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We present an algorithm to remove wobble artifacts from a video captured with a rolling shutter camera
undergoing large accelerations or jitter. We show how estimating the rapid motion of the camera can be
posed as a temporal super-resolution problem. The low-frequency measurements are the motions of pixels
from one frame to the next. These measurements are modeled as temporal integrals of the underlying
high-frequency jitter of the camera. The high-frequency estimated motion of the camera is then used to
re-render the sequence as though all the pixels in each frame were imaged at the same time. We also present
an auto-calibration algorithm that can estimate the time between the capture of subsequent rows in the
camera.
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1 Introduction

Whereas historically video cameras and camcorders pri-
marily used CCD sensors, most digital still cameras, cell-
phone cameras, and webcams use CMOS sensors. CMOS
video cameras are also increasingly becoming popular,
from the low-end Flip camera [12] to the high-end Red
camera [13]. To maximize the fill factor, CMOS sensors
are commonly read out line-by-line and use a rolling shut-
ter; ie. the effective capture time of each row is slightly
after that of the previous row.

Rolling shutter cameras suffer from three main arti-
facts [16]: (1) skew, (2) partial exposure, and (3) wob-
ble. Skewing occurs when the camera undergoes a con-
stant (or smoothly varying) motion. Skewing can be cor-
rected by computing the global motion and then warping
the frames appropriately [11, 7]. In the presence of in-
dependently moving (but slowly accelerating) objects, a
full optical flow field can be used to perform the correc-
tion [5]. Partial exposure occurs when a rolling shutter is
used to image fast changing illumination such as a flash, a
strobe light, or lightning. This effect can result in images
that are darker in some regions and lighter in others [5].

Wobble occurs when there are large accelerations or
the motion is at a higher frequency than the frame rate of
the camera. Wobble is particularly pronounced for cam-
eras mounted on helicopters, cars, and motorbikes. Fig-
ure 1(a) contains one frame from a video with wobble ar-
tifacts. The straight lines on the building have become
curved. Note, however, that wobble artifacts are far more
apparent in videos than they are in any single frame. See
the videos in the supplementary material for examples.
About the only prior work that has come close to address-
ing rolling shutter wobble is [8]. This paper uses camera
motion and context-preserving warps for video stabiliza-
tion. Empirically, the authors noted that their algorithm
tends to reducing rolling shutter wobble. However, the al-
gorithm does not model the high-frequency temporal mo-
tion [10, 1] necessary for general purpose rolling shutter
correction.

In this paper, we present an algorithm to remove rolling
shutter wobble in video. In particular, we show how es-
timating the high-frequency jitter of the camera can be
posed as a temporal super-resolution problem [3, 14]. The
temporal low-frequency measurements (analogous of the
low resolution pixels) are the motions of pixels from one

(a) Rolling Shutter Input (b) Corrected Output

Figure 1: Example: (a) One frame from a video with rolling
shutter wobble artifacts. (b) The output of our algorithm. No-
tice how the curved lines on the building have become far more
straight. Note, however, that rolling shutter wobble artifacts are
far more apparent in the video than they are in any single frame.
See the videos in the supplementary material for examples.

frame to the next. These measurements are modeled as
temporal integrals of the underlying high-frequency jitter
of the camera. The estimated high-frequency motion of
the camera is then used to re-render the video as though
all the pixels in each frame were imaged at the same time.

We begin in Section 2.1 by deriving our algorithm for
a high-frequency (e.g. per row) translational jitter model,
analogous to the one in [6]. In Section 2.2 we show how to
generalize this model to a high-frequency affine model. In
Section 2.3 we generalize the model to include indepen-
dently moving objects. In particular, we model the motion
of each pixel as the combination of a low-frequency inde-
pendent motion and a high-frequency camera jitter.

Our algorithm has a single calibration parameter,
namely, the time between the capture of two subsequent
rows as a fraction of the time between two subsequent
frames. This parameter is a measure of how severe the
rolling shutter is. When the parameter is zero, the camera
has a global shutter. As the parameter increases, rolling
shutter artifacts become more pronounced.

In Section 2.4 we investigate the calibration of this pa-
rameter. We first derive a closed-form expression relating
the solution of the temporal super-resolution constraints
with the correct parameter to the solution with another
setting (for the translational model). This result is impor-
tant because it indicates that the performance of our algo-
rithm should be robust to the setting of the calibration pa-
rameter, a result which we empirically validate. Second,
we present an auto-calibration algorithm that can estimate
the calibration parameter from a short segment of a video
containing some jitter.
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Figure 2: Image Capture Model: In a rolling shutter camera,
each row is exposed and read out at a slightly later time than the
previous row. We denote the difference in the capture times to be
T, where one time unit is the time between subsequent frames.

2 Theory and Algorithms

Denote the rolling shutter video:

IBS(X,Y) forT =0,1,2,... (1)

Assume that the Y*" row in image IR° (X, Y) is captured
at time 7'+ 7Y, where we define the capture time of each
row to be the mid-point of the exposure period for that
row. See Figure 2 for an illustration. The non-zero ex-
posure period means motion blur may be present. The
shift over time in the mid-point of the exposure period
still causes rolling shutter artifacts even in the presence
of motion blur. Note that in this paper we do not address
motion blur removal [6].

For now, we assume that 7 is known or has been cal-
ibrated. See [5] for an algorithm to calibrate a camera
in the lab. In Section 2.4 we present a method to perform
auto-calibration for a video obtained from a camera that is
no longer available for calibration. We wish to correct the
rolling shutter images I55(X,Y") to generate a sequence
I$S(X,Y) that might have been captured by a camera
with a global shutter. We are free to choose the time 7'+
that the global shutter image I55(X,Y’) would have been
captured. If the number of rows in the images is M, a
natural choice for 3 is:

f=rx(M=-1)/2 )

because it tends to minimize the maximum correction and
means that the center of the image will require the least
correction. In this paper, we always use the value of 3 in
Equation (2). Note that 3 is not a calibration parameter,
but can be specified arbitrarily.

2.1 High-Frequency Translational Jitter

We first consider a high-frequency translational model of
the camera jitter. By high-frequency, we mean that each
row in the image could potentially have a different trans-
lation. The motion of all the pixels in each row are as-
sumed to be the same, however. The actual model is a
continuous function of time; at any given continuous time
t, we model the instantaneous translational motion. We
only discretize the model into a finite sampling of param-
eters to perform the optimization. Our translational jitter
model is analogous to the one used in [6] for motion blur.
Empirically we found it to be a good approximation for
many videos.

2.1.1 Motion Model

Denote the temporal trajectory of the projected location of
a scene point x(t) = (z(t), y(t)). We use lower case ¢, z,
y to denote continuous variables and upper case 7', X, Y
to denote integer frame, column, and row numbers. Note
that we model the continuous path of the point x(¢) even
through time periods that it is not imaged. If the camera
is jittering, x(t) will vary rapidly between the capture of
two subsequent frames 7" and T + 1. We assume that this
high-frequency variation can be described by the follow-
ing differential equation:

dx hf
— = m" (x;p(t)). 3
N (x:p() @
The parameters p(t) are a function of continuous time ¢.
At any given time ¢, m™ (x; p(t)) describes a low para-
metric spatial motion model. For example, m"™ could be
a translation. In this case, the parameter vector p(t) =

(p1(¢), p2(t)) has two components, and:

(p1(t), p2(t)) -

In the remainder of this section, we use this translational
model. See Section 2.2 for the derivation of our algorithm

m" (x;p(t)) = )



for the corresponding affine model. In the translational
model, all the points in the image are moving with the
same motion. However, over the duration of a frame from
T to T + 1, the translation may vary arbitrarily. In the
context of image deblurring with a global shutter camera
[6], this translational model can result in arbitrarily com-
plex blur kernels. The blur kernels are the same at each
pixel, however. In our case of a rolling shutter sequence,
the low-frequency (frame-to-frame) motion of each row in
the image can be different because each row is imaged at
a different time. Although a translation model may seem
too simple, the fact that it is high-frequency allows it to
explain many non-rigid image deformations such as those
in Figure 1 that are perceived as wobble in rolling shutter
video.

Equation (3) defines a differential equation for x(¢). To
proceed, this equation must be solved. In the translational
case, the continuous analytical solution is:

x(t) = x(to) + /tp(s) ds. Q)

to
Deriving an analytic solution of Equation (3) for more
complicated motion models may be impossible. In such
case, an approximate or numerical solution must be used
instead. See Section 2.2 (affine) and Section 2.3 (inde-
pendent motion) for two examples.

2.1.2 Measurement Constraints

We assume that measurements of the motion are available
in the form of point correspondences. In this paper, all
correspondences are obtained using the Black and Anan-
dan optical flow algorithm [4]. Note that rolling shutter
distortions do not affect the extent to which brightness
constancy holds. We subsample the optical flow fields,
as described in detail in Section 3, to obtain a discrete set
of correspondences. An alternative approach would be to
use a feature detection and matching algorithm such as
[9]. Note, however, that care should be taken as non-rigid
image deformations do affect the values of most feature
descriptors.

We assume each correspondence takes the form:
Corr; = (T3, T; + Ki, X1, X1, 4 K, ) - (6)

This expression means that a point x7, = (z7,,yr,) in
image I7}® was matched, tracked, or flowed to the corre-
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Figure 3: Measurement Constraints: Each constraint in
Equation (7) specifies a known value for the integral of the un-
known higher-resolution temporally varying motion parameters
over a known interval. The constraints from points in nearby
rows closely overlap each other, analogously to how sub-pixel
shifts generate overlapping constraints in image super-resolution

[3].

sponding point x7,+x, = (1,+k,, Y7, +kK,) in the sec-
ond image [, %i k,- The times T; and T} + K; are integers.
Although in many cases, the first location x7;, is integer
valued, the second location x7, g, should be estimated
with sub-pixel accuracy. For consistency and generality
we denote both as real-valued.

Each correspondence generates a measurement con-

straint by substituting into Equation (5):

Ti+Ki+7yr; + K,
p(s)ds

@)
where ideally MC(Corr;) = 0. Note that the integral is
from the time that the point was imaged in the first image
T; 4+ Ty, to the time at which it was imaged in the second
image T; + K; + Tyr,+K,; 1.e. the length of the interval
is not exactly K;. Also note that the constraints in Equa-
tion (7) are temporal analogs of the constraints in image
super-resolution [3]. Each constraint specifies a value for
the integral of the unknown higher-resolution temporally
varying motion parameters over a known interval. See
Figure 3 for an illustration. The constraints from points in
neighboring rows closely overlap each other, analogously
to how sub-pixel shifts create overlapping constraints in
image super-resolution [3].

One important difference between our problem and im-
age super-resolution is that the integral in Equation (7)
is 1D (albeit of a 2D vector quantity), whereas in image

MC(COI‘I‘Z‘) = X7+ K; —XT; 7/
Ti+7yr;



super-resolution, the constraints are 2D area integrals (of
1-3 band images). Image super-resolution is known to
be relatively poorly conditioned [3]. Obtaining resolu-
tion enhancement beyond a factor of 4—6 or so is difficult,
even in ideal conditional. In [14], however, it was shown
that 1D super-resolution problems are far better condi-
tioned. Roughly speaking, the condition number in 1D
is the square-root of the condition number in the corre-
sponding 2D case. Consistent with this theoretical analy-
sis, empirically we only encountered diminishing returns
when attempting to enhance the temporal resolution by a
factor of more than 30 or so.

2.1.3 Regularization and Optimization

We regularize the measurement constraints using a first
order smoothness term that encourages the temporal
derivative of the motion p to be small. We use L1 norms
to measure errors in both the measurement constraints and
regularization. In particular, we used the following global

energy function:
/ dp;
ds

> MC(Corry)| + A >

Corr; Jj=1,2
The measurement constraints are likely to contain a num-
ber of outliers, both due to independently moving objects
and gross errors in the flow field. An L1 norm is there-
fore preferable to an L2 norm. We could also use an even
more robust energy function, but such a choice would
make the optimization more complex. We also use an L1
norm rather than an L2 norm for the regularization term,
as it is reasonable to expect the motion to be piecewise
smooth, with (near) discontinuities during very rapid ac-
celerations.

We represent the continuous motion p with a uniform
sampling across time into a finite number of parameters.
We typically used between 25 and 35 samples per image
(around 1 sample every 10 rows in a 320 x 240 image or
1 sample every 20 rows for a 640 x 480 image). As men-
tioned above, higher sampling rates yielded diminishing
returns and simply require more computation. The exact
number of samples used in each experiment is reported
in Section 3. As in [3], we use a piecewise constant in-
terpolation of the samples when estimating the integral
in the measurement constraints. With this representation,

ds. (8)

.

N ! Rolling Shutter Pixels
0 T‘: onPlanet=T+1ty

S
™,
N

1 1
i oy Path of Global
H <~ Shutter Pixel in
. T Equation (10)

Global Shutter , * . .

Pixel (X.7) \1:5'/{& Intersection Point
1

M-11 : :
Row y T T+p T+t(M-1) Time ¢

Figure 4: Correction Process: A 2D (y,t) slice through 3D
(x,y,t) space. The rolling shutter pixels I5°(x, y) lie on the
plane t = T' + Ty. The global shutter pixel 55 (X, Y) starts at
3D location (X, Y, T + ) and moves along the path in Equa-
tion (10.) The correction process operates by first computing
the intersection between the rolling shutter plane and the global
shutter path. The rolling shutter image is then interpolated at
this point.

both the measurement constraints and the regularization
term are linear in the unknown motion parameters. We
solved the resulting convex L1 optimization using linear
programming.

2.1.4 Correction Process

We wish to estimate the global shutter pixels I$5(X,Y)
using the rolling shutter pixels I}°(x, ). We assume that
X,Y,and T are known integer values, whereas x and y
are unknown subpixel locations. Once we know z and y,
we can (bicubically) interpolate the rolling shutter image.
To estimate x and y, it helps to also estimate the time ¢
at which this rolling shutter pixel was captured. Figure 4
contains an visualization of a 2D (y, t) slice through 3D
(z,y,t) space. We project out the x variable and only
show one pixel in each row of the image. Under the trans-
lational model, the motion of each pixel in a row is iden-
tical.
The rolling shutter pixels I25(z, y) lie on the plane:
t=T+T1y. )
Compensating for the estimated motion, the global shutter
pixel I$5(X,Y) starts at 3D location (X, Y, T + ) and



moves along the path:

()= () (s ). o

The correction process begins by solving the pair of
simultaneous Equations (9) and (10). Plugging Equa-
tion (9) into the y row of Equation (10) gives:

f;+ﬁp1(s) ds
t
Jrisp2(s)ds

t—T K
= Y+/ pa(s) ds.
T T+

The solution of Equation (11) for ¢ is independent of X.
For the translational model, the correction:

f;, P (s)ds
f; LaP2 (s)ds
for each pixel in a row is the same. Equation (11) there-
fore only needs to be solved once per row. The solu-
tion of Equation (11) can be obtained by stepping through
the discrete representation of the motion parameters p(t),
considering each pair of samples in turn, and approximat-
ing the integral in Equation (11). For the time interval be-
tween each pair of motion samples, Equation (11) is linear
in the unknown ¢. It is therefore easy to check whether
there is a solution in this interval. Note that, assuming
the absolute value of the vertical motion py(¢) is not too
large (is bounded above by % — € for some € > 0), the
solution of Equation (11) is unique. A single pass can
therefore be made through each neighboring pair of mo-
tion samples, with early termination if a solution is found.
If no solution is found, the pixel must have moved outside
the image. Once the solution of Equation (11) has been
computed for ¢, the correction in Equation (12) can be
computed and then applied to each pixel in the row using
Equation (10).

an

12)

2.2 Affine Model of Camera Jitter

We now consider a high-frequency affine model of the
camera jitter. It simplifies the equations to use two sets
of parameters, the 2D translational motion vector p(t) =
(p1(t), p2(t)) and the 2 x 2 matrix:
@(t)  q2(t) )
t) = .
qa(t) ( qu(t)

g3(t) 1

The six affine parameters at each time ¢ can be concate-
nated into a single vector (p1, p2, q1, 42, q3, q4) if so de-
sired. In this paper, we just keep two sets of parameters,
the vector p(¢) and the matrix q(¢). We then define the
high-frequency affine jitter model to be:

d
o = m"Gap®iat) = p(t) +xat).  (4)
The solution of Equation (14) can be approximated:
t
x(t) ~ x(t0)+ [ [p(s) +x(to)a(e)].  (15)
to

Equation (15) is approximate in the following way. First
note that Equation (14) is a differential definition. The pa-
rameters p = 0, g = 0 correspond to the identity trans-
formation since % = 0 corresponds to the identity. The
corresponding finite difference affine transform to the one

in Equation (14) would use the matrix:

( 1+ qi(t)
qs(t)

i.e. the differential definition models the change that must
be applied in addition to the identity transformation. The
parameters of the composition of two affine transforms
parameterized using Equation (16) is equal to the sum of
the parameters neglecting second order terms. Integrating
the differential definition in Equation (14) therefore cor-
responds to integrating the parameters neglecting second
order terms.

We validated the approximation in Equation (15) em-
pirically. With reasonable values for p(t) and q(t), we
found that a difference between a correctly warped image
and one approximated using Equation (15) only begins to
appear visually after accumulating the warps for over 15
frames (t — ty > 15). In our algorithms, the approxima-
tion only needs to hold for the duration of the measure-
ment constraints K. In all our experiments K = 1 and in
most reasonable scenarios K << 15.

Given Equation (15), the measurement constraints in
Equation (6) become: MC(Corr;) =

q2(t)

1+ qu(t) (10

T+KA471yr+ K
XT+K—XT—/ [p(s) +x7q(s)] ds. (17)
THryr



We add a regularization term for q:
4

dg,

K} -1

>/

to the global energy function in Equation (8). The path of
the global shutter pixel in the correction process changes
from Equation (10) to:

ds (18)

x =X +/ [p(s) + Xq(s)]. (19)
+8

T

The time of intersection of this path with the plane of
rolling shutter pixels in Equation (9) is no longer inde-
pendent of X. The intersection therefore needs to be per-
formed for each pixel, rather than just once for each row.
This process can be sped up if so desired, albeit introduc-
ing a small approximation, by solving the intersection on
a subsampled mesh and then upsampling.

2.3 Low-Frequency Independent Motion

The L1-based energy function in Equation (8) is relatively
robust to outliers. Empirically, we find that the algorithms
in Sections 2.1 and 2.2 lock onto the dominant motion,
even in the presence of fairly large independently moving
objects, and whether the global camera motion is jittery,
smooth, or zero.

The correction applied to independently moving ob-
jects ignores their independent motion, however. Inde-
pendently moving objects may still have residual defor-
mations that are uncompensated. We now extend our
translational algorithm in Section 2.1 to explicitly model
independently moving objects and correct for their inde-
pendent motion. A similar extension could also be derived
for the affine algorithm in Section 2.2.

We use a low-frequency model of the independently
moving objects for two reasons. First, in most cases, in-
dependently moving objects undergo relatively slow ac-
celeration. There are exceptions, of course, such as ro-
tating helicopter blades. However, common cases such
as people moving and cars passing are relatively low fre-
quency. Second, modeling independently moving objects
with a high-frequency model would be extremely chal-
lenging and ambiguous. Such a model would require a
large number of unknowns for each pixel in the video.

Sampling at roughly the same frequency as the transla-
tional model, say, 30 samples per frame, would require 60
unknowns for each pixel in the video. Such a formulation
of the problem, while conceivable, would require very ag-
gressive regularization and would likely be very sensitive
to noise in the input flow fields.

We generalize the motion model in Equation (3) to:

dx

47 = ™Uesp®) +mi(x),  20)

where m{f, m{, ... is a low-frequency motion (constant

within each frame). The spatial variation in m{} (x) is

dense, however. The low-frequency motion m’,  (x) can

be thought of as a per-pixel flow field, where each pixel
flows with a temporally constant velocity between each
pair of consecutive frames across time.

The low-frequency term mlft (x) makes analytically
solving Equation (20) hard, as the dependence on x is es-
sentially arbitrary. To obtain an approximate solution, we
assume that the spatial variation in my’ (x) is small and
treat this term as a constant. Using the translational model
of Equation (4) for the high-frequency term, the approxi-
mate solution of Equation (20) is:

x(t) =~ x(to) —|—/ p(s)ds+ (t — to)mlfﬂ (xt,) (21)

to

which yields the measurement constraints: MC(Corr;)

Ti+Ki+7Yyr; + K,
=XT4+K; — XT; — / p(s)ds (22)
T7,+T:lei
—(K; + Tyr, 4k, — Tyr,)my, (x,).  (23)

We regularize the low-frequency model by adding the fol-
lowing two terms to the global energy function:

Vmi (x) L dx+e€ m’ (x) | dx.
V2 [ Ivmieol, ax 3 [ o)

(24)
The first term encourages the low-frequency model to
vary smoothly across the image. We also spatially sub-
sample m!f(x) to reduce the number of unknowns. See
Section 3. The second term is needed to resolve an am-
biguity between the low-frequency and high-frequency
models. We favor the high-frequency model by adding
a (very small) penalty to non-zero independent motion.



During the correction process, the path of the global
shutter pixel in Equation (10) becomes:

¢
X = X+/ p(s)ds + (t — T — B)mi(X). (25)
T+

As is the case for the affine model in Section 2.2, the time
of intersection of this path with the plane of rolling shut-
ter pixels in Equation (9) depends on X. The intersec-
tion needs to be performed independently for each pixel,
rather than just once for each row. Again, note that this
process can be sped up, by solving for the correction on a
subsampled mesh and then upsampling.

2.4 Calibrating 7

The only image formation parameter in our model is 7,
the time between the capture of neighboring rows (see
Figure 2.) In some cases, it is possible to calibrate 7 for
a camera in the lab [5]. In many cases, however, all we
have is a video obtained from an unknown source. Two
key questions are: (1) how sensitive is our algorithm to an
erroneous setting of 7, and (2) can we auto-calibrate 77
In Section 2.4.1, we address the first question by deriving
an expression relating two solutions of the measurement
constraints with different values of 7. This result indicates
that the performance of our algorithm should be robust to
the exact setting of 7, a result which we empirically val-
idate in Section 3.5. In Section 2.4.2, we derive an auto-
calibration algorithm to estimate 7 from a short segment
of jittery video.

2.4.1 Analyzing the Effect of Incorrect Calibration

Denote the duty cycle d = (M — 1)1, where M is the
number of rows in the video. The camera is active cap-
turing image IR5(X,Y') between time 7" and time T + d.
Between time 1"+ d and time 7"+ 1, the camera is inactive
in the sense that no new rows are imaged. See Figure 5
for a visualization.

Now consider two solutions to the measurement con-
straints in Equation (7). Suppose the first solution uses
the correct 7 = 7, duty cycle dy = (M — 1)7y, and
the second solution uses an incorrect 7 = 7o, duty cycle
dy = (M — 1)7‘2. Letr = dl/dz = 7'1/7'2. Also, split the

Y Image 0 Image 1

Inactive Solution

Motion Parameter p;(t)

Time

Active Solution

Figure 5: Analysis of Calibration: In general, rolling shutter
cameras are not capturing rows of the image at all times. Typi-
cally, the camera is active, capturing images over the duty cycle
from time 7" to time 7' + d where d = (M — 1)7 and M is the
number of rows in the image. In Equation (27) we derive an ex-
pression relating two solutions of the measurement constraints
during the active period for two different settings of .

solutions into their active and inactive parts:

o § Pt .
pz(t){ pina ) 1=1,2
(26)

where p°t(t) is the active part of the solution and pi"®(¢)
is the inactive part.
Below we show that if all the correspondences have

K =1 and so take the form (T, T + 1, X1, X741), and:

if t — \_tJ <=d;
ift—\_tJ > d;

P53 () m rpi(r(t — [t]) + [t]) + cpy) (27)
where:
1 e+l [+
cu =g | [ pas [ phs)ds
2 | Jt)+ds [t]+d2

(28)
then the integrals in Equation (7) are the same:

TH14+72yr+1 T+14+T1yr+1
/ pa(s)ds = / pi(s)ds.
T+Toyr T+7iyr
(29)

For a correspondence (T, T + 1,xr,X741) with K =
1, the left hand side of Equation (29) is:

T+1+T2yT+1 T+d>
/ p2(s)ds = /

T+reyr T+72yr

p5*(s)ds +



T+1 TH14+12yT 41
[ ereass [ pi(s) ds. (30)
T+ds T+1

Plugging Equation (27) into the first term on the right
hand side of Equation (30) gives:

T+ds
/ rpi(r(s — |s]) + |s]) + cls) ds 3D

T+7ayr
which after substituting s’ = 7(s—T)+T and ds’ = rds
simplifies to:

T+dy
/ pit(s’)ds’ + cr(do — Toyr). (32)

T+miyr
Similarly the third term on the right hand side of Equa-
tion (30) simplifies to:

TH14+12yT 41
/ piet(s") ds’ + ermyri1- (33)

T+1

Substituting the expressions in Equations (32) and (33)
back into Equation (30), making the approximation that
yr+1 =~ yr, simplifying, and then finally substituting the
expression for c|;; from Equation (28) yields the right
hand side of Equation (29).

Our derivation makes one approximating assumption,
that yr ~ yp41. This assumption is reasonable because
the vertical motion between two consecutive frames is
generally only a small fraction of the frame.

Equation (27) provides an approximate relationship be-
tween the active part of two solutions of the measurement
constraints for two different settings of 7. Due to reg-
ularization and discretization, the final solution obtained
by our algorithm will not exactly match Equation (27). It
should hold approximately, however.

What does Equation (27) mean in terms of the final
correction applied? First, note that only the active part
of the solution is used in the correction process. Fig-
ure 4 illustrates how only the motion between 7' and
T+d=T+47(M — 1) is used in the correction pro-
cess. Second, note that if ¢|;; = O then Equation (27)
would mean that exactly the same correction is applied.

The proof of this fact follows a similar argument to the
one above. Suppose that (x,¢2), where x = (x,y), is a
solution of Equations (9) and (10) for 7. Then we claim
that (x,t1) = (x,7(t2 — T) + T)) is a solution of Equa-
tions (9) and (10) for ;. Because the spatial location x in

both of these solutions is the same, our algorithm would
apply the same correction. Note that, in both cases we
set 8 using Equation (2); i.e. 81 = 71(M — 1)/2 and
,82 = TQ(M — 1)/2

First consider Equation (9). Starting with:

ty = r(ty—=T)+T (34)

and substituting to = T + 7oy because ¢, is a solution of
Equation (9) yields:

t1 = T + rmoy. (35)

Using the fact that r = 7 /75 shows that (x, y, r(t2—T) +
T)) is a solution of Equation (9) for 7.
Now consider the right hand side of Equation (10):

ty
X + / p2°t(s) ds. (36)
T+pB1

Substituting the appropriate expressions for 5; and ¢y

yields:
T+r(t27T)
X+ / pit(s)ds.
TH4rpB2

After substituting s = (s’ — T') + T and rds’ = ds, this
expression simplifies to:

37)

12
X + / rpi(r(s’ = T) +T)ds'. (38)

T+pB2

Substituting the expression for pi® from Equation (27)
with c|¢| = 0, and using the fact that (x, ) is a solution
of Equation (10) for 7 and S5 shows that Equation (38)
simplifies to x, which in turn shows that (x,¢1) is a solu-
tion of Equation (10) for 7, and ;.

The difference in the two corrections is therefore en-
tirely due to C|¢), a constant motion for each frame. The
two corrections will therefore approximately differ by a
global affine warp. In general, c|4; will vary from frame
to frame, as c |y is related to the motion in the inactive
period. See Equation (27).

In summary, theory shows that, with an incorrect value
of 7 (close enough that the effects of discretization, reg-
ularization, and the yr41 ~ yr approximation are not
too pronounced), the applied correction will only differ
from the one that would have been obtained with the cor-
rect value of 7 by a slightly different affine warp for each



frame. Although estimating 7 wrongly may add a little
global jitter to the output, our algorithm can be expected
to be relatively robust in the sense that there is little dan-
ger of gross artifacts being added.

2.4.2 An Auto-Calibration Algorithm

We now describe an algorithm to calibrate 7 from a short
segment of video. No other information is required. Note,
however, that if the chosen segment only contains con-
stant (or no) motion, calibration is ambiguous. If the mo-
tion is constant, the rolling shutter simply introduces a
skew in the video. It is impossible to detect this skew
from the motion alone. The motion is still constant in
the skewed video; the x-component is the same, the y-
component will be slightly reduced or exaggerated de-
pending whether the camera is moving up or down. Con-
ceptually, the simplest way to calibrate a rolling shutter
camera in the lab is to first capture an image of a scene
with the camera static, and then capture a short video of
the same scene with the camera undergoing a constant
motion [15]. The rolling shutter parameter 7 can then
be estimated from an estimate of the skew between the
first image and a frame in the video, and the motion in the
video. The key element in this set-up is that the data con-
tains imagery with two different motions (zero and con-
stant.) For our auto-calibration process not to be ambigu-
ous, we require the video to contain temporally varying
motion. Generally speaking, the more jitter the better.

The analysis in Section 2.4.1 shows that if the value of
T is wrong, we can expect the corrected video to contain
a small residual affine jitter from frame to frame. We at-
tempt to detect and minimize this residual affine jitter, as
follows. Note that although the analysis in Section 2.4.1
assumes a translation jitter model and makes several ap-
proximations, our auto-calibration algorithm is a reason-
able approach in a much wider setting. Also note that, al-
though our calibration algorithm amounts to a brute force
search, the 1D search range can be sampled sparsely and
the algorithm only needs to be run on a short segment of
the input video.

We perform rolling shutter correction for a sampling of
different values of 7 € [0, ;7] and compute optical flow
across each output video. Denote the result:

Fr(X,Y) forT=0,1,2,... (39)

We then compute a measure of how “translational” the
optical flow is on average across the sequence. We first
break the frames in the video into a number of patches P?,
where each patch denotes a subset of pixels. In our im-
plementation, we used overlapping 15 x 15 pixel patches,
spaced every 5 pixels in x and y, with a border of 30 pixels
around each image. We then compute the median flow for

each patch:
= Median x y)ep:(Fr(X,Y)). (40)

Next, we measure the median deviation of each flow from
the median to give the following measure of how transla-
tional the motion is for that patch:

Fr(X,Y) - M| (41)

Transy = Median x y)ep

Finally, we compute the median value of this measure
across the patches, and then the mean across the frames
to yield the final measure that we optimize:

Meany (Median; (Trans’.)). (42)

We used a median across patches because some patches
will lie across motion discontinuities or contain substan-
tial parallax. We used a mean across frames because typ-
ically each frame has a number of outliers, but otherwise
is reasonable. Note, however, that the details of our al-
gorithm (the patch sizes, the sampling interval, the choice
of medians or means) are somewhat arbitrary, and do not
affect the results significantly.

Finally, we plot the measure in Equation (42) across 7,
smooth the result slightly, and then perform the calibra-
tion by choosing 7 to take the minimum value.

3 Experimental Results

To avoid the size of the optimization growing arbitrar-
ily with the length of the video, we solved Equation (8)
for a fixed size window that is slid one frame at a time
through the video. Empirically we found a dramatic im-
provement in performance up to a window size of around
7-11 frames. All the results in this paper use a window
size of 9 frames (four frames before and four frames after
the frame we are currently correcting.)

We obtained correspondences in the form of Equa-
tion (6) by sub-sampling optical flow fields computed us-
ing the Black and Anandan algorithm [4]. In the affine and



independent motion cases, we sample the flow every row
and every 10th column, excluding flows within 6 pixels of
the edge of the image to avoid boundary errors in the flow
field. In the translational case, the correction is constant
along each row. In this case, we use a single correspon-
dence per row, obtained by median filtering the flow along
each row (after subsampling every 10th column as we did
in the affine and independent motion cases.) We experi-
mented with X' > 1 but only found a small benefit. The
results in this paper all use K = 1.

We experimented with different sampling rates for the
motion parameters. We found diminishing returns beyond
around 25-35 samples per frame. All results in this paper
use 30 samples of p (60 unknowns) per frame. In the
affine case, we sample q 15 times per frame, adding an
additional 60 unknowns per frame. We subsample m'f (x)
spatially every 10 rows and every 10 columns. We use bi-
linear interpolation to upsample m'f(x) in the algorithm;
i.e. in Equations (21) and (25).

With the translational model we use the regularization
weight A 300. In the affine and independent mo-
tion cases, the system has more flexibility and so we use
A = 600. The affine regularization weight is § = 400, 000
(the units are different from A.) The independent motion
regularization weights are v = 10 and ¢ = 1. Most of
our test sequences were downloaded from the web and so
we do not know the camera details. For all sequence, we
estimated 7 using the algorithm in Section 2.4.2. We gen-
erally found that 7 € [0.75/(M —1),0.95/(M —1)]. Note
that Gunnar Thalin has calibrated a number of cameras in
a laboratory setting and published the results online [15].

3.1 An Illustrative Synthetic Example

We begin with a synthetic example to illustrate the steps
in our algorithm. This synthetic video also allows us
to compare our motion estimates with ground-truth. In
Figure 6(a) we include one frame from the video in
city.mp4. In the top left we show the input rolling
shutter video which was generated synthetically using the
translation model in Equation (3). The ground-truth high-
frequency motion that we applied was generated with a
dynamical model that periodically applies random accel-
erations to the current motion, but with a slight bias to-
wards moving the camera back towards it position at the
top of the first frame. Visually, the resulting artifacts are
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similar to those in the real data in Section 3.2.

In the bottom left of Figure 6(a) we include the optical
flow, where the horizontal flow is coded in the red chan-
nel and the vertical flow is coded in the green channel. In
the bottom right, we include the corrected video, which
still contains global high-frequency jitter. The non-rigid
wobble has been removed, however. We include a stabi-
lized version of the corrected output in the top right. We
stabilize the videos by simply low-pass filtering the mo-
tion of the center of the frame and then applying a global
correction for each frame. More sophisticated algorithms
such as [8] could now be applied because each frame has
been re-rendered as though all the pixels were captured at
the same time.

In Figures 6(b) and (c) we compare the input op-
tical flow (median filtered across each row), the esti-
mated high-frequency motion, and the ground-truth high-
frequency motion. We plot the value of the flow and mo-
tion on the y-axis. On the x-axis we plot time, which in
the case of the optical flow corresponds to the row in the
video that the flow was measured at. Note how the optical
flow is relatively smoothly varying across time, whereas
both the ground-truth and estimated motions are higher
frequency. There is also a phase shift of approximately
half a frame between the optical flow and the real camera
motion.

We also include a video in shear.mp4 comparing the
input, output, and ground-truth for a similar synthetic se-
quence generated with constant motion. This video con-
firms that our algorithm handles a simple skew correctly;
i.e. when we apply temporal super-resolution to constant
motion, no unexpected high-frequency motion is gener-
ated and the result is still approximately constant motion.
For super-resolution in the image domain [3], this test cor-
responds to checking that an algorithm applied to a con-
stant image still results in a constant image. Note, how-
ever, that for both results in this section, the rolling shutter
algorithm is applied to the result of the real optical flow al-
gorithm, not to synthetically generated correspondences.

3.2 Translational Model

Our main evaluation consists of a set of qualitative results
on real videos. In skool.mp4, vegasl.mp4,
vegas2.mp4, bike.mpd, reverse.mp4 and
race.mp4 we present results on 6 videos. In Fig-
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Figure 6: An Illustrative Example: We generated a synthetic sequence to illustrate our algorithm, and allow a comparison with
ground-truth. (a) One frame from the video in city.mp4. Our algorithm first computes the optical flow (a, bottom left). We then
compute a corrected video without the non-rigid wobble artifacts, but which still contains global jitter (a, bottom right). We then
stabilize the result (a, top right.) (b) and (c) A comparison of the low-frequency optical flow with the estimated and ground-truth
high-frequency motion. Note how the input optical flow field is far lower frequency than the ground-truth motion. There is also a
phase shift of roughly half a frame. The estimated motion approximates the ground-truth motion far better than the input optical
flow.
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(d) bike.mp4

(e) reverse.mp4

(c) vegas?2.mp4

(f) race.mp4

Figure 7: Inputs to Qualitative Evaluation: Our main evaluation consists of a set of qualitative results on real videos.

In skool.mp4, vegasl.mp4, vegas2.mp4,

bike.mp4,

reverse.mp4 and race.mp4 we present results on 6

videos. In this figure, we include the first frame of each input video.

ure 7, we include the first frame of each input video.
skool.mp4 contains results on an aerial sequence,
shot from a helicopter. The movies vegasl.mp4 and
vegas2.mp4 also include results on aerial videos.
These two results show the robustness of our algorithm to
low light conditions, saturation, and motion blur (which
we do not attempt to remove.) The video bike.mp4
contains results on a video captured on a fast moving
motorbike. It shows that our algorithm is robust to very
noisy input, where the computed flow is very noisy.
The video reverse.mp4 shows a more subtle case,
where a motorbike is being pulled backwards. This video
is more typical of rolling shutter wobble in hand-held
videos. This video shows that our algorithm can handle
such subtle cases, and also performs reasonably in the
presence of some rotational motion. Finally, race .mp4
contains footage from a car involved in a high-speed race.
Most of the video is well corrected. It does, however,
illustrate one failure case of our algorithm. As the car
goes over the rumble strips, the optical flow algorithm
fails completely due to the large induced motion. These
errors lead to a couple of “bumps” in the output video.
The output video is still a dramatic improvement over the
input. This result shows that our algorithm does not lead
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to complete video corruption, even when optical flow
completely fails.

All of the videos in skool.mp4, vegasl.mp4,
vegas2.mp4, bike.mp4, reverse.mpéd and
race.mp4 are formatted the same. The layout is
illustrated in Figure 8, which includes one frame from
skool.mp4. In the top left frame we include the
input. In the top right we include the stabilized output of
our algorithm. In the bottom left we include the result
of stabilization without correcting the rolling shutter
distortions. We also implemented the algorithm in [7]
and the morphing algorithm in [5]. Empirically, we found
the algorithm in [7] to perform better than the one in [5].
We only present the results for the algorithm in [7] in the
bottom right of Figure 8 and the corresponding videos
in the supplementary material. When implementing [7]
we used the same Black and Anandan flow [4] used by
our algorithm, rather than the block matching described
in [7]. We also used the median filtered flow for every
row, as in our algorithm, rather that the four samples in
[7]. These changes should only improve the algorithm
in [7] and make the comparison fairer. The algorithm
in [7] does not perform any high-frequency analysis or
super-resolution. Instead it performs an interpolation of



Figure 8: Qualitative Comparison: One frame from the video
in skool.mp4 to illustrate the layout in all our main qual-

itative ~comparisons in skool.mp4, vegasl.mp4,
vegas2.mp4, bike.mp4, reverse.mp4 and
race.mp4. In the top left, we include the original rolling
shutter video. We compare the output of our algorithm (top
right) with the result of naive stabilization (bottom left) and
the result obtained with the algorithm described in [7] (bottom
right).

the motion. While [7] corrects some artifacts, it does not
remove all of the wobble.

3.3 Affine Model

In office.mp4 we include an example where the trans-
lational jitter model of Section 2.1 is insufficient. The
video compares the results obtained with the translational
model (bottom right) and the results obtained with the
affine jitter model described in Section 2.2 (top right).
Figure 1(a) contains one input frame from this video and
Figure 1(b) contains the corresponding output frame ob-
tained with the affine model. As can be seen in the video
in of fice.mp4, the obliquely sloping office building is
far better modeled by the affine jitter model than the trans-
lational model. In our experience, however, the results in
office.mp4 are somewhat unusual. It is relatively rare
for the affine model to result in a significantly better cor-
rection than the translational model.
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3.4 Independent Motion

In balloon.mp4, toggle.mp4 and
checker.mp4 we compare the independent mo-
tion algorithm of Section 2.3 with the translational
model of Section 2.1 and the morphing algorithm of
Bradley er al. [5]. Figure 9(a) contains one frame of
balloon.mp4, which contains results on a synthetic
video of a balloon moving across the sky, imaged by a
translationally jittering camera. In the video we include
the input (top left), the output of our independent motion
algorithm (top right), the output of our translational
algorithm (bottom right), and the results obtained by
Bradley et al. [5] (bottom left.)

As can be seen in balloon.mp4, the morphing al-
gorithm of Bradley er al. [5], which is specifically de-
signed to handle independent motion, cannot handle high-
frequency jitter. Also note that the translational model
is robust to the independent motion, through the median
filtering of the flows and the L1 norms. It corrects the
video very well. Finally, note that the residual skew on
the balloon is largely imperceptible in balloon.mp4.
The balloon is moving too quickly and there is no
frame of reference against which to perceive the skew.
In toggle.mp4, we toggle between the ground-truth
frames and the ones estimated by the translational and in-
dependent motion algorithms. In this video, the residual
skew of the balloon without the independent motion algo-
rithm is readily apparent.

In checker.mp4 and Figure 9(b) we include an ex-
ample of a rotating checkerboard, similar to one of the ex-
amples presented in [5]. Our example also contains high-
frequency jitter not present in the example in [5]. Rota-
tional motion is a useful tool when evaluating indepen-
dent motion modeling because errors make straight lines
appear curved. Errors are then more perceptible. As can
be seen in checker.mp4 and Figure 9(b), the transla-
tional algorithm of Section 2.1 is unable to correct the
sequence very well. Significant curvature remains in the
output. The algorithm in [5] performs fairly well, but the
unmodelled jitter leads to gross artifacts and some resid-
ual curvature in some of the frames. On the other hand,
our independent motion model is able to correct the entire
video very well.



Independent Motion

(a) balloon.mp4 (b) checker.mp4

Figure 9: Independent Motion Results: (a) One frame from the video in balloon.mp4. In this video, the balloon moves
across the sky in front of a jittering camera. Without the independent motion model, the balloon has a residual skew which is not
corrected. The video in toggle.mp4 toggles between the estimated frames and the ground-truth, clearly showing this residual
skew. In balloon.mp4 we also compare with the algorithm in Bradley et al. [5], which fails to remove the camera jitter fully.
(b) One frame from the video in checker .mp4. This video contains a rotating checkerboard imaged by a jittering camera. The
results show that the translational model is insufficient to correct the rotational motion, that the algorithm of Bradley ez al. [5] leads
to various artifacts and fails to compensate for the jitter fully, but that our independent motion model corrects the video far better.
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Figure 10: Quantitative Calibration Results: (a) Auto-calibration results on a version of city.mp4 where the ground-truth
relative value of 7 is 0.5. The estimated minimum is very close to 0.5 as it should be. (b) Auto-calibration results on skool .mp4.
We do not know the real value for this sequence, as the video was downloaded from the web. In skool_cal.mp4 we presenta
comparison of the correction results obtained with the relative value of 7 = 0.25, 0.5, 0.75, and 1.0. This video confirms that the
calibration result of 0.75 is reasonable (the results for 7 = 0.75 are slightly better than the others) and illustrates the robustness of
our algorithm (the results for the other settings of 7 are visually not much worse.)
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3.5 Calibration

We first re-generated city.mp4 using 7 = § 577 i.e.
half of the maximum value. In Figure 10(a) we present
the results of our auto-calibration algorithm. These show
a clear minimum close to the ground-truth value of 0.5.
In Figure 10(b) we present calibration results for the
skool.mp4 video. We downloaded this video from
the web and so do not know the real value of 7. In
skool_cal.mp4 we present a qualitative comparison
of the affect of varying the relative value of 7 (i.e. multi-
plied by M — 1). These results confirm two things. First,
the calibrated relative value of 7 = 0.75 does appear to
be reasonable. If anything, the results for 7 = 0.75 are
slightly better than the results for the other settings. The
difference in performance is quite small, demonstrating
that our algorithm is relatively insensitive to the exact
choice of 7. These results validate the analysis in Sec-

tion 2.4.1.

3.6 Timing Results

We have made no attempt to implement our algorithm ef-
ficiently and use the relatively slow Black and Anandan
algorithm [4]. We timed our algorithm on the 30 frame,
320x240 pixel video city .mp4, running our algorithms
on a 2.0Ghz Dual-Core HP nc8430 laptop. Computing the
flow and extracting the correspondences took 7.6 seconds
per frame. Solving the super-resolution problem took 2.1
seconds per frame for the translational model, 79.3 sec-
onds per frame for the affine model, and 102.4 seconds
per frame for the independent motion model. Correcting
the distortions and stabilizing the video took 0.2 seconds
per frame. One way to speed up our algorithm is to run
the flow and super-resolution on a downsampled video.
The computed high-frequency motion can then be scaled
up and applied to the original video. In t iming.mp4 we
compare results obtained on city.mp4 at the full reso-
lution with those obtained by computing the correction on
a half-size video, and then applying to the full resolution
video. There is little difference, indicating that speed-ups
are possible. To obtain real-time performance, however,
a far faster flow algorithm would be needed. It may also
be necessary to replace the L1/Linear Programming algo-
rithm with something more efficient. The investigation of
such trade-offs is deferred to future work.
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4 Conclusion

We have presented an algorithm to remove rolling shutter
wobble in video. Our algorithm uses a form of temporal
super-resolution to infer the high-frequency motion of the
camera from optical flow. We extended our algorithm to
use an affine motion model and to model low-frequency
independent motion. Empirically, the improvements ob-
tained using these extensions are most perceptible when
comparing with the ground-truth on synthetic sequences.
Given the increased computational burden and sensitiv-
ity to errors in the input optical flow, these extensions
are probably more of theoretical interest at this time. We
showed both analytically and empirically that our algo-
rithm is robust to the setting of the image formation pa-
rameter 7. We also presented an auto-calibration algo-
rithm that can estimate this parameter from a short seg-
ment of the video.

One failure mode of our algorithm occurs when the mo-
tion is so great that the optical flow algorithm completely
fails; e.g. race.mp4 in Section 3.2. One possible solu-
tion is to fall back on sparse feature matching [9] in such
cases. The reduced density of correspondences will re-
sult in less accurate, but hopefully more robust results.
Secondly, our model is currently unable to model large
parallax between foreground and background objects. Fi-
nally, on very close inspection, some residual wobble can
be seen in the output, caused by the inherent limitations
of the super-resolution process [3, 14]. Novel priors or
longer-range correspondences (/X > 1) could possibly re-
duce the residual wobble.

One possible future direction is to investigate the
choice of the error functions, regularization, and opti-
mization algorithm, both to improve quality and speed.
Another possibility is to explore the direct estimation of
the motion model parameters; i.e. without first estimating
optical flow or feature correspondences.
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