural images has featured prominently in the work of

Zhu and his coworkers (Guo et al., 2003; Tu et al., 2005; Zhu and Mumford, 2006; Guo

et al., 2007). Recently, they have proposed a comprehensive generative model which

combines sub-models of different types for capturing the different types of structure

occurring in natural images at different levels of abstraction and scale, ranging from

low-level structures such as image textures to high-level part-based representations of

objects and ultimately full visual scenes. However, many aspects of this model are hand-

crafted and it fails to leverage one of the potential advantages of generative models in

that unsupervised learning seems extremely difficult if not impossible.

Last, image models are often formulated in terms of tree structured hierarchies,

where each unit in the lower layer (representing, for instance, a pixel or a part) is ex-

plained by exactly one higher level unit. One important insight that has arisen from

probabilistic work on image modeling such as the Dynamic Trees (Williams and Adams,

1999; Storkey and Williams, 2003), and also the credibility network model (Hinton

et al., 2000), is the notion that such a hierarchy needs to be flexible and allowed to

vary in structure so as to match the underlying dependencies present in any particular

image. However, these methods still fall short of being able to capture the complexity

of natural images: for example, Dynamic Trees do not impose a depth ordering or learn

an explicit shape model as a prior over tree structures.
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In the light of all these works, we aim at providing a unified probabilistic framework

able to deal with generic, large images in an efficient manner, both from a representation

and an inference point of view.

The base component of our model will be the Restricted Boltzmann Machine (Smolen-

sky, 1986; Freund and Haussler, 1994), which is a Boltzmann Machine (Ackley et al.,

1985) restricted to have bipartite connectivity. Section 2 presents and compares various

RBMs able to model continuous-valued data, which will prove useful when we will

model appearances of objects. Section 3 presents the masked RBM, which extends the

already rich modeling capacity of an RBM with a depth-ordered segmentation model.

The masked RBM represents the shape and appearance of image regions separately, and

explicitly reasons about occlusion. The shape of objects is modeled by another RBM,

introduced in section 4. This opens up new application domains (such as image segmen-

tation and inpainting), and, importantly, leads to a much more efficient representation of

image structure than standard RBMs, that can be learned in a fully unsupervised manner

from training images. Despite its complexity and power, our model allows for efficient

approximate inference and learning. Section 5 is a thorough evaluation of this model’s

quality using both toy data and natural image patches, demonstrating how explicit in-

corporation of knowledge about natural images formation considerably increases the

efficiency of the learned representation.

We then move from image patches to large ones by introducing the field of masked

RBMs in section 6, leveraging the modeling power we obtained at the patch level,

before concluding in section 7.

Finally, as future work, we propose in section 8 a hierarchical formulation of the

basic model which gives rise to a flexible, reconfigurable tree-structured representation

that would allow us to learn image structures at different scales and levels of abstraction.

2 Binary and continuous-valued RBMs

In this section, we first introduce the standard RBM, defined over binary variables,

before presenting several RBMs able to model continuous-valued data.
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2.1 The Binary RBM

A binary RBM with n hidden units is a parametric model of the joint distribution be-

tween binary hidden variables hj (explanatory factors, collected in vector h) and binary

observed variables vi (the observed data, collected in vector v), of the form

log P (v,h) = vT Wh + bTv + cTh− log Z1 , (1)

with parameters θ = (W,b, c) and vi, hj ∈ {0, 1} (Z is the normalizing constant).

One can show that conditional distributions P (v|h) and P (h|v) are factorial and thus

easy to sample from (Hinton, 2002). Although the marginal distribution P (v) is not

tractable, it can be easily computed up to a normalizing constant. The bipartite structure

of an RBM allows both inference and learning to be performed efficiently using Gibbs

sampling (Hinton et al., 2006).

2.2 Modeling continuous values with an RBM

Since we are building a generative model of RGB images, we will need to use generative

models of (potentially bounded) real-valued vectors of the red, green and blue channel

values. Surprisingly, little work has been done on designing efficient RBMs for real-

valued data.

The general foundations for using RBMs to model distributions in the exponential

family were laid in Welling et al. (2005), where one particular instantiation of this

family was investigated for modeling discrete data using continuous latent variables. To

date, using other members of this family to learn data variance has not been explored.

Some authors have used RBMs in the context of continuous values, using either a

truncated exponential (Larochelle et al., 2007) or Gaussians with fixed variance (Freund

and Haussler, 1994; Lee et al., 2008). In none of these cases is the variance learned. In

the case of the truncated exponential, even though the variance does depend on the pa-

rameters, it is a deterministic function of the mean and cannot be separately optimised;

we will thus refer to this model as having ‘fixed’ variance.

We now present several kinds of RBMs able to model continuous-valued data.

1Throughout the paper, we slightly abuse notation and use the variable Z for all partition functions,

although they depend on the energy function.
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2.3 Truncated exponential

The use of the truncated exponential with an RBM is a direct extension of the original

formulation to continuous values. The energy functions remains identical:

E(v,h) = −vT Wh− bTv − cTh (2)

but v may now take any value in [0, 1]. The conditional P (v|h) is a truncated exponen-

tial.

2.4 Gaussian RBM with fixed variance

Gaussian RBMs have already been studied (Freund and Haussler, 1994) and used (Lee

et al., 2008), but always in the context of a fixed variance. The energy function is of the

form

E(v,h) =
1

2σ2
eTv2 − 1

σ2

(
bTv + cTh + vT Wh

)
(3)

where v2 is the vector whose i-th element is v2
i and e = [1, 1, . . . , 1]T . This model is

restricted to be a mixture of isotropic gaussians.

Choosing a fixed variance to use with this model is problematic: large variances

makes training very noisy, whilst small variances cause training to get stuck in local

maxima. A heuristic approach exists, which aims at avoiding the problems of a large

fixed variance by using the mean of P (v|h), rather than a sample from it, during train-

ing. We will show the results obtained with the fixed variance model trained normally

(Gaussian - Fixed) and trained using this heuristic (Gaussian - Heuristic).

2.5 Gaussian RBM with learned variance

We now present an extension of the Gaussian RBM model which allows for the mod-

eling of the variance. We consider two similar models: the first uses the same hidden

units to model both the mean and the precision (Gaussian - Joint), whilst the second

uses different sets of hidden units for each (Gaussian - Separate).
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2.5.1 Joint modeling of mean and precision

The energy function for this model represents the mean and precision jointly using a

common set of hidden units:

E(v,h) = −vT Wmh− (
v2

)T
W ph− vTbm − (

v2
)T

bp − cTh (4)

Denoting precision Λ = −2(W ph + bp), we have

P (vi|h) ∼ N
(

Wm
i,:h + bm

i

Λi

,
1

Λi

)
. (5)

In this model, the biases bp and weights W p are forced to be negative.

2.5.2 Separate modeling of mean and precision

Here, the energy function uses one set of hidden units hm to model the mean, and a

separate set of hidden units hp to model the precision:

E(v,hm,hp) = −vT Wmhm−(
v2

)T
W php−vTbm−(

v2
)T

bp−(cm)T hm−(cp)T hp

(6)

Denoting Λ = −2(W php + bp), we now have

P (vi|hm,hp) ∼ N
(

Wm
i,:h

m + bm
i

Λi

,
1

Λi

)
. (7)

In this model, the biases bp and weights W p are forced to be negative.

2.6 Beta RBM

In the Beta RBM, the conditional distributions P (v|h) are Beta distributions whose

means and variances are learnt during training.

If we were to simply apply the formula given by Welling et al. (2005), the energy

function of the Beta RBM would be

E(v,h) = − log(v)T Wh− log(e− v)T Uh

+eT log(v) + eT log(e− v)− cTh . (8)

In this formulation, each expert is a mixture of a uniform and a Beta distribution. Un-

fortunately, training such an RBM proved very difficult as turning a hidden unit on
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could only increase the precision of the conditional distribution. Furthermore, there is

no easy way of enforcing the positivity constraint on the parameters of the Beta distri-

butions (enforcing all the elements of a, b, W and U to be positive resulted in too hard

a constraint).

We therefore modified the energy so that each expert is a mixture of two Beta dis-

tributions. By doing so, we symmetrize the hidden units and we can have weaker con-

straints on the parameters while still retaining valid distributions. The new, modified

energy function is then:

E(v,h) = − log(v)T W1h− log(v)T W2(e− h)

− log(e− v)T U1h− log(1− v)T U2(e− h)

+ log(v) + log(e− v)− cTh . (9)

with the elements of W1, W2, U1 and U2 restricted to be positive (note that we do

not have the visible biases a and b anymore as these may be included in the weight

matrices). As Beta distributions treat the boundary values (0 and 1) differently than the

others, we extended their range to [−λ, 1 + λ] with λ =
(√

5−1
2

)
2.

2.7 Assessment of the quality of each RBM

To choose the most appropriate RBM for the real-valued red, blue and green channels,

we compared all these models on natural image patches (of size 16 by 16), using three

quantitative metrics: the reconstruction RMSE, the reconstruction log-likelihood and

the imputation accuracy. The experiments were led on patches which were not seen

during training.

2.7.1 Experimental setup

All models were trained on a training set of 383, 300 color image patches of size 16×16.

Patches were extracted on a regular 16 × 16 grid from images from three different

object recognition data sets: Pascal VOC, MSR Cambridge and the INRIA horse data

2λ =
√

5−1
2 has the properties that log(λ) = − log(1 + λ) and log(1 + λ) − log(λ) ≈ 1. The

first property ensures that the range of inputs to the hidden units is symmetric around 0 and the second

property ensures that log(v + λ), log(1 + λ− v) and h are approximately of the same amplitude.
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set.3 Red, green and blue color channels are concatenated, so that each model has 768

visible units. Where necessary an appropriately sized validation set was used.

We trained the model using gradient descent with persistent contrastive divergence

(Tieleman, 2008) and batches of size 20. We used a small weight decay, and decreased

the learning rate every epoch (one run through all training patches), dividing each epoch

into batches.

The hyperparameters were not treated equally:

• The weight decay and decrease constant were manually fixed to .0002 and .001,

respectively.

• The learning rate was optimized using the validation set, taking the learning rate

that gives the best log-likelihood of the data given the inferred latent variables

after one epoch.

• In the case of the Beta RBM, to get an idea of the effect of parameter λ we

tried three different values of λ for the case of 256 hidden units. We decided

beforehand to report for 512 and 1024 hidden units only the results for λ =
√

5−1
2

.

Once the optimal learning rate was found, we trained each model for 20 epochs, in

batches of size 50 patches. Models were trained for three different sizes of the hidden

layer: 256, 512 and 1024 hidden units.

2.7.2 Reconstruction RMSE

This experiment is used to determine the ability of each RBM to correctly model the

mean of the data. Reconstruction is performed as follows. Given a test patch vtest,

we sample a configuration of the hidden states h? from the conditional distribution

P (h|vtest). Given this configuration h?, we compute the average value of the visible

states E[P (v|h?)]. This is called a mean reconstruction of the test patch. Note that

this is not the true average reconstruction since we only consider one configuration

3Available from http://pascallin.ecs.soton.ac.uk/challenges/VOC/

voc2008/, http://research.microsoft.com/vision/cambridge/recognition/,

and http://lear.inrialpes.fr/data respectively.
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Figure 1: Reconstruction accuracy for different models. (a) RMSE of reconstructed test

patches for different stages of training. (b) Log likelihood of reconstructed patches.
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Figure 2: Reconstructions of patches from the test set.
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of the hidden states and not the full conditional distribution. Finally, we compute the

pixel-wise squared error between the reconstruction and the original patch .

RMSE reconstruction accuracies for the different models (with 1024 hidden units)

are shown in Figure 1(a) where the accuracies have been averaged across all test patches.

Note that because the RMSE measure uses only the mean of P (v|h?), the accuracy of

the variance of P (v|h?) is not assessed in these plots. A selection of test patches and

their mean reconstructions are shown in Figure 2(a,b).

The truncated exponential does a reasonable job of reconstructing the patches but

it is exceeded in performance by all three of the learned-variance models. This leads

to the counter-intuitive result that models designed to capture data variance prove to be

significantly better at representing the mean. An explanation is that these models learn

where they are able to represent the data accurately (e.g. in untextured regions) and

where they cannot (e.g. near edges) and hence are able to focus their modeling power

on the former rather than the latter, leading to an overall improvement in RMSE. The

overall best performer is the Beta RBM which not only has the best average RMSE but

also shows much greater stability during training in comparison to the Gaussian models

(as may be seen in Figure 1a).

2.7.3 Reconstruction log-likelihood

This experiment is a proxy to the true log-probability of the data. To obtain the true

probability of a test patch, one could start a Markov chain from this same patch, run

for an infinite amount of time, and compute the log-probability of that patch under the

final distribution (the choice of starting point would actually have no influence). Since

this would be too expensive, we only consider a unbiased sample of the distribution

obtained after one Markov step. We therefore perform the following experiment:

1. given a test patch vtest, we sample a configuration of the hidden states h? from

the conditional distribution P (h|vtest), and then

2. given this configuration of the hidden states, we compute the conditional proba-

bility of the test patch P (vtest|h?), which is easily done given the factoriality of

this distribution.

12



(a)
256 512 1024

0

0.05

0.1

0.15

0.2

0.25

Number of Hidden Units

Im
pu

ta
tio

n 
R

M
S

E
 (

S
iz

e=
2)

(b)
1 2 4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Size of Imputed Region

Im
pu

ta
tio

n 
R

M
S

E
 (

10
24

 H
id

de
n 

U
ni

ts
)

 

 

Truncated Exponential
Gaussian − Fixed σ=1
Gaussian − Heuristic
Gaussian − Joint
Gaussian − Separate
Beta

Figure 3: Imputation RMSE for different models, as a function of (a) the number of

hidden units and (b) the size of the imputed region.

Results for all models are given in Figure 1(b), again with 1024 hidden units. Unlike

the RMSE reconstruction, the log-likelihood jointly assesses the accuracy of the mean

and variance of the model. Hence, differences from the RMSE reconstruction results

indicate models where the variance is modelled more or less accurately. Unsurpris-

ingly, the fixed variance models do very poorly on this metric since they have fixed,

large variances. More interestingly, the joint Gaussian model now achieves very sim-

ilar performance to the Beta indicating that it is be modelling the variance better than

the Beta (considering that it modelled the mean slightly worse). This may be due to

the Gaussian being light-tailed in comparison to the Beta and hence able to put greater

probability mass near the mean.

2.7.4 Imputation accuracy

As a further investigation of the models’ abilities to represent the distribution over im-

age patches, we assessed their performance at filling in missing pixels in test patches, a

process known as imputation. The experimental process was:

1. given a test patch, randomly select a region of 1 × 1, 2 × 2 or 4 × 4 pixels and

consider these pixels to be missing,

2. initialize the missing pixels to the mean of the observed pixels, and

3. perform 16 bottom-up and top-down passes to impute the values of the missing

pixels. In each top-down pass, the values of the observed pixels are fixed whilst
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the values of the missing pixels are sampled from P (v|h). The number of passes

is chosen big enough to allow mixing to occur (bear in mind that we are sampling

from the conditional distribution of the unobserved pixels given the observed pix-

els, which is highly concentrated).

The RMSE between the imputed and true pixel values for the different models are

shown in Figure 3(a) for models with differing numbers of hidden units and in Fig-

ure 3(b) for different sized imputation regions. Again, the Beta RBM leads to the best

performance in all cases with the less stable joint Gaussian RBM typically coming in

second.

2.8 Conclusion

Across experiments, the Beta RBM proved more robust and slightly more accurate than

all the other types of RBM. We therefore decided to use it to model appearances. Nev-

ertheless, one should bear in mind that there is room for improvement and other, higher

quality continuous-valued RBMs may exist.

3 The Masked Restricted Boltzmann Machine

h1

(a) App.

RBM

App.

RBM
h2

(a)

Mask m

Image 

patch

θ

Figure 4: The Masked RBM. A masked RBM models an image patch as the compo-

sition of two or more latent patches, each generated from a separate appearance RBM

with shared parameters θ. The composition is controlled by a mask m, indicating which

of the latent image patches is to be used to model each visible image pixel.

An RBM will capture high order interactions between visible units, to the limit

of its representational power determined by the number of hidden units. If there are
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not enough hidden units to perfectly model the training distribution, one can observe

a “blurring” effect: when two input variables are almost always similar to each other

and sometimes radically different, the RBM will not capture this rare difference and will

assign a mean value to both variables. When modeling the appearance of image patches,

any two nearby pixels will exhibit this property (being different only when an edge is

present between these two pixels), thus resulting in a poor generative model of image

patches (as shown in the K = 1 case of Figure 6). To avoid this effect, a standard

RBM would require a number of hidden units equal to the product of the number of

possible locations for an edge and the number of possible appearances. Not only would

that number be prohibitive, it would also be highly inefficient since the vast majority

of hidden units would remain unused most of the time. Another, more efficient, way to

bypass this constraint of consistency within the dataset is to have K appearance RBMs,

each generating a latent image patch v̂k, competing to explain each pixel in the patch.

Whenever an edge is present, one RBM can explain the pixels on one side of the edge

while another RBM will explain pixels on the other side. We say that such a model has

K layers. To determine which appearance RBM explains each pixel, we introduce a

mask with one mask variable per pixel (mi) which can take as many values as there are

competing RBMs. The overall masked RBM is shown in Figure 4 and its associated

factor graph is shown in Figure 5.

Figure 5: Factor graph of the masked RBM with a uniform mask prior. The param-

eters θ(a) are outside the plate and thus the same for all RBMs.

To simplify the notation, we shall use a generic form of an RBM (omitting the biases
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Figure 6: Reconstructions of nine patches using a masked RBM with K = 1, 2 or 4

appearance models. When K = 1, the model is an ordinary Beta RBM and is unable

to capture sharp edges in the image. When K = 2 or K = 4 Beta RBMs are used in

a masked RBM, the reconstruction accuracy is much greater and the masks capture the

shape of the object in the image. The inferred masks and mean patch from each of the

Beta RBMs are shown. The experiment is detailed at the end of section 3. All models

have the same total number of hidden variables.

for clarity)4:

log P (v,h) =
∑
ij

f(θij, vi, hj)− log Z (10)

where f depends on the type of RBM chosen (in a binary RBM, we would have

f(θij, vi, hj) = −θijvihj).

In the remaining, we shall also use the following notation:

4to include the biases, one would add two functions g (with parameters bi and vi) and h (with param-

eters cj and hj)
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• since most of the equations will involve all the layers, we will define a shortcut no-

tation: for any variable t defined for each layer k, the set of variables {t1, . . . , tK}
shall be replaced by t1..K

• v is the image patch

• v̂k is the k-th latent patch

• h
(a)
k the hidden state of the k-th layer. The (a) superscript stands for “appearance”

as we will introduce shape layers later on.

Using these notations, given a mask m, the log-probability of a joint state s =

{v, v̂1, . . . , v̂K ,h
(a)
1 , . . . ,h

(a)
K } = {v, v̂1..K ,h

(a)
1..K} is equal to

∑
i

[
log δ (v̂mi,i = vi) +

∑
j

∑

k

f
(
θ

(a)
ij , v̂k,i, h

(a)
k,j

)]
− log Z . (11)

The first term allows our model to assign infinite energy (and therefore zero prob-

ability) to configurations violating the constraint that, if layer k is selected to explain

pixel i (i.e. mi = k), then we must have v̂k,i = vi. To demonstrate the efficiency of us-

ing several masks, we infer the mask and hidden states of models with various K given

an image, and then “reconstruct” the image using the mask and these hidden states. The

inference procedure is described in section A.1 in the appendix. For a fair comparison,

we used the same total number of hidden variables for each value of K (accounting for

the bits required to store the mask and the hidden units for each appearance model). The

reconstruction with K = 4 thus used RBMs with many fewer hidden units (n = 128)

than the one with K = 1 (n = 1024). From the results shown in Figure 6, we see

that it is advantageous to assign a large number of bits to the mask rather than to the

appearance. A more thorough evaluation of the masked RBM is presented in section 5.

4 Modeling shape and occlusion

The energy of Eq. 11 can be used to define a conditional distribution given the mask.

To get a full probability distribution over the joint variables, we must also define a

distribution over the mask. In this paper, we shall consider three different mask models:

a uniform distribution over all possible masks, a multinomial RBM which we denote
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Figure 7: Factor graph of the masked RBM with a non uniform mask prior. The

ordering S is only used in the occlusion model.

the “softmax” model and a model which has been designed to handle occlusions, which

we call the “occlusion-based” model. The latter two models will allow us to learn a

model of the shapes present in natural images.

The learning and inference procedures in these models may be found in section A

of the appendix.

4.1 The uniform model

The simplest mask model is the uniform distribution over m. In this model, no mask is

preferred a priori and the inferred masks are solely determined by the image. We use

this model as a baseline.

4.2 The softmax model

The softmax model consists of K binary RBMs with shared parameters competing to

explain each mask pixel. Each RBM defines a joint distribution over its visible state sk,

which is a binary shape, and its binary hidden state h
(s)
k (the (s) superscript stand for

“shape”). The K binary shapes sk are then combined to form the mask m, which is a

K-valued vector of the same size as the sk’s. To determine the value of mi given the

K sets of hidden states h
(s)
k requires computing a softmax over the K different inputs.
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The joint probability distribution of this model is:

log P (m, s1..K ,h
(s)
1..K , S) =

∑

k

[∑
ij

sk,iW
(s)
ij h

(s)
k,j +

∑
j

c
(s)
j h

(s)
k,j

]

+
∑

i

[
log δ(smi,i = 1) +

∑

k 6=i

log δ(sk,i = 0)

]
− log Z (12)

The third and fourth terms state that only one shape may be “on” at any given pixel, and

that the index of the selected shape is the value of the mask at that pixel.

Inference is relatively straightforward in this model, but at the cost of poor handling

of occlusion. Indeed, this models makes the implicit assumption that all the objects are

at the same depth. This gives rise to two problems:

1. when object A is occluding object B, the shape of object B is considered as absent

in the occluded region rather than unobserved. As a consequence, the model is

forced to learn the shape of the visible regions of occluded layers. For example,

with a digit against a background, the model is required to learn the shape of the

visible region of the background, in other words, the inverted digit shape.

2. there is no direct correspondence between the hidden states of any single layer

and the corresponding object shape, since the observed shape will jointly depend

on the K inputs.

4.3 The occlusion model

An occlusion occurs when an object is at least partially hidden by another one. In the

occlusion model, we explicitly represent this hiding by introducing an ordering S of

the layers (S(1) being the index of the foremost layer and S(K) being the index of

the backmost layer), where each layer contains a shape. For this shape to be visible,

there must not be any other shape at the same location in the layers above. The joint

probability distribution for this model is:

log P (m, s1..K ,h
(s)
1..K , S) = log P (S) +

∑

k

[∑
ij

sk,iW
(s)
ij h

(s)
k,j +

∑
j

c
(s)
j h

(s)
k,j

]

+
∑

i


log δ (smi,i = 1) +

∑

k:S(k)<S(mi)

log δ (sk,i = 0)


− log Z (13)
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Figure 8: Depth inference in the occlusion model. The mask image (top left) com-

prises three regions, so there are 3! = 6 possible depth orderings. Together with the

mask, the ordering defines which shape pixels sk,i are observed and which are unob-

served. This is illustrated for three of the six possible orderings (white regions: shape

off; black regions: shape on; gray regions: shape unobserved). Unobserved pixels (cor-

responding to US,k(m) in eq. 19, see appendix) can be “filled-in” by the shape model.

Thus, for a shape model that favors circles, squares, and homogeneous backgrounds

ordering 1 is preferable to all other orderings (including 2 and 6).

There are two differences to the softmax model:

1. we now have a prior P (S) over the depth ordering (which is chosen to be uniform)

2. if mi = k, then we must have sk,i = 1 (as in the softmax model), but we only

require that sk′,i = 0 for the layers k′ in front of the layer k (rather than for all

the layers as is the case in the softmax model). sk′′,i for k′′ behind layer k are

unobserved (occluded). This idea is illustrated in Figure 8.

With this model, there is a direct correspondence between the hidden states and the

shape of the object (see Figure 9).

The description of the inference procedure for the depth ordering S is described in

section B.1 of the appendix.
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5 Inferring appearance and shape of objects in images

We recall that our goal is to learn a good generative model of images by extracting a

factorial latent representation (appearance and shape) of objects in natural images. To

assess how well this goal is achieved, we shall try to answer a set of questions:

• how visually similar are the samples from our model to samples coming from

the same distribution as the training set? Though poor samples characterize a bad

generative model, the converse is not true as samples too close to the training data

show a lack of generalization of our model, which is not desirable. Despite the

flaws of this “measure”, we think it can provide meaningful insight on what has

actually been learnt.

• do samples from our model exhibit the same statistics than those computed on

test patches?

• are test patches likely under our model?

• did we really factor appearance and shape? Are the latent representations we

extract meaningful? Are they independent of the depth ordering of the objects in

the image? Are the depth orderings correct?

The first three questions relating samples from our model and test data can be an-

swered both on a toy dataset and a real dataset of natural images. However, a toy dataset

offers the additional advantage of providing the ground truth objects from which the

patches have been created, which makes it easier to assess the quality of the generative

model.

The last questions are trickier to answer in the context of natural images since we

have no control over the ordering of the objects. However, there are some natural

patches for which there is little ambiguity over that ordering. If the model is able to

infer a plausible answer in these cases, this should be a good indicator of the quality of

its inference of the depth ordering of the objects (and thus a measure of the invariance

of the inferred latent shapes to this ordering).

21



5.1 Training

This section describes the training procedure for the masked RBM, as this model proved

much more complicated to train than a standard RBM. Details on the datasets used are

provided in the next sections.

The training was done in several stages of increasing complexity for efficiency rea-

sons:

1. we first trained a single, unmasked, RBM until low-frequency filters appeared.

This allowed us to quickly obtain a good initialization for the filters typically

obtained in the masked RBMs (since the edges are captured by the masks, none

of them are high-frequency) by avoiding having to infer the mask at each iteration

2. initializing with the filters from the previous step, we then trained a masked RBM

with a uniform mask model (which means we only trained the appearance RBM)

and K = 2. Using a lower K allows us to speed up inference while still providing

good initial filters for the final stage. K was then switched to 4 until parameters

converged. The reason why we trained the appearance model in the context of a

masked RBM is to avoid wasting capacity modeling complicated shapes which

will be handled by the mask.

3. we froze the parameters of the appearance RBM and we learned a softmax shape

model (whether the final model is the softmax one or the occlusion based one)

using as training data the masks inferred at stage 3. We suspect the reason why

we cannot use the occlusion based model at that point is that the inference of the

depth ordering is poor when the shape model is not close to convergence.

4. we fine-tuned both the appearance RBM and the shape RBM by performing the

joint inference of the parameters of both models (the masks being inferred at each

iteration using the current state of the RBMs), using the correct shape model.

Bootstrapping allowed for faster learning of this complex model. Also, experiments

seemed to indicate that it helps finding a better global solution and avoiding undesirable

local minima.
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5.2 Toy masks dataset

The toy masks dataset is composed of 4000 14 × 14 mask images generated from the

superposition of an MNIST digit (from the class “3”) and a shape (a circle, a square or

a triangle). In this dataset, neither digits nor shapes are shown in isolation, and each

digit example appears only in exactly one image. Since the digit is in the background

on half of the patches, half of the digit examples are only partially visible. Samples of

this dataset (which are masks) are shown in Figure 9a: each pixel can take three values

(represented by the colors red, green and blue), one for each object in the patch (the

background being the third object). Which color is assigned to each object is irrelevant

(the actual values are not used to infer the depth ordering), it only matters that they are

assigned different colors.

5.2.1 Quality of the generative shape model

(a) (d) (b2) (c1) (b1) (b3) (c2) (c3) (c4) 

Figure 9: Learning shapes under occlusion: (a) Training data. (b1) Samples from

the occlusion model (20 hidden units per layer), obtained by composing latent shapes

(b2 and b3). (c1) Samples from the softmax model with 70 hidden units (left-most

column) using contributions of the three layers (c2, c3 and c4). (d) Samples from the

softmax model with 20 hidden units per layer. The softmax model can compensate for

its limitations by using more hidden units, but its performance quickly decreases when

it has limited capacity, yielding invalid samples (in the bottom right sample, the “3”

goes through the square).

We trained our mask model using three layers (K = 3). Figure 9 shows samples

from the occlusion model with 20 hidden units (b), the softmax model with 70 hidden

23



units (c) and the softmax model with 20 hidden units (d). Samples from the occlusion

model are drawn by sampling from the two RBMs governing the top-most and second-

most layer independently and then composing these samples as prescribed by eq. 13.

One can see that, when using 20 hidden units, the samples drawn from the occlusion

based mask model are much more convincing than those drawn from the softmax model.

Indeed, the latter generated samples with improper occlusions or deformed digits. It is

also interesting to note that the occlusion model generalized to samples not seen in

the training set, like the two MNIST digits occluding each other. Furthermore, columns

(b2) and (b3) show samples of the latent shapes, proving that the occlusion model learnt

a model of the individual shapes — despite the fact that it has never seen them in

isolation.

In the softmax model, on the other hand, the layers cooperate to generate a partic-

ular image of occluding shapes. It is not possible to sample from the individual layers

separately, but one can still inspect the inputs to the three layers of visible units which

are tied together by the softmax. These inputs are shown in Figure 9 (c2, c3 and c4).

It is clear that no shape is generated by a single layer but that all three layers have to

interact. In the first row, for instance, all three inputs contain a “3” (either with positive

or negative weights) despite it being absent from the resulting sample. Though harmful

(because they require additional modeling power), these cancelations are inevitable in

the softmax model. While the occlusion model learns about the individual image el-

ements, the softmax model has to represent all their possible arrangements explicitly,

which is less efficient and thus requires a larger number of hidden units. This also leads

to a set of hidden units which is far less indicative of the shape in the image than in the

occlusion model.

5.2.2 Sensitivity to occlusion

To assess the importance of the difference in representation between the softmax and

the occlusion mask models, we created pairs of images containing one digit and one

shape (the same digit and the same shape were used in both images of a pair). In the

first image, the digit was in front of the shape and in the second image, the shape was in

front of the digit. We compared the inferred shape latent variables for the two cases and

computed their root mean squared difference. As our main motivation is to recognize
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Figure 10: Histograms of the root mean squared differences between the activation of

the hidden units inferred depending on the relative positions of the MNIST digit and the

shape in the test image for the softmax model and the occlusion model.

objects whether or not they are occluded, we would like the shape latent variables to be

as similar as possible in the two cases. Unsurprisingly, the occlusion based mask model

clearly outperforms the softmax model, as may be seen in Figure 10. Furthermore, in

our experiments, the occlusion model inferred the correct ordering more than 95% of

the time (chance being 17%, as there are three layers and six possible orderings).

This toy dataset emphasizes the need for modeling occlusion when extracting a

meaningful representation of the shapes present in images.

5.3 Natural image patches

The experiments on toy data demonstrated that the occlusion model is able to learn and

recognize shapes under occlusion and is able to perform depth inference given a mask

image with occluding shapes. The second set of experiments on natural images assesses

the joint model consisting of the shape and the appearance model. For this purpose we

trained the full model with K=3 on 10K 16 × 16 patches extracted from natural color

images. The mask model used in all these experiments is the occlusion model. The

appearance RBM had 128 hidden units and the shape RBM had 384 hidden units.

As outlined above, our criteria for assessing the model on this dataset were

1. whether samples from the model looked qualitatively similar to the natural image

patches that we had trained the model on (section 5.3.2)

2. whether samples from the model exhibited the same statistics as natural image
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patches (section 5.3.3)

3. whether it would learn to use simple shape-based depth cues (section 5.3.4).

5.3.1 Sampling from a confident continuous-valued RBM

When learning the appearances of the objects with the Beta RBM, each expert becomes

extremely confident. This is even more striking in the masked context where the noise

model does not need to explain the sharp variations of appearance at the boundaries

of objects. While this is a good thing from a generative point of view, it leads to a

very poor mixing of the Gibbs chain. Indeed, as the conditional distributions P (v|h)

become very peaked, so do the distributions P (h|v) and the relationship between v and

h becomes quasi-deterministic. This makes it hard to:

• learn the parameters in the final stage as the samples from the negative chain are

highly correlated between consecutive time steps

• draw samples to assess the quality of the generative model

• compute an accurate approximation to the partition function to estimate the log-

probability of test patches.

The first issue was dealt with by using tempered transitions (Salakhutdinov, 2009)

twice per sweep through the training set. To improve sampling, we trained a binary

RBM on top of our Beta RBM. As such RBMs mix much more easily, we could draw

samples by running a Gibbs chain in this top binary RBM, before performing a top-

down pass in the bottom Beta RBM. Unfortunately, even then, AIS (Salakhutdinov and

Murray, 2008) proved unreliable. We therefore decided not to include log-probability

results whose validity we could not properly assess.

5.3.2 Visual assessment of the samples

Sampling from the mask model was performed by sampling the binary RBMs in the

shape layers and composing them according to a randomly chosen depth ordering. Sam-

ples are shown in Figure 11, right. Though they do not exhibit as much structure as true

natural image patches (Figure 11, left), the presence of multiple sharp edges makes
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them look much more convincing than the typical blurred samples one may obtain from

a single RBM. Moreover, the samples clearly capture important characteristics of the

training patches (such as the dominance of homogeneous regions and the shape of the

boundaries of these regions), despite the relative simplicity of the model and the fact

that K was chosen to be small.

Figure 11: True natural patches (left) and samples from the masked RBM (right).

5.3.3 Image statistics

We first assess the quality of the samples from the masked RBM by computing the

responses of patches (either natural ones or samples from our model) to a set of Gabor

filters, even and odd, at different spatial frequencies and orientations. Before computing

the filter responses, we converted all the patches to grayscale. The filters are shown in

Figure 12. We compared four kinds of patches:

• natural patches

• patches sampled from the masked RBM. The appearances and the shapes are true

samples from the model. This model used K = 3 layers

• patches sampled from a single, unmasked, RBM

• patches generated from Gaussian noise with the same covariance as natural patches.
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Figure 12: Odd and even Gabor filters used to compute statistics over patches. The

layout of these filters corresponds to the one used in Figure 13.

The results (displayed as log-probability of each response value) are shown in Fig-

ure 13, where the layout corresponds to the layout of filters in Figure 12. The responses

for patches from the masked RBM (in blue) have much heavier tails than those for

patches for the unmasked RBM (in red).

The samples were obtained by running a Gibbs chain for 5000 steps for the ap-

pearance RBM (both for the masked and the unmasked RBM) and 20000 steps for the

shape RBM. Due to the pixel-independent noise model, the peak at 0 is underestimated

for these two models (nearby pixels have an extremely low probability of having the

same value, unlike true image patches). If we run a Gibbs chain in the masked RBM for

the same amount of time but, at the last step, we take the mean activation of the visible

units given the binary hidden states (rather than a sample), we get the filter responses

shown in figure 14 (only the region near the origin is shown). The tails remain the same

but the peak at 0 is more pronounced, closely matching the ones obtained with true

image patches.

Again, we wish to emphasize that the model has never been trained to match these

statistics. The improved matching, in particular the heavy tails, arose naturally with the
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Figure 13: Filter responses for various kinds of patches: Green: real image patches.

Blue: samples from the masked model with K = 3. Red: samples from the appearance

model only (no shape). Cyan: Gaussian noise with the same covariance as the real

patches. Whereas the samples generated from a single RBM exhibit a Gaussian-like

response, the response obtained from samples from the masked RBM closely match

those obtained from real image patches.

use of a mask.

5.3.4 Inference of relative depths based on shape

The goal of this experiment is to investigate whether learning an efficient representation

of the data leads to the model being able to reason about relative depths. For this purpose

we chose a simple scenario shown in Figure 15: patches that contained simple shape-

based depth cues were extracted from an image (a). For each patch, the model inferred

a segmentation mask with up to K=3 regions (b.1), a relative depth ordering (front to
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Figure 14: Difference between sampled and mean activations in a zoomed-in region

close to the peak, for the first four Gabor filters. Green: real image patches. Blue: sam-

ples from the masked model with K = 3 where the activations of the visible units have

been sampled given the binary hidden states. Red: samples from the masked model

with K = 3 where the activations of the visible units are the average of the activations

given the binary hidden states. Due to the smoothness induced by the averaging, the

peak at 0 is much more pronounced and is much closer to the one obtained with real

image patches. Similar results were obtained for the other Gabor filters.

back: red — green — blue), the potentially partially unobserved shapes of the two

rear-most layers (b.2) and the appearances of the three layers. Knowledge of the latent

shapes allows for removing the foreground shape and imputing the missing parts of the

second layer shape (c.1 and c.2: segmentation mask with two layers and imputed image

respectively). For the examples shown, the model inferred depths orderings and latent

shapes largely consistent with the full image. We observed that the patches for which

this was not the case often exhibited matting or shading, situations not accounted for by

the model. Despite these limitations, it is interesting to observe that learning an efficient

representation of the data also appears to have made the model pick up certain simple

depth cues, despite never having received depth information with the training data.

6 Field of Masked RBMs

Since our ultimate goal is to build a generative model of natural images, we need to

move from the patch level to the image level. This can be achieved by dividing the

image into a set of non-overlapping patches, each modeled with a masked RBM with

shared parameters. However, this approach leads to artifacts at the patch boundaries,

since correlations between pixels either side of these boundaries are ignored. These ar-

tifacts appear because the K patch appearance models that each pixel chooses between
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Figure 15: Starting from natural patches (a), we inferred the ordering of the layers

(b.1), the latent shapes of the 2 frontmost objects (b.2) and the 3 latent images (b.3).

This allows us to recreate a mask image without the foreground (c.1) and the associated

patch (c.2).

are aligned, so that their patch boundaries are in the same place. A better solution is

obtained by noting that the patch models can be laid out on the image in an arbitrary

manner as long as each pixel is covered by at least one patch. In particular the patch

models overlapping with (and thus competing for) a particular image pixel do not have

to be aligned. Also, the number of patches overlapping with different pixels could vary

in principle. In practice it is nevertheless desirable to cover the image with patch models

in a regular manner and to cover each pixel with the same number of patches. One way

to achieve this is shown in Figure 16. Here, the image is tiled by K grids of abutting

patch models. In each grid the patches are non-overlapping and cover all pixels in the

image. Across different grids the patch boundaries are spatially offset so that no two

patches are fully aligned. In this model, we only get coarse translational invariance

(with K = 4 and a patch size of 16 × 16, our model is invariant to translations of 8

pixels or multiples thereof).

Thus the image is covered with overlapping appearance RBMs (and possibly corre-

sponding shape models), arranged such that each pixel is covered by exactly K RBMs.

Figure 16 shows a field of masked RBMs, with two of the overlapping appearance

RBMs highlighted. The set of mask variables now form a mask image with a value for

each image pixel indicating which of the K overlapping models it is explained by. It

should be noted that this model is a mixture rather than a product of appearance RBMs,
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Figure 16: A field of masked RBMs, where an image is represented using a set of

overlapping patch models. Left:The image is covered by K (here K = 4) grids of

non-overlapping, abutting patches (each grid is shown in a different color: red, yellow,

cyan, blue). The different grids are spatially offset so that the patch boundaries in dif-

ferent grids do not align and each pixel is covered by K partially overlapping patches

that compete to explain the pixel. Right: Blow-up of the interaction between two over-

lapping patch models. Competition between patch models leads to a segmentation of

the image into “superpixels”, with one superpixel per patch. The appearance and the

shape of each superpixel are modeled by separate RBMs.

in contrast, for instance, to the Field of Experts model of Roth and Black (2005).

Inference is done in the same way as at the patch level with the one difference

being that the patch models competing for a particular pixel are no longer aligned.

This introduces long-range dependencies between spatially separated patches, so that

inference has to be performed on the entire image simultaneously. While this makes

perfect sense from a probabilistic point of view (in the general case, one has to take

the whole image into account to understand part of it), the result is slower learning and

inference.

Figure 17 is the equivalent of Figure 6 for full images. It shows the reconstruction

of an image (that is, the image generated using the hidden states inferred from the
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Figure 17: Reconstructions of an image under a field of masked RBMs with dif-

fering numbers of appearance layers. Each appearance layer is represented by a grid

of non-overlapping Beta RBMs. In each case the reconstruction uses 4 bits per pixel.

The reconstruction quality is highest for K = 4 indicating a good trade-off between

representing appearance and shape of objects in the image.

original image) using various numbers of layers and a uniform mask model. As for

the experiments depicted in Figure 6, we used the same number of hidden variables

for each value of K (4 bits per pixel). The RBMs used in the appearance model with

K = 4 thus have only 128 hidden units whereas those used in the model with K = 1

have 1024 hidden units. The patch size is 16× 16 pixels for all K.

Both shape models discussed in the previous section (i.e. the softmax- as well as

the occlusion-model) can be used at the image level. Figure 18 shows that using such

a shape model yields more coherent regions for the mask image without significant

loss in reconstruction accuracy. The occlusion model leads to a particularly appealing

interpretation at the image level: Each patch model can be thought of as an independent

expert modeling shape and appearance of an image patch. It consists of an appearance

RBM that determines the color – or more generally texture – of a patch and a binary

RBM that determines its shape, as is illustrated in Figure 16. An image is generated by

covering it fully with such patches in an occluding manner. In particular – and perhaps
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(a) Without shape model (b) With shape model

Original Mask Reconstruction Mask ReconstructionOriginal Mask Reconstruction Mask Reconstruction

Original Mask Reconstruction Mask Reconstruction

Figure 18: Field of masked RBMs with and without RBM softmax shape model. (a)

Without shape model, the mask gives the best reconstruction RMSE but is not coherent.

(b) With a shape model, the inferred mask is much more coherent, whilst preserving

thin structures like brick patterns. Reconstruction quality is very close to the one of (a).

surprisingly – inference with the occlusion model can still be performed efficiently for

full images: Even though each image is explained by a potentially large number of

patches, each indiviudal patch overlaps only with a small number of neighbors (e.g.

for K = 4 and the global patch layout shown in Fig. 16, each patch overlaps with 8

neighbors). Thus, instead of determining a global depth order of all patches (which

would clearly be infeasible) it is sufficient to infer the depth of each patch relative to its

neighbors. The depth of a particular patch given a fixed relative order of its neighbors

can be determined following the principles described for image patches in Section 4.3;

the full local ordering of all patches covering the image is determined in an iterative

manner by considering each patch in turn (see Appendix for details).

6.1 Experiments

Once again, although the reconstruction of test data gives some information about the

quality of a generative model, it has severe shortcomings. We shall thus repeat some

experiments done at the patch level to show how the main properties of the algorithm
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have been preserved despite operating at the image level.

6.1.1 Inferring depths on toy data

Figure 19: Left: training RGB image for the field of masked RBM. There are five dif-

ferent shapes and five different colors. No two overlapping shapes have the same color.

Most of the shapes are explained by only one superpixel. Right: inferred segmentation

and depths. Areas explained by a given superpixel are delimited by yellow lines. In

several cases, the inferred relative depth is also displayed: the red line is on the inside

of the shape and the green line is on its outside. Therefore, when two shapes overlap

(for instance, the green circle and the blue triangle at the top of the image), the red line

of the object in the back is cut by the red and green lines of the object in the front (in

this case, the blue triangle is in the back). The model inferred the correct depth ordering

for all the shapes.

We shall start by assessing the validity of our model on toy data. We focus our

attention on three components:

• the allocation of objects to masked RBMs. Namely, are objects fully captured by

the RBM they are centered on? Are RBMs explaining only parts of objects?

• how robust is the depth inference between overlapping objects?

• how good are the shape and appearance models learnt using entire images?
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Figure 20: Inference of the shape and appearance of two barely visible objects (one

being occluded by another object, the other sitting at the edge of the image). The

inferred shapes are very close to the correct answer.

For this purpose, we trained our field of masked RBMs with K = 4 on 1000 80×80

images (corresponding to 144 overlapping 16 by 16 patches) composed of five different

shapes with varying colors placed randomly in an overlapping fashion against a uniform

background (see Figure 19, left for an example; note that shapes were aligned with the

patch-grid). We allowed for 20 hidden units for the shape model.

After training, we verified whether the shape model had indeed learned about the

shapes comprising the images by sampling from the binary RBM directly. A selection

of random samples is shown in Figure 21. Indeed, even though most shapes are only

partially visible in the training images (and have varying colors), the shape model has

recovered the five templates shapes correctly. Figure 19, right, shows the segmentation

inferred with the fully trained model for the image shown on the left. Yellow outlines

show the boundaries of objects captured by each masked RBM (patch model). These

boundaries indeed reflect the shapes comprising the image (note that the background is

segmented in a largely arbitrary manner). Segmentation is obviously not a very difficult

task given the image at hand. More interesting is the simultaneously inferred relative
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depth of the different image regions and the latent representation inferred for each patch

model. The relative depths are shown for a subset of segmentation boundaries which are

double-marked with red and green lines. The red side of the boundary points towards the

region that has been inferred to be in front; the green side towards the one that is inferred

to be in the back. Figure 19 further shows the inferred latent shape and appearance

for two of the patch models representing the image (indicated by the blue squares).

In both cases the true shapes (a gray star and a red triangle) are barely visible in the

image (see also Figure 19). Nevertheless the model correctly infers the appearance and,

importantly, completes the partially occluded shape (Figure 20). It is this ability to

correctly complete occluded shapes that drives the depth inference.

Figure 21: Samples generated from the shape model learnt using the training image

from Figure 19, after running a Gibbs sampler for 5000 steps. The images shown are

the probabilities of the binary visible units given the binary states of the hidden units.

Though most of the shapes are occluded, the samples closely match them. One can see

that the model has some difficulties distinguishing the square from the circle.

6.1.2 Image editing

We shall now show how the field of masked RBMs may be used to edit entire images,

rather than single patches like in Figure 11. We chose an image where the relative depth

of the object in the front could be inferred from local visual cues (bear in mind that,

though this is a model of entire images, the depth is only inferred using neighboring

patches). As opposed to the experiments on toy data of the previous section, this image

was not part of our training set.

Figure 22 shows the original image, as well as the inferred depth of each element
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Figure 22: Left: training image for the field of masked RBMs. Middle: inferred seg-

mentation and depths. Colors denote the relative depth of the region assigned to a given

superpixel. Blue regions are in the back (relative to the neighboring superpixels) and

red regions in the front (relative to the neighboring superpixels). Most of the shapes are

explained by only one superpixel and the relative depths of overlapping shapes have all

been correctly inferred. Right: edited image after having removed the string around the

bunch of flowers (whose extent is determined by the inferred segmentation) and sam-

pled the missing pixels according to their conditional distribution given the observed

ones.

(red being in front and blue being in the back). Again, one should focus on the relative

depths of nearby objects in this inference. One can notice that the string attaching the

bunch of flowers is clearly identified as being the frontmost object. Though identified

as being in the front, the rightmost part of the string has been wrongfully separated from

the rest of the string. This is due to the shadow on the string which makes it virtually

indistinguishable from the background (when one uses only local visual cues).

From there, one can decide to remove this object. In doing so, we get an image

where all the pixels are observed, except for those which were underneath this frontmost

object (see Figure 22, left). As done previously, we may now sample these pixels from

the conditional distributions of the RBM involved in these patches. The resulting image

may be seen in Figure 22, on the right.

Except for a few pixels, the resulting image looks convincing and the stems have

correctly been inferred.
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Interpretation as a superpixel algorithm

The masked field of RBMs learns to represent an image as a number of regions each

of which can be explained by a single appearance RBM. These regions can be thought

of as superpixels although they differ from previous kinds of superpixel in that they

are not required to be contiguous but merely constrained to lie within the boundary

of a patch. Also, they have high-order shape priors that have the potential to capture

complex shapes, such as digits or letters. For example, in Figure 17, for K = 2 the

same superpixel is used for the white background both inside and outside the ‘p’ of

‘except’. Such non-contiguity makes particular sense when dealing with occlusion,

since the same superpixel can be used to represent part of an object either side of a

narrow occlusion.

7 Conclusion

The contributions of this paper are as follows. First, we provided an empirical compari-

son of a range of RBMs able to model continuous data, showing that properly modeling

the variance dramatically improves the quality of the model. We then introduced the

masked RBM, a generative model that works with the assumption that natural image

patches are composed of objects occluding each other. In this model, each object is fac-

tored into an appearance and a shape, over which we made no prior assumptions. This

proved to be a much more accurate model of image patches than the standard RBM,

while still allowing for efficient inference. We demonstrated how it was able to infer

the depth of objects in natural scenes using only learnt visual cues. We also showed

that properly dealing with occlusion was essential for a good latent representation of

objects. Last, composing the masked RBMs into a field, we were able to extend our

model to large images while retaining the properties observed at the patch level.

We believe the abilities to deal with occlusion, to model generic shapes and appear-

ances, and the applicability to large images are central to a generative model suitable

for a broad range of images. Inspired by previous works which dealt with a subset of

these properties, we provided a unified, comprehensive probabilistic framework which,

while powerful, remains computationally tractable (though still expensive). We hope

that this will encourage the community to build richer, more powerful models, with the
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ultimate goal of approaching the capacity of the human visual system.

8 Future work: the Deep Segmentation Network��������� ��	
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Figure 23: The second level of a DSN. The second level of a DSN is a field of masked

RBMs of the same structure as the first level (Figure 16) but where the input image

‘pixels’ are the feature vectors of the first level superpixels (h(a),h(s)).

We have shown how a field of masked RBMs is able to decompose an image into

superpixels and model the shape and appearance of each superpixel using separate sets

of hidden variables, even under occlusion. The next stage of this research is to learn

how these superpixels fit together into object parts and how object parts go together to

form objects. To do this, we can follow the approach of Deep Belief Nets and com-

bine multiple fields of masked RBMs in a hierarchical model, which we call a Deep

Segmentation Network (DSN). The idea is to treat the superpixels learned by the first

field of masked RBMs as input “pixels” for a higher-level field of masked RBMs. For

example, the superpixels learned in the previous section are associated with patches laid

out on a regular 8 × 8 grid. Hence, we can construct a new “image” one eighth of the

size of the original image where the “pixels” are 512 bit feature vectors (384 shape +

128 appearance) rather than RGB values. We can train a second-level field of masked

RBMs on a set of such images, where the appearance models are now binary RBMs,

as shown in Figure 23. The overlapping patches of the second level cover multiple first

level superpixels and hence learn how the shape and appearance of nearby superpixels

go together. Mask images will also be inferred for the second level, leading to second
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level superpixels which merge a number of first level superpixels. This process can be

repeated by adding additional levels to the DSN until the entire image belongs to a sin-

gle superpixel. This formulation gives rise to a tree-structured hierarchy in which each

lower-level node (pixel) is connected to exactly one node in the next level. This hier-

archy is, however, not fixed: through the mask which determines to which superpixel

pixels are associated, DSNs define an image-dependent parse tree of the input image,

similar to Dynamic Trees (Williams and Adams, 1999; Storkey and Williams, 2003).

However, DSNs are able to define richer and more complex priors over such parse trees

than was possible with DTs.

Preliminary results show that using deeper DSNs leads to meaningful higher level

superpixels whilst increasing accuracy on a segmentation task. We believe this is due to

the capacity of the higher layers to capture longer range dependencies, allowing parts,

entire objects and object context to be captured.

Deeper DSNs will require very large image training sets in order to learn about

the range and variability of objects in natural images. Large scale training of deep

DSNs is a significant research and engineering challenge that will require extensive

parallelisation, in combination with novel methods for learning from vast image data

sets. In future we will pursue this goal, with the aim of learning generative models that

start to capture the daunting complexity of natural images.
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A Inference and learning in the masked RBM

One of the strengths of RBMs is to have a factorial posterior distribution over the la-

tent variables given the visible ones, making it extremely easy to perform inference.

Unfortunately, this is not the case in our model since, even when the mask is known,

the latent images are only partially observed, resulting in a non-factorial posterior dis-

tribution. Furthermore, the mask is not known for natural images and this needs to be

inferred as well. This section explains in detail how to infer all these variables using

Gibbs sampling. The mask model we will consider here is the occlusion-based one as

the other two can be easily deduced from it. We recall that:

• given a mask m, the log-probability of a joint state {v, v̂1..K ,h
(a)
1..K} is equal to

∑
i

[
log δ (v̂mi,i = vi) +

∑
j

∑

k

f
(
θ, v̂k,i, h

(a)
k,j

)]
− log Z . (14)

• the log-probability of a joint state {m, s1..K ,h
(s)
1..K , S} is

log P (m, s1..K ,h
(s)
1..K , S) = log P (S) +

∑

ijk

sk,iWijh
(s)
k,j

+
∑

i


log δ (smi,i = 1) +

∑

k:S(k)<S(mi)

log δ (sk,i = 0)


− log Z (15)

Combining eq. 14 and eq. 15, we get:

log P
(
v, v̂1..K ,h

(a)
1..K ,m, s1..K ,h

(s)
1..K , S

)
=

∑

ijk

f
(
θ, v̂k,i, h

(a)
k,j

)
+

∑
i

log δ (v̂mi,i = vi)

+
∑

ijk

sk,iW
(s)
ij h

(s)
k,j +

∑
i


log δ (smi,i = 1) +

∑

k:S(k)<S(mi)

log δ (sk,i = 0)




+ log P (S)− log Z . (16)

A.1 Inference

The joint distribution defined by eq. 16 exhibits several properties:

1. given the latent images v̂1..K , the distribution over the appearance hidden states

h
(a)
1..K is factorial
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2. given the latent shapes s1..K , the distribution over the shape hidden states h
(s)
1..K is

factorial

3. given the image patch v, the hidden states h
(a)
1..K , the hidden states h

(s)
1..K and the

ordering S, the marginal distribution over the mask m (when integrating out the

latent images v̂k and the latent shapes ŝ1..K) is factorial

4. given the image patch v, the mask m and the hidden states h
(a)
k , the distribution

over the latent images v̂k is factorial.

5. given the mask m, the hidden states h
(s)
k and the ordering S, the distribution over

the latent shapes sk is factorial

Properties 1, 2, 4 and 5 are easily deduced from the form of eq. 16. Let us prove

property 3. Given the image patch v, the hidden states h
(a)
1..K , the hidden states h

(s)
1..K

and the ordering S, we have

log P
(
v̂1..K ,m, s1..K |v,h

(a)
1..K ,h

(s)
1..K , S

)
=

∑

ik

g(λkiv̂k,i) +
∑

i

log δ (v̂mi,i = vi)

+
∑

ik

νkisk,i +
∑

i


log δ (smi,i = 1) +

∑

k/S(k)<S(mi)

log δ (sk,i = 0)




− log Z .

where g(λkiv̂k,i) =
∑

j f
(
θ, v̂k,i, h

(a)
k,j

)
. From there, we may compute

log P
(
mi = t|v,h

(a)
1..K ,h

(s)
1..K , S

)
= g(λtivi)− log

(∫

v̂t,i

exp[g(λtiv̂t,i)]

)

+ νti −
∑

k/S(k)≤S(t)

log [1 + exp(νki)]− log Z

which proves the factorial form of the conditional distribution.

This suggests the following Gibbs sampling scheme to infer all the hidden variables

given an image v: starting from a random mask m, we iterate over the following steps:

1. given the mask m, we sample the unobserved parts of the latent images v̂1..K

using block Gibbs sampling (using properties 1 and 4)

2. given the mask m and the ordering S, we sample the unobserved parts of the

latent shapes s1..K using block Gibbs sampling (using properties 2 and 5)
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3. given the latent images v̂1..K , we sample the appearance hidden units h
(a)
1..K (using

property 1)

4. given the latent shapes s1..K , we sample the shape hidden units h
(s)
1..K (using prop-

erty 2)

5. given the appearance hidden units h
(a)
1..K , the shape hidden units h

(s)
1..K , the image

patch v and the ordering S, we sample a new mask m (using property 3)

6. given the mask, infer the depth ordering as explained in section B.1

This process is repeated until convergence of the mask. The sampling procedure directly

implies that the mask may be different each time. However, in all our experiments, it

consistently matched the structure of the shapes in the images.

A.2 Learning

We shall now see how learning of the parameters W (s) and θ can be achieved using the

above inference procedure. We need to compute the gradient of the log-probability of

an image patch v with respect to the parameters, that is

∂ log p(v)

∂θ
=

∂

∂θ
log

∑

m,v̂1..K ,h
(a)
1..K ,s1..K ,h

(S)
1..K ,S

P
(
v,m, v̂1..K ,h

(a)
1..K , s1..K ,h

(S)
1..K , S

)
.

(17)

Since this can not be computed exactly, we shall use an EM procedure (Dempster et al.,

1977). We first derive a variational lower bound of log p(v):

log p(v) ≥
∑

m,v̂1..K ,s1..K ,S

Q(m, v̂1..K , s1..K , S|v)

log
∑

h
(a)
1..K ,h

(s)
1..K

P
(
v,m, v̂1..K ,h

(a)
1..Ks1..K ,h

(S)
1..K , S

)

− H[Q(m, v̂1..K , s1..K , S|v)]

for any function Q. The bound is tight when Q(m, v̂1..K , s1..K , S|v) is the true poste-

rior distribution. Since we cannot compute the sum over all masks, all latent images,

all latent shapes and all orderings, we will replace it by a sample from the posterior

distribution. Therefore, the gradient direction we follow is

∆θ ∝ ∂

∂θ
log

∑

h
(a)
1..K ,h

(s)
1..K

P
(
v, m̃, ˜̂v1..K ,h

(a)
1..K , s̃1..K ,h

(S)
1..K , S̃

)
(18)
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where m̃, ˜̂v1..K , s̃1..K and S̃ are samples from the posterior distribution (obtained using

the method described in section A.1). Using more than one sample would reduce noise

at the expense of extra computation. In our experiments, we used a single sample and

found that learning worked well.

B Depth inference in the occlusion model

B.1 Depth inference for image patches

In order to infer the depth variable S given a mask m we consider each possible ordering

of the K layers explicitly. The mask m together with a particular occlusion order

S defines which shape pixels s
(s)
k,i are observed and which are unobserved. This is

illustrated in Figure 8 in the main text. The likelihood of a particular ordering S is then

simply given as the likelihood of all the partially observed shapes sk under the shape

model:

P (S|m) ∝
K∏

k=1

∑

{sk,i:i∈US,k(m)}

∑

h

p(sk,h). (19)

Here, US,k(m) is the set of all unobserved pixels for shape k given mask m and ordering

S. The set of unobserved pixels US,k(m) will vary between different orderings S and

this is what drives the depth inference.

In practice the sum over unobserved pixels and over the latent variables h
(s)
k cannot

be computed exactly. We therefore replace the first sum by sampling the unobserved

pixels {sk,i : i ∈ US,k(m)} conditioned on the observed shape pixels for each k and S.

Sampling can be done efficiently using several iterations of block Gibbs sampling. This

results in “completed” shape images ŝS
k for which the unnormalized probability under

the shape model can be computed efficiently

p(ŝS
k ) =

∑

h

p(ŝS
k ,h) (20)

∝ exp
(
bT ŝS

k

) ∏
j

[
1 + exp

(
(ŝS

k )T W·j
)]

, (21)

so that we obtain

P (S|m,
{
ŝS
k

}
k=1...K

) ∝
K∏

k=1

p(ŝS
k ) (22)
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Note that the completed shape images are different for different S; for plausible order-

ings the shape model will be able to “fill in” the unobserved pixels to give rise to a

shape with a high likelihood which in turn leads to a high probability of the respective

ordering. Note further that the shape in the rear-most image is largely determined by

preceding layers. In practice we therefore ignore the likelihood of the shape in that

layer. Note finally that even though considering each possible ordering S explicitly

might seem expensive (the number of possible orderings is factorial in K), for K ≤ 4

this remains feasible in practice. Given a depth ordering S and the latent states of the

K shape RBMs {h(s)
k }k=1...K the conditional probability of the mask is given as

P (mi = t|{h(s)
k }k=1...K , S) = p(si = 1|ht)

∏

k in front of t

(1− p(si = 1|hk)) . (23)

This message can be combined with the signal from the appearance models as described

in Section A above.

B.2 Depth inference for images

Depth inference at the image level, given a mask image, is performed by determining

local depth orderings of overlapping patches. For this purpose each patch is consid-

ered in turn and its depth relative to its neighbors is determined, keeping the ordering

of its neighbors fixed. For instance, for the experiments with 16 × 16 pixels patches

and K = 4 each patch model overlaps partially with eight neighboring patches (so that

each pixel is covered by four competing patch models). Thus, for any given patch and

a fixed ordering of its eight neighbors, nine different relative depths need to be consid-

ered. Each of these relative depths gives rise to a set of unobserved pixels, not only for

the patch considered but also for its neighbors. The probability of the different relative

depths can be computed in essentially the same way as described in Section B.1 (ap-

proximating the sum over unobserved pixels by a sample and then efficiently computing

the unnormalized log probability of the completed shape). Note that, for each neigh-

boring patch, the set of unobserved pixels only depends on whether the patch under

consideration is in front or behind that neighbor; this considerably reduces the number

“shape completions” that need to be considered (two completions per neighboring patch

and N + 1 for the central patch, where N is the number of neighbors).
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In practice, given a mask, we perform one full sweep through the set of patch mod-

els, updating the relative depth (and the latent shapes) of each patch with respect to its

neighbors once in a random order. Given the resulting depth ordering and the latent

states of the shape models the mask can then be updated as in the patch case (cf eq. 23

above).

C Computing the log-probability of image patches un-

der the masked RBM

Due to the number of latent variables involved in the masked RBM, it is impossible to

compute the exact log-probability of natural image patches under this model. We may,

however, derive a variational lower bound which would allow us to quantify the gains

provided by the mask.

C.1 Uniform mask model

We shall begin with the uniform mask model case as this will simplify the equations.

From there, it is relatively straightforward to move to the more complex mask models.

log p(v) = log
∑

m,v̂1..K ,h
(a)
1..K

P
(
v,m, v̂1..K ,h

(a)
1..K

)

= log
∑

m,v̂1..K ,h
(a)
1..K

P
(
v,m, v̂1..K ,h

(a)
1..K

) Q(m|v)

Q(m|v)

≥
∑
m

Q(m|v) log P (m)
∑

v̂1..K ,h
(a)
1..K

P
(
v, v̂1..K ,h

(a)
1..K |m

)

−
∑
m

Q(m|v) log Q(m|v) (24)

for any function Q, using Jensen’s inequality. Let us first rewrite the sum inside the

logarithm:

P
(
v, v̂1..K ,h

(a)
1..K |m

)
= P

(
v̂1..K ,h

(a)
1..K |m

)
P

(
v|v̂1..K ,h

(a)
1..K ,m

)

The second term enforces the constraints described in eq. 14: all configurations which

do not match v̂mi,i = vi for all i have zero probability. Therefore, we only need to com-
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pute the sum over the configurations satisfying these constraints. Since these constraints

are independent of the h
(a)
k , we have

P
(
v|v̂1..K ,h

(a)
1..K ,m

)
= P (v|v̂1..K ,m)

and this distribution is fully concentrated on one point (given the latent images and the

mask, there is only one valid image). Furthermore, we have

P
(
v̂1..K ,h

(a)
1..K |m

)
=

K∏

k=1

P
(
v̂k,h

(a)
k |m

)
,

yielding

∑

v̂1..K ,h
(a)
1..K

P (m)P
(
v, v̂1..K ,h

(a)
1..K |m

)
= P (m)

K∏

k=1

∑

v̂k∈Ck,h
(a)
k

P
(
v̂k,h

(a)
k |m

)

∑

v̂1..K ,h
(a)
1..K

P (m)P
(
v, v̂1..K ,h

(a)
1..K |m

)
= P (m)

K∏

k=1

∑

v̂k∈Ck

P (v̂k|m) (25)

where Ck is the set of v̂k matching the constraints imposed by v and m (as defined in

eq. 14). We recall that the set Ck is the set of all v̂k such that v̂k,i = vi if mi = k.

Therefore, we need to sum the probabilities of all visible vectors with a subset of the

units being fixed. This can be done using Annealed Importance Sampling (Salakhutdi-

nov and Murray, 2008). Indeed, the conditional distribution over a subset of the visible

units given the rest of the other visible units is also an RBM (conditioning on some

visible units only modifies the biases of the hidden layer). Given the strong constraint

imposed by the observed pixels, the resulting RBM is likely to have a very peaked

distribution, making its partition function easy to approximate.

Now that we know how to compute
∑

v̂1..K ,h
(a)
1..K

P
(
v,m, v̂1..K ,h

(a)
1..K

)
for a given

m, we need to find the optimal subset of masks to consider (that is, the distribution

Q(m|v)).

Let us denote pi = P (v,mi) for a certain mask configuration mi and qi = Q(mi|v).

We need to optimize the quantity D =
∑

i qi log pi −
∑

i qi log qi over the qi’s, subject

to the constraint
∑

i qi = 1. The optimal solution is given by qi =
pi∑
i pi

, yielding

D = log
∑

i

pi (26)
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We therefore need to find the mi’s yielding the maximal pi’s. Since pi = P (v,mi) =

P (v)P (mi|v), we need to find the modes of the posterior distribution of m given v.

Due to the very constrained nature of the mask, the probability mass is heavily con-

centrated around a small number of modes, making it possible to achieve a tight bound

over the log-probability of an image patch with few masks.

A simpler explanation of this approximation is that we have replaced the quantity

p(v) =
∑

m p(v,m) by a sum over a subset of the masks. It then becomes clear that

this subset needs to include the masks m for which the quantity p(v,m) is maximized.

To find the modes of P (m|v), we shall first do a few iterations (typically twenty)

of sampling as described in section A.1, and then replace the third sampling step by a

maximization step for a few more iterations (typically ten). We do not perform maxi-

mization from the beginning as this often results in finding a poor local optimum.

C.2 Non-uniform mask model

In the case of a non-uniform (occlusion-based) mask model, we have

log p(v) = log
∑

m,v̂1..K ,h
(a)
1..K ,s1..K ,h

(s)
1..K ,S

P
(
v,m, v̂1..K ,h

(a)
1..K , s1..K ,h

(s)
1..K , S

)

= log
∑

m,v̂1..K ,h
(a)
1..K ,s1..K ,h

(s)
1..K ,S

P
(
v,m, v̂1..K ,h

(a)
1..K , s1..K ,h

(s)
1..K , S

) Q(m|v)

Q(m|v)

≥
∑
m

Q(m|v) log P (m)
∑

v̂1..K ,h
(a)
1..K ,s1..K ,h

(s)
1..K ,S

P
(
v, v̂1..K ,h

(a)
1..K , s1..K ,h

(s)
1..K , S|m

)

−
∑
m

Q(m|v) log Q(m|v) . (27)

Given m, the latent variables may be split in two sets as follows:

P
(
v, v̂1..K ,h

(a)
1..K , s1..K ,h

(s)
1..K , S|m

)
= P (v, v̂1..K ,h

(a)
1..K |m)P (s1..K ,h

(s)
1..K , S|m)

(28)

and, following the same reasoning as in section C.1, we may compute P (s1..K ,h
(s)
1..K , S|m)

using AIS.
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