
Simple Data-Driven Modeling of Brushes

William Baxter∗

Microsoft Research
Naga Govindaraju†

Microsoft Research

Figure 1: We create a dynamic deformable 3D brush based on measurements taken of actual brush deformations (top row). A small table of
such measurements (see Figure 3) is enough to recreate the key deformation characteristics of a brush (bottom row), and the result is a fast,
stable and realistic brush model for use in a digital painting system.

Abstract

We present a new and simple data-driven technique for modeling
3D brushes for use in realistic painting programs. Our technique
simplifies and accelerates simulation of the constrained dynamics
of brushes by using a small lookup table that efficiently encodes
the range of feasible constrained states. The result is a brush model
which runs an order of magnitude faster than previous physics-
based methods, while at the same time delivering greater deforma-
tion fidelity.

Keywords: deformation, painting systems, data-driven, example-
based, dynamics, optimization, physically based modeling

1 Introduction

Physically-realistic virtual brushes enrich a painting system by giv-
ing digital paint a dynamic expressiveness closer to that of real-
world paint. In a typical stamp-based digital painting program, the
range of marks each brush bitmap can generate is limited. Most
programs offer at most a simple scaling of these bitmaps based on
pressure. To overcome the lack of realistic brush dynamics, these
programs typically provide hundreds of pre-made brush bitmaps
with many different shapes. The result is that changing brushes
becomes a time-consuming activity for the user. In contrast, the
dynamic nature of real-world, physical brushes allows painters to
quickly create a rich variety of different marks with each single

∗e-mail: wibaxt@microsoft.com
†e-mail:nagag@microsoft.com

brush, depending upon how they wield and load it. Importantly,
this flexibility does not incur a high cognitive load, thanks to the
intuitive familiarity of physical deformations.

A good physically-based brush model can give the digital artist
nearly the same level of flexibility and intuitive control as can be
had with brushes in the physical world. The previously proposed
brush models that offered this level of physical accuracy have all
relied upon simulation using costly numerical techniques. Though
these techniques can run at interactive frame rates, for a paint-
ing system, frame rate is not as important as the impression rate.
Impression rate is the number of brush impressions which can be
stamped per second. The ideal impression rate is several orders of
magnitude higher than the frame rate—6000 Hz or more is desir-
able to prevent lag on fast stroke motions. The necessary impres-
sion rate is determined by the speed of the brush in pixels/sec, so
the exact rate required depends on both the DPI of the canvas being
drawn upon, and the speed with which the user is drawing.

As many cycles as possible are needed for generating impressions.
If the stroke engine lacks the time to generate the impressions re-
quired for a stroke, either the display will lag behind input, or
strokes become tessellated as input samples are dropped without
updating the brush deformation. Current physical brush simula-
tions can require a millisecond or more to simulate a brush head
with several bristles, taking valuable cycles away from impression
generation.

A further difficulty with purely simulation-based approaches is
matching the behavior of specific real-world brushes. Real brushes
have a stiffness that varies from tip to belly, which can be difficult
to match convincingly by setting a handful of stiffness parameters.

Subtle deformations near the tip, the most pliable part of the brush,
are also difficult to recreate accurately using a model that is dis-
cretized as coarsely as is typical with previous approaches. Finer
discretization has not been possible due to performance and numer-
ical issues.

We present a new data-driven technique for simulating brushes

based on real, measured brush deformations that offers a solution
to these limitations. Our technique is an order of magnitude faster
than previous simulation approaches while more accurately model-
ing subtle tip deformations. And since our technique is data-driven,
it is simple to match the deformation behavior of specific brushes
with significantly less parameter tweaking.

2 Previous Work

Brush modeling has been very well-studied in the digital painting
literature. In this section, we briefly review these techniques, as
well as some techniques for non-brush modeling using data.

Non-physics 2D brushes: The earliest and still most commonly
used model for brushes are those based on a simple 2D bitmap,
stamped repeatedly along a user’s stroke [Photoshop 2009; ArtRage
2009; Painter 11 2009; Smith 1978; Strassmann 1986]. These tech-
niques may apply some simple transformations to the bitmap while
stamping the footprint along the stroke. 2D techniques are fast but
less flexible than real 3D brushes.

Non-physics 3D brushes: In these techniques, a collection of pa-
rameters are used to model 3D brush strokes [Wong and Ip 2000;
Xu et al. 2002; Xu et al. 2003]. These techniques improve the flexi-
bility in modeling complex strokes as compared to non-physics 2D
brushes but may require significant effort in capturing the model
parameters to create realistic brush strokes.

Dynamic 3D brushes: Baxter et al. [2001] modeled the brush dy-
namics using a semi-implicit technique that integrates linear springs
between the brush head and the canvas. Adams et al. [2004] later
improved this technique by using a leap-frog integration scheme.
The use of time-stepping integration techniques may not be suit-
able for simulating stiff bristles.

Optimization-based 3D brushes: Saito et al. [Saito and Nakajima
1999] approximate the bristle behavior using a quasi-static energy
optimization technique on a single spine. Chu and Tai[2002] incor-
porated lateral spine nodes to allow brush flattening. Baxter et al.
[2004] later used a similar optimization technique, adding multiple
spines and subdivision surfaces to model a wider variety of brush
geometries. These techniques are relatively expensive and may re-
quire significant engineering, and exhaustive parameter tweaking to
generate realistic behavior.

Data-based brushes: In order to model visual effects from tradi-
tional tools and media, Greene [Greene 1985] introduced the draw-
ing prism to capture the images of tool movement on the surface.
Peter Vandoren et al.[2009] updated this idea with novel capture
hardware and used the footprints captured from real wet brushes.
These techniques have an advantage of providing an intuitive hap-
tic feedback of a real brush and can capture complex brush strokes.
However, a user must actually possess the full range of sizes and
shapes of physical brushes she would like to use. Furthermore, it is
non-trivial to incorporate both forward and backward paint transfer
between the canvas and the brush.

Data-driven simulation: Data-driven techniques have been used in
other areas of simulation, for instance in animating cloth [Cordier
and Magnenat-Thalmann 2004; White et al. 2007]. Though in many
ways more general than the technique we present, these techniques
are not particularly suited to the task of simulating brushes in real
time.

3 Table-driven simulation

Like many previous works [Saito and Nakajima 1999; Chu and Tai
2002; Baxter and Lin 2004; Van Laerhoven and Reeth 2007], our

q l2

l1

h

Θ

Figure 2: The geometry of a reference deformation of a control
bristle. Triplets (l1, l2, q) are indexed in the deformation table by
the bristle base angle, �, and handle height, ℎ. l1 and l2 are the
lengths of the sides of first and last edge of the cubic Bézier control
polygon.

model uses a set of control bristles or spines to guide the deforma-
tion. This keeps the amount of required computation to a minimum.
The control bristles are simulated, while the remaining brush geom-
etry is deformed kinematically based on the motion of the control
bristles.

The main observation motivating our approach is that typical defor-
mations of a brush can be described succinctly as a set of simple
curves. Previous approaches have used costly iterative constrained
optimization techniques to find the minimum energy state of each
control bristle [Saito and Nakajima 1999; Chu and Tai 2002; Bax-
ter and Lin 2004; Van Laerhoven and Reeth 2007]. But we observe
that, ultimately, the space of minimal energy configurations of a
bristle is in practice fairly low-dimensional.

3.1 Creating the Deformation Table

Typical bristle deformations lie on or near a plane. This observation
enables us to make a dramatic simplification to our model. Instead
of capturing 3D deformations we may just capture deformations in
a single reference plane. This leads to a parametrized space of de-
formations with just two degrees of freedom. We take the first to be
the height of the bristle root over the canvas surface, and the second
to be the angle of attack at the root of the bristle (see Figure 2).

3.2 Equilibrium bend energy

These curves give a record of the static bend energy equilibria con-
figurations of the brush. They in essence encode solutions to the
engineering problem of a simply supported non-linear beam with
one clamped end. Such solutions ignore friction and just tell us
about static equilibria of the bending energies.

Several of these deformations for a particular brush, and our re-
constructed deformations for these are shown in Figure 1. The full
table of deformation curves constructed for the brush is shown in
Figure 3.

For now we simply trace these curves out by hand in a vector
drawing program, following the centerline of the deformed brush
in frames extracted from a video. We found that each deforma-
tion could be adequately modeled as a single cubic Bézier segment,
though accuracy may be slightly improved using a fourth order
curve. In principle this curve extraction process could be automated
using image segmentation and optimal fitting of curves to the me-
dial axis.

Figure 3: The complete table of deformation curves for the round
calligraphy brush in Figure 1. The colors correspond to different
angles of the brush handle with respect to the canvas surface.

In the remainder of the paper, we assume a rest pose coordinate sys-
tem for the brush in which the canvas is the X-Y plane and the brush
handle, in its rest pose, points up along the +Z direction. Reference
deformations are assumed to be in the X-Z plane.

In storing the table, we can make several optimizations. The di-
rections of the tangents at the ends of the curves are predetermined
by the ferrule on one end, and the canvas, which acts as the simple
support at the other. So in practice we only need to store the lengths
of these tangents, not their directions. We translate each curve root
to the origin, so the only remaining data to store is the location of
the distal control point on the curve. However the Z coordinate is
just the height of the bristle, which is a lookup parameter, so only
the X coordinate needs to be stored. Thus each curve entry can be
stored using just 3 floating point values, two tangent lengths and the
X coordinate of the bristle’s tip.

To find the equilibrium bend energy curve using the table, we ap-
proximate with a bilinear interpolation using the four closest data
points in terms of angle, �, and a normalized height, ℎ̂. This nor-
malized height is 1 at the point the bristle is just in contact with the
surface, and 0 when the bristle root reaches the canvas. This allows
the heights at different angles to be meaningfully interpolated. The
result of the lookup is the end tangent lengths and the X position
for the distal control point (l1, l2, and q in Figure 2).

The basic idea is to then rotate this curve in the reference X-Z plane
to coincide with the equilibrium bend energy plane. This equilib-
rium plane is the plane perpendicular to the canvas, and passing
through the transformed bristle root’s tangent (the one with length
l1.) See Figure 2. This can be accomplished by applying an ap-
propriate rotation about the Z axis to each of the reference control
points.

There is one complication, however, in that for each given bristle
angle there are two possible equilibrium positions corresponding to
bristles bent forward and bristles bent backwards. We disambiguate
these two cases by looking up both angles (� and �−�) and picking
the one that puts the brush tip closest to the place where it was in
the previous frame.

3.3 Friction

The table of equilibrium energy states basically encodes the config-
uration that the brush would take if all friction were neglected. In
order to give the brush more realistic dynamic behavior, it is neces-
sary to incorporate friction into the model as well.

pb

pf

x

t=t0

t=t0+∆t

Figure 4: A simplified energy optimization procedure incorporates
bend spring and friction terms to determine the updated direction
for the brush tip, x.

Frictional forces act to keep the status quo. Thus ignoring spring
energy, a bristle would tend not to move from frame to frame. So
in some sense the optimal configuration with respect to friction
is simply the previous configuration. This gives us two reference
configurations: the bend energy equilibrium configuration from the
previous section, and this friction-only configuration.

As in [Baxter and Lin 2004], by assuming that within a given time
step points move linearly, we can treat friction as a cone-shaped
energy well which requires work to escape. This follows from the
Coulomb model of friction which offers a constant resistive force
in the opposite direction of any motion. Integrating this leads to the
cone-shaped well. The energy required to move from pf to position
x is thus:

Ef = �fN∥pf − x∥,
where � is a coefficient of friction, fN is a normal force, pf is the
position a point had last step, and x is the unknown equilibrium
position for which we wish to solve (see Figure 4).

Bending energies on the other hand tend to be well approximated
by quadratic functions in bend angles:

Eb = kb∣�∣2,

where kb is a bending spring constant, and � is the bend angle of
a particular joint of a discretized control bristle. In [Chu and Tai
2002; Baxter and Lin 2004; Van Laerhoven and Reeth 2007], these
relations are summed up joint-wise in 3D to get a total energy func-
tion and then solved for using non-linear optimization. However,
ultimately, motions of different joints and the bend angles between
them are highly correlated because the quadratic energy penalizes
outliers. Neighboring joints tend to have similar �.

So our approach is to just look at one representative point, the tip
of the control bristle, and instead of looking at bend energy as a
function of bend angle, we use the small angle approximation to
arrive at:

Eb = kb∥pb − x∥2,
where pb is the bend energy equilibrium position that bristle tip
would attain if friction were ignored. Note that we already account
for the bending energy due to the canvas constraint in our lookup
table, thus for our purposes this kb represents only lateral bending
in the X-Y plane. Summing Ef and Eb together it can be shown
that the minimum energy solution must lie on the line between pf
and pb. This allows us to reduce the problem to one dimension, and
this can be solved analytically.

The minimum is at x = pf + �(pb − pf) where � is

� = max

(
0,
kb∥pb − pf∥ − �fN

kb∥pb − pf∥

)

In our experiments we found kb = 1 and � = 0.75 to work well
with fN = 1. We also tried adding a normal force based on the
brush compression ratio, �. For this case we use fN = 0.7+20∗�2,
with � = 0.2 and kb = �.

Once the minimum value for x is found, we actually use this as the
direction in which to orient the third and fourth control points of the
Bézier, while the second control point still uses the the pb direction
explained previously. This effectively models how friction pulls on
the tip of the brush, but does not change the tangent of the end of
the bristle that is clamped by the brush’s ferrule.

We do not currently model internal brush friction explicitly, though
it could be considered as being lumped in as part of the single fric-
tion energy.

3.4 Mesh deformation and skinning

For mesh deformation based upon the motion of the control bris-
tles, we first subdivide each Bézier curve non-uniformly in unit
arclength at points so according to the following cubic function:

so =
1

2
s3 − 3

2
s2 + 2s

where s = i/n for i = 0 . . . n. The non-uniform spacing has the
effect of placing more points near the tip where higher curvature
deformations are expected. A great benefit of our technique is that
the overall cost is linear in the number of segments, with a small
constant, whereas adding more segments in previously presented
2nd-order optimization methods grows as O(n3) due to linear sys-
tems that must be solved in the inner loop. A comparison of timings
can be found in Figure 6.

To actually deform mesh vertices we use standard linear blend skin-
ning (LBS), which allows us to use fast hardware-based vertex
shaders to implement the deformation. Since standard LBS is a
general spatial deformation technique, as with the FFD method of
[Van Laerhoven and Reeth 2007], the brush geometry need not be
a closed mesh or even a mesh. Any vertex-sampled geometry can
be deformed, as can be seen in Figure 8.

3.4.1 Vertex weight assignment

To assign bone weights to vertices, we first used the equilibrium
heat diffusion method of [Baran and Popović 2007], but found this
method ultimately unsuitable for our application. The main issues
were 1) it assumes a well-connected mesh (so it is not suitable for
a triangle soup) 2) heat sources are set up by adding a source term
for the closest bone to each vertex. This means if a bone is not the
closest bone for any vertices it will have no influence at all. 3) the
method seems best at creating tightly localized blending regions,
rather than smooth gradual transitions – good for actual rigid skele-
tons, but not for our problem of smooth surface reconstruction from
a discrete set of nonrigid frames. This last property is probably due
to the lack of smoothness of harmonic solutions near constraints.

Instead we use a technique based on radial basis functions (RBF).
We use the kernel function Φ(x, y) = ∥x− y∥ which corresponds
to a bi-Laplacian fit to the data in 3D [Wahba 1990], and yields
smoother results than a harmonic, or Laplacian, solution.

We determine a set of RBF coefficients Cij by solving the linear
system:

ΦC = F (1)

Where Φij = Φ(xi, xj). The sites xi, 1 ≤ i ≤ Nsites, are deter-
mined by sampling each bone along its length (we choose 5 samples

per bone). The right-hand-side data terms are defined as:

Fij =

{
1 if point xi on bone j
0 otherwise (2)

From this we determine provisional vertex weights w̃jk with 1 ≤
j ≤ Nbones and 1 ≤ k ≤ Nvertices according to the RBF formula:

w̃jk =

Nsites∑
i=1

CijΦ(xk, xi) (3)

These are essentially a set of Nbone smooth cardinal functions each
with a value of 1 on the given bone 0 on other bones. For the final
weights, wjk, we drop all but the four largest weights at each vertex
and re-normalize. The restriction to the four most influential bones
is a performance optimization that allows more efficient skinning
with hardware vertex shaders.

Note that this weight truncation could lead to visible discontinu-
ities, though in practice we have not observed any. If they did ap-
pear they could be eliminated by adding extra sites with Fij = 0 to
the RBF interpolation. This would work as follows. For each bone
we can associate a sort of 4th-order Voronoi region representing the
zone in which that bone is one of the four closest bones. All vertices
outside this region can be added as zero-valued sites relative to the
given bone. In this way we could approximately enforce that there
be no more than four influential bones per vertex while still obtain-
ing a smooth RBF interpolation function. The down side would be
a much larger linear system to solve. We have not observed a need
for this technique so we have not implemented it at this point.

3.4.2 Matrix determination

As a brush is deforming, we must determine at each step what
transformation matrix to associate with each bone. A simple but
incorrect approach is to just take the matrix with uniform scale that
rotates a bone in its rest configuration [p0, p1] to the bone in its de-
formed position [q0, q1], by rotating about the axis (p1−p0)×(q1−
q0). This possible for a single-spine brush, but we wish to have a
more general technique which can be applied to brushes with any
number of spines. Given several spines, we wish to infer an optimal
transformation to associate with each bone, based on the relative
configurations of all the other spines. If bristles spread apart in one
direction, the matrices need to reflect that directional scaling.

Our basic idea is to use a constrained least-squares fit to the guide
bristles to find each segment’s optimal matrix. Recently, many
works such as [Müller et al. 2005; Rivers and James 2007] have
used a least-squares technique where an orthogonality, or rigidity
constraint is applied. In our case we know that bristles are inexten-
sible along their length, but tufts of bristles may behave non-rigidly
in orthogonal directions.

The inextensibility constraint is simply that the segment [p0, p1]
must be transformed into [q0, q1]. Subject to this constraint we wish
to minimize a weighted least-squares estimate of the local trans-
form. If pi are sample points on bones in their rest pose and qi
are the corresponding points in the deformed configuration, we can
solve the problems:

Aj = argmin
A

Nsamples∑
i=1

�i∥A(pi − pj)− (qi − qj)∥2

for all 1 ≤ j ≤ Nbones subject to the constraint. The points pj are
chosen as the midpoint of each bone, and pi are the endpoints of
the bones. We enforce the constraint approximately using a large

penalty weight (�i = 500) for any points pi which are endpoints of
the segment of pj .

For other points we use an approximate inverse square law for the
weighting, �i = 1/(d2 + 0.1). However, since the scaling in the
bristle direction is determined by our constraint, we should give
higher weighting to points located along other directions. We make
X-Y distances the dominant factor in the weights by defining d =√

Δx2/100 + Δy2/100 + Δz2.

Solving the final least squares problem requires care because for
many brush geometries the problem is underdetermined. For in-
stance if there is a single spine or all spines lie in a plane, then the
appropriate off-axis or off-plane scale cannot be determined. Thus
we solve using a singular value decomposition of the normal ma-
trix UΣV T = PEPT (where P is formed by concatenating the pi
together column-wise, and E is a diagonal matrix with Eii = �i).

In non-degenerate cases where all singular values in Σ are non-zero,
the solution is standard, just Rfit = V Σ∗UTQEPT , where

Σ∗ii =

{
1/Σii if Σii ∕= 0
0 otherwise.

For degenerate cases with some zero singular values, we need to
substitute a default scaling to complete the missing information in
the result matrix. Post-multiplication of Rfit by U rotates the null
axes into the last columns, where we set them to be perpendicular to
the non-degenerate axes, with default scaling. For the case of one
missing axis we use the geometric mean of the two existing axes
scales. A final post-multiplication by UT gives us the final Rfit.

For single spine brushes, a simpler approach is possible. There, for
each segment, the associated transform is computed as the concate-
nation RbendRtwist, where Rbend is the matrix that rotates the bristle
base to the proper bend angle and Rtwist is the rotation of the bristle
base about the Z-axis.

3.5 Tip spreading

Like [Chu and Tai 2002] we have also added an explicit term to
control tip spreading for certain brushes. In our formulation the
fraction of tip spreading, tspread is controlled by two factors. First,
the previously mentioned compression ratio, �. Second is the bend
angle � used in the table lookup. We use

tspread = smoothstep(0,
1

2
, �)smoothstep(

�

4
,
�

2
, �),

where smoothstep is the standard Hermite function. This effectively
increases spreading for higher pressure and steep angles of attack.
See Figure 5 for further details on the calculation of the spread fac-
tor for each vertex. The maximum spread ratio is a brush modeling
parameter, which we denote k. A spread of 1 + tspread(k − 1) is
attained at the tip of the brush. The base of the brush has a con-
stant spread factor of 1. The spreading deformation is applied to
the vertices prior to the LBS skinning in local coordinates. Because
the LBS skinning can introduce a twist, we apply the deformation
scaling in the X-Y plane as:

p′xy = pxy Rot(−�twist)

(
1 0
0 d

)
Rot(�twist),

where d is the scale factor calculated as in Figure 5, and �twist is the
z-axis rotation part of the LBS matrix.

0

1

z

a ak0

p p'
p
p'

=
lerp(r, ak*, z)
lerp(r, a, z)

spread

d =

ak*

lerp(1, k, t)k* =
r

Figure 5: Implementation of tip spreading on a brush with base
half-width r, tip half-width a. k is the maximum spread factor at
the tip of the brush, tspread is the fraction of the maximum spread in
effect, and k∗ is the effective spread factor. z is a normalized coor-
dinate that is 0 at the base of the brush, 1 at the tip. lerp(c1, c2, t) is
a standard linear interpolation function returning (1−t)∗c1+t∗c2.

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12

Ti
m

e
(m

ic
ro

se
co

n
d

s)

Number of segments

Optimization

Our data-driven

Figure 6: Time (in microseconds) to calculate control bristle de-
formations for different numbers of segments using optimization vs.
our data-driven method. As the number of segments increases the
performance of the optimization method degrades. Performance of
our method remains constant.

4 Experimental results

We have presented a simple and effective technique for simulating
the dynamics of brushes via a combination of table-lookup and sim-
plified energy optimization. The result is a simulation technique at
least an order of magnitude faster than accurate optimization-based
approaches previously presented, and yet it offers more precise de-
formations based on real-world data.

Figure 6 shows timings comparing performance of our simulation
technique vs the optimization technique of [Baxter and Lin 2004],
which is a constrained Quasi-Newton SQP method with BFGS Hes-
sian updates, similar also to that of [Chu and Tai 2002]. There is
naturally almost no change in simulation cost in our method as the
number of segments increases, whereas it rises rapidly with opti-
mization methods like constrained SQP.

Figure 7 demonstrates the impact of brush simulation time on over-
all paint system performance. In our paint system the simulation
update rate is tied to the input device update rate, and in this case it
reports at 200 Hz. Points on this horizontal line at 200 Hz represent
smooth operation with the paint engine able to keep up with input.
In this setup, as the brush update time exceeds 2 msec the impact
on performance becomes noticeable. With a simulation time of 2

0 2000 4000 6000 8000 10000 12000 14000 16000
Impressions/sec

100

120

140

160

180

200

220
U

p
d
a
te

s/
se

c

Update time (usec)

<20
500
1000
2000
3000
4000

Figure 7: Impact of brush simulation times on impression rate
and update rate. As the time spent on brush simulation updates
increases, both maximum impression rate and simulation update
rates suffer. 200 Hz is the update rate of the input device (Wacom
Intuos3). Test conducted on an Intel Xeon 2.66 GHz CPU, NVIDIA
GeForce 8800 GTS 512 GPU.

msec or more, the system has difficulty keeping up, and the simula-
tion update rate and impression rate both suffer. Such a simulation
time could easily be required by an optimization-based brush using
4–8 spines. In contrast, our method will perform acceptably on this
system with 1-2 orders of magnitude more spines.

For our system we are using a deformation lookup-table with 15
entries (Figure 3). However in experiments we have found that rea-
sonable results can be had with as few as 6 entries, just using the
height minimum and maximum for each of three attack angles. The
method does not seem to be particularly sensitive to the number of
entries, though six samples do seem to be needed at a minimum.
Creating such tables with our manual technique required an hour
or two of work, but, again, much of the work could be automated.
With a dedicated tool it should only take a few minutes.

Figure 8 shows some typical deformations of the various brushes
we have modeled and strokes characteristic of these brushes. The
subtle tip deformations give our technique the ability to draw fine
lines better than previous optimization approaches. In Figure 9 we
show some artwork created using this new brush simulation tech-
nique in a painting system similar to that of [Baxter et al. 2001].
Please also see our supplemental video showing the real-time de-
formations of our brushes.

5 Discussion

Our algorithm has several advantages. It is simple and results in
significantly higher performance while modeling complex brush
behavior. Moreover, compared to prior physics-based brush model-
ing methods, our algorithm achieves better numerical stability. As
our algorithm is table-driven, it can also be easily implemented on
GPUs using vertex shaders.

Nevertheless, our approach does have certain limitations. Since our
approach is data-driven, based on a restricted set of “typical” brush
deformations, it is not possible to recreate every possible deforma-
tion of a real brush. Our approach currently does not incorporate
anisotropic friction or brush plasticity, as it simplifies our algorithm.

However, our approach is general these things could probably be
incorporated.

6 Conclusions and Future Work

In this paper, we presented a simple data-driven algorithm for mod-
eling 3D brushes. Our algorithm uses a small lookup table to effi-
ciently encode the feasible constrained states of a brush. We also
model the effects of friction by treating frictional energy as cone-
shaped wells centered on the position at the previous time step. In
order to model the mesh deformations with higher curvatures, we
subdivide the Bézier curves non-uniformly. Our algorithm running
on an Intel Xeon 2.66GHz PC is able to simulate brushes with a
single spine within 10 microseconds and is 5-45x times faster than
optimization-based approaches.

There are many avenues for future work. The general approach of
encoding difficult to simulate non-linear constraints in a lookup-
table may be useful in other scenarios. Recently shape-matching
techniques for simulation have been shown [Müller et al. 2005;
Rivers and James 2007] to be effective. These techniques show that
dynamics can be simulated if the equilibrium rest shape of an ob-
ject is known. In that case the deviation between that configuration
and the current one can be used to define a position update law for
particles that leads to dynamics. Our technique may be extended to
define an extended set of rest states based on contact dynamics for
an extended class of objects.

Acknowledgments

We would like to thank Craig Mundie, Dan Reed, and John Man-
ferdelli for their support of this work. Also thanks to Nelson Chu
who collaborated on the development of the underlying paint sys-
tem, and to the anonymous artist who painted Figure 9. Finally, our
thanks to the anonymous reviewers for their helpful suggestions.

References

ADAMS, B., WICKE, M., DUTRÉ, P., GROSS, M., PAULY,
M., AND TESCHNER, M. 2004. Interactive 3D painting on
point-sampled objects. Eurographics Symposium on Point-Based
Graphics (June).

ARTRAGE, 2009. Ambient Design. http://www.artrage.com.

BARAN, I., AND POPOVIĆ, J. 2007. Automatic rigging and anima-
tion of 3d characters. SIGGRAPH ’07: ACM SIGGRAPH 2007
papers, 72.

BAXTER, W. V., AND LIN, M. C. 2004. A versatile interactive 3D
brush model. Proc. of Pacific Graphics 2004, 319–328.

BAXTER, W., SCHEIB, V., LIN, M., AND MANOCHA, D. 2001.
Dab: Haptic painting with 3d virtual brushes. Proc. of ACM
SIGGRAPH, 461–468.

CHU, N. S., AND TAI, C. L. 2002. An efficient brush model for
physically-based 3D painting. Proc. of Pacific Graphics (Oct),
413–423.

CORDIER, F., AND MAGNENAT-THALMANN, N. 2004. A data-
driven approach for real-time clothes simulation. Computer
Graphics and Applications (Proc. PG 2004), 257–266.

GREENE, R. 1985. The drawing prism: a versatile graphic input
device. In Proceedings of the 12th annual conference on Com-
puter graphics and interactive techniques, ACM Press, 103–110.

(a) calligraphy (b) flat (c) filbert (d) atypical (e) previous method

Figure 8: (a)–(d) A variety of our brush models during deformation. (e) Previous optimization-based models often used too few segments
for performance reasons, leading to an inability to model subtle tip deformations. Using our technique a single brush can recreate the wide
variety of expressive strokes seen in real brushes. Compared with previous optimization-based approaches, our technique can create cleaner
and thinner fine lines and has less polygonization with fast strokes due to faster updates.

Figure 9: A painting created by an artist using our new brush model and several details.

MÜLLER, M., HEIDELBERGER, B., TESCHNER, M., AND
GROSS, M. 2005. Meshless deformations based on shape
matching. In SIGGRAPH ’05: Proceedings of the 32nd annual
conference on Computer graphics and interactive techniques,
471–478.

PAINTER 11, 2009. Corel.

PHOTOSHOP. 2009. Adobe. http://www.adobe.com/photoshop/ .

RIVERS, A. R., AND JAMES, D. L. 2007. FastLSM: fast lattice
shape matching for robust real-time deformation. ACM Trans.
Graph. 26, 3, 82.

SAITO, S., AND NAKAJIMA, M. 1999. 3D physically based brush
model for painting. SIGGRAPH99 Conference Abstracts and
Applications, 226.

SMITH, A. R. 1978. Paint. TM 7, NYIT Computer Graphics Lab,
July.

STRASSMANN, S. 1986. Hairy brushes. Computer Graphics (SIG-
GRAPH’86 Proc.) 20, 225–232.

VAN LAERHOVEN, T., AND REETH, F. V. 2007. Brush up your
painting skills. The Visual Computer (CGI 2007 special issue)
23, 9-11, 763–771.

VANDOREN, P., CLAESEN, L., VAN LAERHOVEN, T., TAELMAN,
J., AND VAN REETH, F. 2009. FluidPaint: an interactive digital
painting system using real wet brushes. In Proceedings of IEEE
Tabletop and Interactive Surfaces.

WAHBA, G. 1990. Spline Models for Observational Data. SIAM.

WHITE, R., CRANE, K., AND FORSYTH, D. A. 2007. Capturing
and animating occluded cloth. In SIGGRAPH ’07: ACM SIG-
GRAPH 2007 papers, ACM, New York, NY, USA, 34.

WONG, H., AND IP, H. 2000. Virtual brush: A model-based syn-
thesis of chinese calligraphy. Computers & Graphics 24.

XU, S., TANG, F., LAU, F., AND PAN, Y. 2002. A solid model
based virtual hairy brush. Computer Graphics Forum (Euro-
graphics ’02) 21, 3, 299–308.

XU, S., LAU, F., TANG, F., AND PAN, Y. 2003. Advanced design
for a realistic virtual brush. Computer Graphics Forum (Euro-
graphics ’03) 22, 3 (September), 533–542.

