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Abstract is written over the network onto storage.

So when is it appropriate to use erasure coding in prac-
Today replication has become tde factostandard for tice? There are more complex tradeoffs involved than the
storing data within and across data centers that processbove simple ones. The gains of erasure coding tend to
data-intensive workloads. Erasure coding (a form ofbe a fraction of its space saving depending on the ratio
software RAID), although heavily researched and theo-of storage cost to total system cost for modern data cen-
retically more space efficient than replication, has com+ers. The diversity of workloads also affects the benefits
plex tradeoffs which are not well-understood by practi-of erasure codingE.g, the network savings of erasure
tioners. Today's data centers have diverse foregroundoding are clear when the workload is write-dominated.
and background data-intensive workloads, and gettind>ISC workloads, composed of client-facing foreground
these tradeoffs right is becoming increasingly importantand analytical background workloads, are both read and
Through a series of realistic data center deployment scewrite dominated, however. Erasure coding pays prices
narios and workload characteristics, coupled with the imor its savings too. It causes slower recovery from fail-
plementation of a prototype Hadoop library with erasureures across data centers. It is also perceived as “com-
coding functionalities, we revisit traditional metriceefp  plex” by developers in industry, though this factor has
formance and dollar cost), present new tradeoffs (powenot been systematically evaluated.
proportionality and complexity) and make recommenda—With a goal of encouraging discussions on the mer-

tions on directions worth researching. its of erasure coding for DISC workloads, this paper
makes several contributions. We present realistic sys-
tem deployment scenarios (e.g., mega data centers and

1 Introduction container-based data centers) and workload characteris-

tics. We analyze several real foreground workloads from
Today's modern data centers have “foreground"’ US€Tonline services, as well as background analytical work-
facing workloads and *background” data intensive an-jpads. For the latter, we have implemented a prototype
alytical jobs that dig into the massive datasets t0 anyadoop library with erasure coding functionalities, and
swer customer's inquiries or discover valuable insights s paper reports on tradeoffs involved, including code

These data-intensive jobs often hgpping code to data  gj,e and state dependency [5] complexity metrics.
frameworks, such as MapReduce [7] and Dryad [15].

We borrow the term Data-Intensive Scalable Comput-

ing (DISC [3]) workloads to describe the combination . .

of user-facing and analytical workloads. 2 Environments and metrics

Unlike traditional enterprise environments, DISC sys-
dems and many data centers today leverage commaodity
data centers today us€-way data replication. An al- components, which are typically distributed and less reli-
ternative, erasure coding, has always been available arfP!€ than customized hardware. Common fault tolerance
much research has gone into it [1, 13, 17, 18, 19, 20, 22solutlons adopted by commercial storage servers, such as

24, 25]. Erasure coding provides potential storage andf@rdware RAID [17] or storage-area networks (SANS),
network savings to replication. For example,arof-n are often considered too expensive and not incremen-

erasure coding scheme encodes unit data infoag- tally scg!able. DISC environments provide reliability and
mentsof size L such that anyn of them reconstructs availability ma|nly_ thr_oug_h software-based reduqdancy.
the original data. While 3-way replication aBebf-5 era- ' OF €xample, replication is used by the Google File Sys-
sure coding both tolerate 2 faults, the former requires (€M [9] and Hadoop Distributed File System [14].
storage consumption, while the latter only requirgs<. Storage is a key component in DISC environments, how-
So, while tolerating the same number of faults, less dataver, it is not the only one. Storage is often co-located

To provide better reliability and availability, a certain
level of data redundancy is often needed. Many of th
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with computation and networking resources. Analytical # servers| Costl/year| Storage cost
jobs have ashipping code to dataequirement for effi- Mega DC [12] | 54k $81M 14-23-41%
ciency. It must be possible to start analytical processes Condo [6] 48 $71K 20-34-61%
on the same servers the data resides. FAWN [23] 1 $383 30%

An implementation in Hadoop: Erasure coding has Table 1: Storage cost in several sample systems. For

workload-independent/dependent tradeoffs. To evaluat€ga DC and Condo, a 15 year amortization cost for
them we have extended HDFS with erasure cotliiga- building and 3 year amortization cost for server is as-
sure coding is done at the block granularity (64MB in SUmed. According to [6], a server in Condo or Mega DC
HDFS), meaning that an HDFS client does not erasur&0Sts $3000. We use three disk cost points to estimate
code within a single block, but waits to receiveblocks ~ the storage cost: 30%, 50% and 90% of the server cost
before calculating and writing — m parity blocks. The — ($900, $1500, $2700 per server spent on disks).

m original data blocks are still sent out_ as soon as they14_25%) of the total cost for the Mega DC and (12-20-
are ready, but a copy of each block is kept in mem-

) . {37%) for the Condo-based one respectively. For a cluster
ory to calculate parity data. We assume an environment . .1 on EAWN nodes. the savings are around 18%
with battery-backed memory to handle failures when ’ ’

blocks are being accumulated. Our system falls back té-ost during large-scale recovery A main penalty paid
replication when it can not accumulate blocks within by erasure coding is decreased performance during re-
30 seconds. We use thediuchy_good” algorithm inthe ~ covery (when compared to replication). This might be
Jerasure library [18] for erasure calculations. a serious concern when erasure coding is considered as
the redundancy mechanism across data centers, or across

Our implementation is the first one in Hadoop that per-_ " .~ .. . i )
X . i, availability domains within a large data center. Let’s con-
forms erasure coding online, on the critical path. Another

recent implementation, DiskReduce [8], first performssIder a power outage (€.g., the one that took down parts

replication, then erasure codes data in the backgrouné)f Amazon's EC2 recently [2]) that fails one availability

main. For h replication and erasur in
In contrast, our system erasure codes data chunks whednO a or both replication and erasure coding, data

: reconstruction is needed to restore the redundancy level.
they are created, therefore also reducing the network al . o . : .
. . hereas with replication clients can simply switch to us-
disk bandwidth usage.

. : _ ~ing another availability domain, with erasure codimg
Metrics: In evaluating the impact of erasure coding, domains might need to be contacted for every read.
we discuss both traditional and new metrics. The for- .

What about complexity? The number one response

mer include performance, recovery time and infrastruc- : .
. . .. from developers when asked about using erasure coding
ture costs (in $). To these metrics we add a complexit

Yis that “it is too complex”. Quantifying complexity is

and an energy metric. In evaluating complexity we con-_ .= . . 2
sider both the code size and the NetComplex metric in_subjectlve. We provide two quantitative arguments here.

troduced by Churet al. [5]. The energy metric has two The first focuses on the notion of “state dependencies”,

L . as first defined by Chuat al. [5]. This metric captures
components. The firstis regarding the amount of €% e number of nodes with state that must be contacted
consumed per task or per GB of stored data. The seco

r%giefore an algorithm can complete. Intuitively, the larger

is a function that relates energy consumption to the loa he number of such nodes, the more things can go wrong
seen by the system. In particular, we assume the systen1 . ! . '
stalling progress and making debugging harder.

is employing “offloading” of requests as described in our
previous work [16] to enable power proportionality. When data is written to the system, with either scheme,
each hosting server is receiving a “single input, 1-hop
unicast” from the data source. This scenario has a com-
3 Workload-independent tradeoffs p_Iexity 01_‘ 1 + t, wheret refers to the complexity asso-
ciated with the network path relaying the message, and
Dollar savings Table 1 shows the fraction of storage s solely determined by the network topology of the sys-
cost for a mega-data center (Mega DC [12]) and a Condotem, During data recovery (and reads), however, erasure
based machine room [6]. The cost of a “wimpy” server coding has higher complexity because more servers need
(FAWN [23]) is shown as a reference. A main takeawayto pe involved. Identical to the “single input-of-m
from this table is that the cost of raw storage space igaths” and “single inputk-of-m paths” scenarios ([5])
relatively small, unless the whole server is a storage nodgespectively, the complexity of recoverylis+ m - t un-

(i.e., 50-90% of the server cost is storage-related). Usingjer,-of-n erasure coding, ant+ ¢ under replication.
a 3-of-5 erasure coding instead of the (pervasively used

3-way replication is expected to save in the range of (8_4%|'he second metric is based on code size. In our imple-

mentation of erasure coding in Hadoep,1, 800 lines of
1Available at http://research.csc.ncsu.edu/palm/hadmolptm Java code is added or modified, out of a totata$3, 500
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lines in HDFS.~ 1,500 lines are on the HDFS client Workload R:W ratio | TB
(originally ~ 2,800 lines), while the other 300 lines Hotmail 0.85 66
are for bookkeeping of parity data. In addition, the Jera- MSN-DB 1.99 0.4
sure package is used for the calculation of parity data, Blob-DB 1.67 0.26
involving another~ 1, 700 lines of C code (the entire li- Analytical job - sort 0.67 N/A
brary contains- 7,500 lines). We want to stress that this Analytical job - wordcount | 5.04 N/A
code can be written once and packaged in a library, andis ~ Analytical job - CloudBurst| 0.74 N/A

unlikely to require continuous maintenance (most func- ) )

tions perform well-studied mathematical calculations). 1able 3: Read:write ratio for foreground and background
_ ) ) workloads, along with data size in TBs, identified using

Summary:  Table 2 depicts the main workload- g |5rgest logical-block number (LBN) seen in the trace.

independent tradeoffs when erasure coding is used Withy e pigher the R:W ratio, the smaller the benefits of us-
a fixedn. The size of the arrows needs to be normal-ing| erasure coding.

ized by the fraction of storage subsystem cost, latency

and complexity to the overall system. matching conditions. A typicaCloudBurstrun produces

m A ‘ storage cosp _ latencyft complexityf only a small amount of output data,_ but intermediate
data size could be much larger than input. The overall
read:write ratio is 0.74.

Table 2: Main workload-independent tradeoffs.

4 Workload-dependent tradeoffs Table 3 shows that our servers are provisioned as much

i , . for reads as they are for writes. Thus, the network sav-
_Reads_ and writes Clearly erasure co_dlng fa\_/ors write- ings from using erasure coding need to be appropriately
intensive Workload_s as mentioned in Section 2. Ta'scaled by the R:W ratio.
ble 3 shows properties of IO traces (underneath the buffer
cache) for several foreground applications running at Mi-Network topology and replication policies The net-
crosoft’s data centers. It also shows three background arvork topology and replication policies matter when ex-

alytical jobs. We briefly describe these workloads below.2Mining the benefits of erasure coding. Consider an en-
i h 1 Kload inina both d vironment where each node is both a client and a storage
Hotmail: 48-hour email workload, containing bot ata server. In that case, a node producing or collecting a

and metgdata accesses. Emgil contents might be contiy, -« of data might be one of its hosting nodes, mean-
uously mined for spam detection and ad placement. ing thatm-of-n erasure coding needs to selh;gll chunks
BLOB-DB (Windows Live Blob Metadata Servefhese to remote nodes for each produced chunk, ’leeNay
metadata lookup servers hold user account mappingseplication send®V — 1. In this case3-of-5 erasure cod-
for various blob storage services such as online photosng, for example, would us&% less network bandwidth
videos, social networking, etc., over a period of 24 hoursthan 3-way replication rather thai3% as in a topology

MSN-DB (MSN Content Aggregation Database Server):Where storage clients and servers run on disjoint nodes.
This 24-hour trace is taken from a content publishingData replication policies also have an impact in deter-
system for an online portal front page and is updated bymining the network bottleneck. For example, if the client
mainly editorial tools and feed management systems vigendsN replicas toN nodes, it is likely that the client’s
web services. Most of the stored data is unstructured ilNIC will be a bottleneck (e.g., a 1Gbps NIC will only
nature, consisting of either raw content or links to con-have a “goodput” of close to 30MB/s for 3-way replica-
tent on other partner sites. tion and close to 60MB/s for tha-of-5 scheme). But,
when we used Hadoop’s chain replication policy for the
analytical jobs, the client NIC was not a bottleneck any-
more (however, switches could become a bottleneck de-
pending on network activity from other clients).

Analytical jobs: We run three analytical jobs under
Hadoop, including two typical benchmarks on synthetic
data éort andwordcounj and one real bioinformatics
application CloudBurst[21]). Thesortjob has almost
the same amount of input, intermediate and output dataOf course, more data is transmitted if the input, inter-
Assuming the input data is (already) written to the sys-mediate, and output files of an analytical job are pro-
tem by foreground jobs, the read:write ratio for just thetected with replication rather than erasure coding when
processing stages is 0.67. Therdcountjob, which  they are generated. However, the exact end-to-end ef-
counts the occurrence of each word in a document, hatects on throughput and latency might not simply scale
much less output data than input and intermediate datdinearly with amount of data sent. For concreteness, to
and the read:write ratio is 5.0€loudBurstis a DNA se-  stage a 6GB file into an HDFS of 8 data servers, it took
guencing application, which returns a set of entries from246 seconds with no redundancy, 393 seconds with 3-
a reference genome dataset according to user specifiagay replication, and 389 seconds with 3-of-5 erasure
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coding. The replication policy, network topology, and with performance and the same tradeoffs as discussed
interactions with other client’'s data all influence end-to-above apply. To verify this, we measured the entire job’s
end performance. energy consumption on 8 nodes using power meters at-
tached to each machine. During the run time of the three
gnalytical jobs we have observed that different encoding
schemes (including replication) have similar Watt levels.

A closer look at analytical jobs We examine the im-
pact of encoding schemes in different phases of the thre
analytical jobs mentioned in Section 4. Thkert and , : )
wordcountjobs process 6GB of data whitgloudBurst Their total energy consumptions are therefore approxi-
uses a 4GB input reference file. Our testbed is a clusMately proportional to the execution time.

ter of 8 machines interconnected with 1Gbps EthernetWhen the workload intensity decreases (many fore-
The execution times of the three jobs with different en-ground workloads have diurnal patterns) we have advo-
coding schemes are shown in Figure 4, decomposed intoated turning off servers [16] for better power propor-
map shuffleandreducephases. All experiments are per- tionality. The number of “gears” for a general-of-n
formed 3 times, with negligible variance. scheme is» — m + 1. For example, 3-way replication

Sorts mapandreducephases are write-intensive-of-7 ~ has three gears (with 1, 2, or all 3 servers OBpf-5
has three gears too (with 3, 4 and 5 servers ON). The

erasure coding has an improvement of 51% over 3-way hanism for turni & has b gi q
replication inreducerun time, the most significant win mechanism Tor turning off SErvers has been discusse

of erasure coding out of all phases. Téleufflephase previously [16] and is beyond the scope of this paper. It

mainly partitions the intermediate data on mappers ands interesting to note that, once the data center has been

merges the received partitions into sorted order beforéCVEr-)Provisioned for replication, more machines can be

reducers run. The performance of this stage is somet-umed OFF than when erasure-coding is used.

what degraded by the bandwidth consumption of repli-Summary: The main workload-dependent tradeoffs,
cating intermediate data. Overalkof-7 erasure coding shown in Table 4, are complex. Workload characteristics
reduces 35% of run time over 3-way replication, while (e.g., read:write ratio, access size, time spent in differe
3-of-5 performs slightly worse thaf-of-7. of MapReduce stages, etc.), network topology, and poli-
cies all matter to gauge the wins from erasure coding.
The size of the arrows for the performance metrics needs
to be normalized by the fraction of requests that benefit
(read:write ratio). ?” stands for “it depends”.

In thewordcountjob, however, the output volume is less
than % of input. As a result, encoding schemes have
much smaller impact on the overall performance. Differ-
ence in run time among all schemes is less than 5%.

nf | netbw.f write latency/thrpt? gears

Similar towordcount CloudBurstalso outputs much less
mt | — read latency gears)

data than input. However, the amount of intermediate
data is relatively large. Therefore, erasure coding wins
over replication by saving the network and disk band-
width in mapandshufflestages, the latter of which dom-
inates the total run time. The overall improvement of
5-of-7 encoding over 3-way replication is 29%-0f-5 5§ Related work
achieves a similar enhancement.

Table 4: Main workload-dependent tradeoffs.

The inspiration for using erasure coding to archive data
One may suspect that erasure coding hurts data localityomes from the classic work on RAID [17] and later
for MapReduce tasks — for each data chunk, having mulAutoRAID [25]. This latter work valued savings from
tiple distributed replicas reduces remote accesses wituch codes because storage space is a significant fraction
Hadoop’s locality-aware task scheduling. However, weof the cost of a disk array. This holds true for a SAN
have found that even without any replication, the greatoo, and more generally for a system whose only role
majority of blocks are accessed locally. Compared withis to storage data durably [4]. Our work is orthogonal
no replication, 2-way replication improves the percent-to the above. We examine tradeoffs when using erasure
age of local accesses from 78% to 91%0rf), from  codes for non-archival workloads in data center environ-
88% to 95% Wordcoun}, and from 82% to 93%loud-  ments, where computation, storage and networking are
Bursj. 3-way replication hardly provides any additional co-located (i.e., no disk arrays or SANs). In such en-
improvement. Therefore, the negative impact of employ-vironments, commaodity servers are being used. Unlike
ing erasure coding on data locality is quite limited. traditional enterprise, where expensive RAID enclosures

Power efficiency and proportionality: When the and SCSI disks m?ght be pervasive [4], in our environ-
servers are fully utilized, the amount of Joules/task will Ments the trend points to the FAWN [23] approach (even-

clearly depend on the properties of the task (e.g., writefually).
vs. read-dominated). This metric is largely correlatedThe tradeoffs of erasure coding and replication have been
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Figure 1: Execution time of analytical jobs
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level discussion based on total system cost (hardware,
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