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ABSTRACT 
We analyze two token-based authentication schemes, designed for 

authenticating users in banking systems implemented over mobile 

networks. The first scheme is currently deployed in India by a 

mobile banking service provider named Eko with a reach of over 

50,000 customers. The second scheme was proposed recently in 

[1] (in joint effort with Eko) to fix weaknesses in the first one, and 

is now being considered for deployment. Both systems rely on 

PINs and printed codebooks (which are unique per user) for 

authentication.  

In this paper, we present a detailed security analysis of the two 

schemes. We show that Eko’s current scheme is susceptible to 

PIN recovery attacks and a class of impersonation attacks wherein 

the attacker compromises users’ codebooks. The new scheme, on 

the other hand, is secure against both these attack possibilities. 

We also show that the two schemes are secure against 

impersonation attacks where users’ codebooks are not 

compromised. Variants of the new scheme with improved security 

are also proposed.  

Categories and Subject Descriptors 

D.4.6 [Operating Systems]: Security and Protection– 

authentication.  

General Terms 

Algorithms, Security, Human Factors. 

Keywords 

Mobile banking. 

1. INTRODUCTION 
In the developing regions of the world, there is a steadily 

growing interest in using mobile phone networks as a means 

to extend financial services to the disenfranchised and rural 

populations. Numerous “mobile banking” facilities have 

emerged in the last 4 years in countries like India, South 

Africa, Kenya and the Philippines and today, these systems 

are responsible for carrying millions of dollars of mobile 

cash [2,3] to places where conventional bank branches are 

either completely unavailable or else too inaccessible for 

the ordinary populace. 

Just like in conventional banking, security is a real concern 

in mobile banking (m-banking) as well, and one of the key 

aspects of security that needs to be addressed is user 

authentication: If I, as a bank, receive a message stating 

“Move $100 from Alice’s account to Bob’s account” over a 

mobile network, how do I verify that the sender of the 

message is Alice and not someone else impersonating her? 

What makes user authentication particularly challenging in 

m-banking is the fact that a large fraction of mobile phones 

in the developing world have limited inbuilt security 

services and are essentially impossible to program with 

custom solutions. (See figure 1.) Add to this the fact that 

network-level security on GSM phones has a long record 

 

Figure 1. Low-end feature-less phones like these, which 

neither support GPRS nor are programmable, dominate the 

mobile landscape in developing countries. It is estimated that 

over 100 million such phones are in use in India alone [4]. 

of security vulnerabilities [5] and today’s GSM networks 

neither offer good privacy guarantees to users, nor enable 

authenticated communication between them [6,7].Together, 

these factors make the task of designing authentication 

solutions for mobile banking challenging. 

In this paper, we analyze two authentication solutions that 

have been designed in the context of an m-banking facility 

named Eko in India [8, 1]. Eko is a business correspondent 

of State Bank of India (SBI), the leading public sector bank 

in India, and through its m-banking system, it currently 

services over 50,000 customers with a daily transaction 

volume of nearly 2,000,000 Indian Rupees (44,000 USD). 

The first scheme we analyze in this paper is the one 

currently being used by Eko across its customer base. The 

second one is an alternate solution, developed jointly by 

Eko and Microsoft Research India with the goal to fix 

certain weaknesses in the former scheme; this scheme is 

described in [1]. Both schemes rely on the use of numeric 

passwords (PINs) which are combined with paper-based 

security tokens – referred to as codebooks – to ensure PIN 

privacy during transmissions (see figures 2 and 3). 

Implementation of the schemes requires neither any 



 

 

software installation on phones nor any modification of 

network-layer protocols, which makes them easily 

deployable on developing-world phone networks. 

There is currently no literature on the security analysis of 

either of these schemes. In [1], although certain weaknesses 

in Eko’s scheme are mentioned and the alternate scheme is 

claimed to improve security, neither of these claims is 

substantiated with rigorous arguments2. The current paper 

fills this gap. We first present a detailed threat model that is 

appropriate for analyzing security of 2-factor authentication 

schemes in a mobile environment. Our model encompasses 

PIN recovery attacks and a variety of impersonation attacks 

that model different amounts of information leakage to the 

adversary. We primarily focus on security against 

adversaries who can eavesdrop on users’ communication to 

the bank server and can acquire user’s phones and/or their 

secret tokens. (Both insider and outsider attacks are 

considered.) Towards the end of the paper, we consider 

man-in-the-middle threats and outline a technique to these 

threats in both the schemes; this modification leads to 

reduced efficiency in the schemes. 

The principal outcomes of our security analyses are as 

follows. First, Eko’s current scheme provides poor security 

against PIN recovery attacks and PINs of users can be 

completely leaked if the adversary observes just 4 

transaction messages, on average. The scheme is also 

susceptible to an impersonation attack if the adversary 

acquires the phone and codebook of a user. The new 

scheme, on the other hand, provides a reasonable amount of 

security against both these attacks. Second, we find that 

both schemes are secure against impersonation attacks 

where the attacker does not compromise users’ codebooks, 

although the probability of a successful attack is greater in 

the new scheme. We then propose some simple variants of 

the new scheme to improve its security against 

impersonation attacks. 

We remark that although our exposition centers around 

authentication for m-banking systems, our threat model and 

the techniques used for analyzing the schemes are 

potentially applicable in other contexts where user 

authentication (based on passwords and security tokens) is 

studied. To the best of our knowledge, the impersonation 

attack taxonomy developed in this paper is novel and there 

seems to be no precedent to it in the literature on 

authentication systems based on passwords and tokens. 

2. BACKGROUND AND RELATED WORK 
The idea of using mobile phones for conducting banking 

transactions is not entirely new and has been implemented 

in developed countries for at least a decade [9]. However, 

                                                           
2 The focus of [1] is primarily on a usability comparison of the 

two schemes and it is shown that the proposed scheme fares 

better than Eko’s in terms of task completion time, error rates 

and user preferences.  

in the developed world, the motivation behind such 

applications has been to make banking convenient for those 

who already have bank accounts. This paper deals with 

mobile-based banking systems designed for a different 

purpose – that of providing access to banking for people 

who do not have bank accounts. Throughout this paper, the 

term m-banking is used to refer to such systems only. 

Typical m-banking services rely on a network of human 

agents who are located close to the target users and who 

mediate most transactions between the user and the bank. 

Users approach these agents to enroll into the system and to 

make deposits into their accounts. A deposit (or a “cash in”) 

transaction requires the agent to send an SMS or a USSD 

message to a bank server through his/her phone, along with 

some credentials (like a secret PIN). If the bank server 

approves of the deposit request, it sends an 

acknowledgement to both the user and the agent (via 

SMS/USSD), after which the user must submit the stated 

amount of cash to the agent, who, in turn, stores it in his 

cash kitty. Later on, to withdraw cash, this user may 

approach the same agent or another one and this time, he 

(i.e. the user) would send a transaction message to the bank 

from his phone, along with suitable authentication 

information. The bank confirms transaction approval by 

sending messages to both the agent and the user and the 

agent then transfers the required amount of cash from his 

kitty to the user. It has been argued that using agents to 

mediate banking transactions in this manner is more cost-

effective than using regular ATMs in developing regions, 

owing to the low cost of labor in such places [10], which 

has led to a lot of excitement and new ventures around the 

concept. Most m-banking services today also provide a 

money-transfer facility, using which customers can transfer 

money from their account into another user’s account by 

sending a suitable transaction message to the bank. Money-

transfer transactions typically do not require an agent and 

thus provide an extremely efficient mechanism to move 

money across long distances.4 

There are at least six different services across the world 

today which are built on this model of banking and over the 

last 4 years, these services have become a significant 

contributor to monetary flows in their respective countries. 

M-PESA, the pioneer of the m-banking concept, today 

carries over 10% of Kenya’s GDP through its network [3], 

while G-Cash in the Philippines is reportedly transacting 

hundreds of millions of dollars on a daily basis [2]. Given 

that most users who enroll into such services are motivated 

by security reasons [10], preventing electronic fraud is of 

high priority for m-banking services. 

                                                           
4 To avoid misuse of such services for, say, money laundering 

activities, regulatory authorities often place limits on the 

transaction volumes and balances that customers can maintain. 



 

 

Current m-banking services primarily rely on PINs – which 

are normally 4 digits long – to authenticate users to the 

bank. PIN-based authentication is well-established in 

conventional banking, and even in m-banking, PINs have 

been found to be a convenient tool, across a wide spectrum 

of users [1]. However, for security, it is essential that PINs 

be protected when transmitted over the network. Different 

m-banking service providers use different proprietary 

techniques for protecting PINs but unfortunately, the details 

of these techniques are often not kept in the public domain. 

In some situations (e.g., in M-PESA), the service is 

operated by the network provider, who is in a position to 

implements proprietary network-level protocols to protect 

PINs when in transit. To the best of our knowledge, such 

systems encrypt PINs using GSM’s SIM toolkit services; 

details of the encryption scheme are not publicly known. 

Other systems like G-Cash seemingly use no encryption at 

all to protect PINs and there are attacks against such 

systems already reported [11]. In India, Eko uses a novel 

interface-layer protocol to protect PINs where PINs are 

protected through the use of paper-based security tokens. 

The use of security tokens for user authentication is a well-

established cryptographic technique and several corporate 

access control systems rely on it, the most popular one 

being RSA SecurID [12]. Increasingly, banks are becoming 

interested in deploying such systems as well, particularly 

for securing Internet-based transactions [13]. Tokens 

typically contain a list of random one-time passwords 

(stored electronically or on paper) and each authentication 

session requires the use a fresh one-time password. 

Sometimes, randomness is shared across multiple 

authentication sessions (e.g., the authenticating server sends 

a set of challenge indices, and the user responds with the 

random digits or symbols in the token corresponding to 

those indices). The principal advantage of security tokens is 

that they provide a factor that supplements the commonly 

utilized password or PIN to authenticate users. In almost all 

token-based solutions, the token itself is treated as a 

secondary authentication factor; the password is given 

greater importance and maintaining its privacy is regarded 

paramount. Despite the long history of token-based 

authentication solutions, research on modeling the security 

of such systems and on analyzing the security of existing 

systems is currently lacking; this paper seeks to address this 

gap in the literature, within the context of m-banking. 

Amongst all m-banking systems, Eko seems to be the first 

to have deployed security tokens as an authentication tool. 

There have been some proposals to use voice biometrics for 

authenticating users in m-banking [14,15] but the problem 

of ambient noise in developing world environments makes 

such proposals difficult to deploy. Some companies 

currently use fingerprint biometrics to authenticate users in 

agent-assisted banking [16,17], but the setup and 

operational costs of these solutions are significantly greater 

than that of token-based systems and these solutions are not 

implementable over low-end mobile phones, which are 

prevalent in the developing world. 

3. THREAT MODEL 
We now present a threat model we have developed to 

define security of token-based authentication solutions 

implemented for mobile phone networks. The description is 

kept brief for lack of space; formal definitions of different 

attack notions will be provided in the future.  

We consider adversaries who have complete access to 

messages sent from users to the bank server and can use this 

information to mount different types of attacks. Adversaries 

could either be eavesdroppers on the mobile network 

(outsiders) who exploit known vulnerabilities of network-

layer protocols to recover messages [6,7] or else they could 

be bank agents (insiders) with whom users interact while 

conducting withdrawal and deposit transactions. It is 

reasonable to assume eavesdropping capabilities for agents 

since in many m-banking systems (including Eko’s) agents 

closely facilitate the communication of withdrawal 

messages to the bank: the contents of the message, 

including the authenticating information, are spoken out by 

the user as the agent types them into his or the users’ phone 

and sends them on behalf of the user. Such transactions are 

often referred to as aided transactions. In Eko’s current 

deployment, at least 67% of all withdrawal transactions are 

conducted in an aided manner, a phenomenon that is 

attributable to the limited literacy levels of the customers. 

In such a setting, insider eavesdropping is arguably easier to 

carry out than outsider eavesdropping. 

We consider four different types of attacks against a 

mobile-based user authentication system. The first is PIN 

recovery, an attack in which the adversary acquires the 

secret PIN of a user. We then consider three types of 

impersonation attacks, which we refer to as type-0, type-1 

and type-2 impersonation attacks. In type-0 impersonation 

attacks the adversary acquires a user’s phone and attempts 

to use it to authenticate to the bank as the phone’s 

legitimate owner. This models a scenario in which a user’s 

phone is stolen or lost and the thief wishes to transact on the 

user’s bank account. In type-1 impersonation attacks, the 

adversary is given, besides the user’s phone, access to his 

unique security token; the goal of the adversary is the same 

– authenticate to the bank as the legitimate user. Since 

tokens are susceptible to theft, it is important to guard 

against type-1 attacks in any protocol design. In type-2 

impersonation attacks, the adversary acquires not the token 

but the secret PIN of a user. This models a situation in 

which a user’s PIN gets leaked to a malicious third party. 

Security against type-1 and type-2 attacks is necessary to 

guarantee 2-factor authentication. From a practical 

perspective, type-0 attacks seem to be most important to 

prevent against, although all attacks are important to 

address for ensuring strong authentication. We contend that 

security against PIN recovery attacks is particularly 



 

 

essential since it is common practice to share PINs across 

multiple applications and thus, a PIN compromise in a 

mobile-based application could lead to a compromise in 

other systems as well. Besides, for the usage of PINs in any 

authentication system to be meaningful, it is imperative that 

the system ensure their secrecy, for otherwise, a simpler 

system which does not use the PIN could accomplish the 

required task equally well. 

We remark that in all the impersonation attacks we 

consider, the adversary has access to the phone of the user 

he is attempting to impersonate. An underlying assumption 

here is that adversaries cannot easily, and undetectably, 

connect to the network using arbitrary digital devices and 

spoof caller IDs of other users. (If that was possible, the 

requirement of phone possession for impersonation would 

not be necessary.) Spoofing caller IDs, though shown to be 

possible in GSM networks [6], requires greater technical 

sophistication than eavesdropping (particularly when 

compared to insider eavesdropping), and is thus excluded 

from our current analysis. Neither of the schemes we 

consider in this paper provides strong security against 

spoofing attacks, and for achieving such security, alternate 

(and conceivably less efficient) techniques seem necessary. 

The design of such systems for low-end mobile phones, 

while maintaining usability and simplicity advantages of the 

schemes considered here, is an interesting open problem, 

left open by this work. 

4. THE SCHEMES 

4.1 The Old Scheme 
Authentication in Eko’s current scheme is based on 2 

factors: a secret 4-digit PIN (“what you know”) and a 

codebook (“what you have”) illustrated in figure 2. Each 

entry in the codebook is a string of length 10 and contains a 

6-digit random and independently-generated nonce. 

Interspersed with the nonce are 4 “blank spaces”, marked 

by ♦. The blank spaces are interspersed randomly with the 

nonce in every string. Both the PIN and the codebook are 

shared secretly between the user and the bank out-of-band. 

In any transaction in which the user needs to authenticate 

himself to the bank, the user first creates a suitably-

formatted transaction message, and appends to that message 

a 10-digit numeric “signature”. Each signature is formed by 

looking up the first unused string in the booklet and by 

placing the PIN in the 4 blank spaces provided in it. Figure 

2 illustrates this with an example. At the other end, the bank 

server checks if the signature has been formed using the 

correct PIN and the nonce that is being expected, and only 

if this is the case, does it process the transaction. 

 

Figure 2. Codebooks used in Eko’s current scheme contain 

sequences of 6-digit nonces, each interspersed with 4 ♦’s that 

denote blank spaces. For authentication, a user must place his 

PIN in the blank spaces for the current nonce and thus form a 

10-digit numeric “signature”. For example, if the user is using 

the 13th nonce in the codebook (marked ♦002185♦♦♦), and his 

PIN is 6391, his signature for the current transaction would be 

6002185391. 

4.2 The New Scheme 
The new scheme proposed in [1] also relies on PINs and 

codebooks for authenticating users, although the codebooks 

are constructed differently in this case. Each entry in the 

codebook is a 10-digit nonce, as shown in figure 4. The 

digits in the nonce are labeled 0 through 9 to enable users to 

“look up” digits based on their positions. As before, PINs 

and codebooks are established out-of-band. 

0 1 2 3 4 5 6 7 8 9 

5 0 8 1 3 9 2 8 6 7 
Figure 4. In the new scheme, each codebook entry is a 10-digit 

nonce, with the digit positions in the codebook labeled 0 

through 9. The scheme involves performing a substation 

coding of the user PIN using the first unused nonce in the 

booklet. For example, if the user’s PIN is 6391 and the first 

unused nonce is as shown, the user’s signature is the result of 

looking up the 6th, 3rd, 9th and 1st digits in the nonce, i.e., 2170. 

A user with PIN x1x2x3x4 authenticates himself by looking 

up the first unused nonce in his codebook, and forming a 4-

digit number consisting of the x1
th

, x2
th

, x3
th

 and x4
th

 digits in 

the nonce, in that order. (This is a variant of the well-known 

one-pad scheme.) This 4-digit number becomes the user’s 

signature for the current transaction. At the other end, the 

bank re-computes the signature using the locally-stored PIN 

and codebook.6 For maximum security, it is recommended 

that all PIN digits be distinct. There are 5040 such PINs, a 

space that is sufficiently large to counter dictionary attacks. 

                                                           
6 In an alternate implementation, the digits in every nonce are 

forced to be distinct (i.e., nonces are sampled randomly from the 

set of all permutations of 012..9). Such an implementation 

facilitates storing PINs in hashed form rather than in plain. 

(Authentication can be performed by doing a reverse-lookup, 

followed by hashing the obtained value.) However, the above 

implementation offers greater security against impersonation 

attacks. 



 

 

In our security analysis, we assume that PINs come only 

from this space. 

Nonces in the new scheme are stored in a form so that they 

can be deleted by the user right after they have been 

utilized. Several possible storage techniques, like the use of 

perforated paper sheets, throw-away stickers and electronic 

hardware, are proposed in [1].  

4.3 Synchronization Issues 
Synchronizing the user with the bank server is achieved in 

both schemes is achieved using the same technique. Each 

nonce is labeled with a unique sequence number (see figure 

2) and users must use nonces in order of their sequence 

numbers. If a user goes off-track, the bank sends an error 

message with the sequence number of the nonce it is 

expecting. To prevent dictionary attacks, at most 3 incorrect 

signatures are tolerated. 

There are about 50 nonces in each codebook in each 

scheme. Users are provided a fresh codebook at the time of 

registration and every time a booklet gets exhausted or is 

lost. Upon receipt of a new booklet, users send a codebook 

registration message (formed using the first nonce in the 

book) to sync up with the bank. 

5.  ANALYSIS 

The results of our analysis are summarized in table 1. First, 

we find that the old scheme is insecure against PIN 

recovery attacks: given a list of k 10-digit signatures 

corresponding to a user, an attacker exhaustively searches 

for 4-digit subsequences that are common to all of them. If 

it finds such a subsequence, it reports it as the PIN; else, it 

aborts. We conducted a small lab experiment with this 

attack on Eko’s scheme. In 3 independent executions on 

real Eko codebooks, we found that by setting k equal to 7, 

the attack could always recover the PIN. (See figure 3.) On 

average, across the 3 experiments, every possible PIN could 

be recovered given just k=4 signatures.7 We remark that 

although this weakness was mentioned in [1], no security 

analysis with real codebooks was reported therein.  

 

                                                           
7 Part of the weakness lies in the quality of randomness used by 

Eko to generate nonces. However, even using stronger 

pseudorandom generators in the lab, we were able to recover 

PINs from k=7 signatures with 99.6% success rate. 

Figure 3: The maximum number of transactions that an 

adversary needs to observe in order to recover the PIN in 

Eko’s current scheme. The x-axis shows the number of PIN 

values for which recovery is successful.  

On the other hand, we find that the new scheme offers much 

better security against PIN recovery attacks. The reasoning 

is simple: assuming perfect randomness of the nonces, the 

signature computed for any 4-digit PIN with distinct digits 

is a perfectly random sample from the space of 4-digit 

numbers. Since the nonces (and thus the signatures) are 

independent, given any sequence of signatures, every 

distinct-digit PIN is equally likely to have been used for 

generating that sequence. The best that any attacker (even 

an unbounded one) can do is to guess the right PIN and this 

works with probability at most 1/5040 ~ 10
-3.7

. 

Attack name Old scheme New Scheme 

PIN recovery Insecure Secure (10
-3.7

) 

Type-0 impersonation Secure (10
-8.3

) Secure (10
-4

) 

Type-1 impersonation Insecure Secure (~10
-3.7

) 

Type-2 impersonation Secure (10
-8.3

) Secure (10
-4

) 

Table 1: Comparison of the security provisions for the two 

schemes is shown. The old scheme is completely insecure 

against PIN recovery and type-1 impersonation attacks.  Both 

schemes are secure against type-0 and type-2 impersonation 

attacks, though the probability of a successful attack (depicted 

in brackets) is smaller in the case of the old scheme. Each 

success probability must be interpreted as being preceded with 

a multiplicative factor of 3, which is the tolerance level for 

incorrect authentication attempts. 

We find that a similar disparity between the old scheme and 

the new scheme exists for type-1 impersonation attacks. 

Since the former is susceptible to PIN recovery attacks, 

given a user’s codebook (and the corresponding phone), an 

attacker can trivially create signatures on behalf of the user. 

This does not apply to the new scheme since here, even if a 

user’s codebook (with past nonces having been deleted) and 

the entire transaction history compromised, from the 

attacker’s perspective, every PIN is equally likely to be the 

user’s PIN. Successful impersonation thus involves 

guessing the “right” 4-digit sample from a 10-digit nonce, 

which happens with probability nearly 1/5040 ~ 10
-3.7

. (The 

probability is slightly more than 1/5040 since nonce digits 

may not be distinct, thus reducing the space of possible 

signatures.)8 An attack probability of 10
-3.7

 may not be 

sufficient “in general” but in the presence of a suitable PIN-

blocking mechanism – as is recommended for both schemes 

– it is a reasonable bound. (See the next section for further 

improvements on security.)  

As regards type-0 and type-2 impersonation attacks, both 

schemes offer reasonable security, although success 

probabilities are better (smaller) for the old scheme. This is 

                                                           
8 In the absence of faithful nonce deletion, security against type-1 

impersonation attacks is not achieved, since a user’s PIN can be 

recovered using past nonces and signatures.  



 

 

expected since the authentication information contains more 

randomness in the old scheme than in the new one. In case 

of the old scheme, the reasoning is as follows: if an attacker 

has no knowledge of a user’s codebook, then even if he is 

provided the user’s PIN – either directly (type-2) or through 

a self-mounted PIN-recovery attack (type-0) – he cannot 

compute the 6-digit nonces for any signature with 

probability better than random guessing. (Here, we rely on 

the independence property of the nonces.) Plus, even if he 

is successful in guessing the right nonce, he must guess the 

right way to juxtapose the PIN with the nonce to form the 

10-digit signature. Assuming that the PIN-nonce 

interspersion is perfectly random, the success probability of 

the attacker is (
10

C4)
-1 

x 10
-6 

which is 10
-8.3

.  

In the new scheme, without knowledge of a user’s 

codebook, every signature is like a fresh sample from the 

space of all 4-digit numbers, and this holds true even if the 

PIN has been compromised. Thus, the probability with 

which an attacker can successfully create the desired 

signature for any transaction is at most 10
-4

. 

To sum up, the new scheme offers better security against 

PIN recovery and type-1 impersonation attacks, which the 

old scheme fails to counter. On the other hand, both 

schemes provide reasonable security against type-0 and 

type-2 impersonation attacks, although success probability 

of attacks is smaller in the case of the old scheme. Thus, as 

long as codebooks are not compromised, both schemes 

offer reasonable security against impersonation, and the old 

scheme, in fact, offers better security than the new scheme 

in such circumstances. We next describe ways in which the 

security strength of the new scheme can be further boosted.  

5.1 Improving Security of the New Scheme 
The reason for greater probability of successful type-0 and 

type-2 impersonation in the new scheme is simple: 

signatures contain fewer random bits than in the old 

scheme. If an attack resistance of 10
-4

 is deemed insufficient 

in an authentication application, there is a simple way to 

improve it to say 10
-(4 + x) 

 for arbitrary x by modifying the 

scheme as follows: instead of storing 10-digit nonces in the 

codebooks, store nonces of length 10+x. Use the first 10 

digits of every nonce as before. However, to the 4-digit 

signature thus obtained, append the last x digits of the 

nonce as is. Another modification would be to repeat 

signature generation with multiple independent nonces and 

to concatenate each of the resulting signatures. A single 

repetition reduces the success probability of attacks from 

10
-4

 to 10
-8

.  Similar techniques can also be applied to the 

old scheme to improve security against type-0 and type-2 

attacks, although these techniques do not improve security 

against PIN recovery or type-1 attacks in any way. 

Note that any such modification of the schemes will affect 

their usability in the real world. In the context of m-

banking, target users have limited educational backgrounds, 

which raises serious usability concerns and thus makes the 

above modifications less attractive.  

5.2 Tackling Man-in-the-Middle Attacks 
One threat that our security model currently does not 

address is the man-in-the-middle (MITM) attack. In such an 

attack, an adversary can intercept communication from a 

user to the authentication server and can modify messages 

while they are in transit. Both schemes we discussed are 

susceptible to forgeries by a man-in-the-middle (MITM) 

attacker, as noted in [1]. For example, an MITM adversary 

can intercept a transaction message with its associated 

signature, change contents of the message (e.g., the 

recipient account information) and forward the modified 

version to the bank. The bank would still view the message 

as originating from the legitimate user as the signature 

would be a valid PIN encoding. 

While MITM attacks are difficult to mount in mobile 

networks in real time, we sketch here a solution to counter 

them in the context of mobile banking. Our solution has 

some additional requirements: one, all transactions 

(including money transfers) must be carried out in the 

presence of a bank agent, and two, the agent must be 

equipped with a programmable phone. The latter is not an 

unreasonable assumption to make since the agent phone is 

shared across multiple users’ transactions, and it becomes 

cost-effective for the bank to invest in such a phone per 

agent (even where the latter cannot afford one himself).  

Once these requirements are met, forgeries can be 

prevented using standard cryptographic techniques. The 

agent’s phone would be loaded with a public key linked 

with the bank and appropriate signature verification 

software. Transaction messages would be sent as before 

(over USSD) but every acknowledgement from the bank 

server would be digitally signed using the bank’s private 

key and the signature would be verified by the agent phone. 

The acknowledgement must contain a unique transaction ID 

and every piece of transaction-related information that 

needs to be protected from forgery. Acknowledgements 

would be sent to both the user’s phone and the agent’s 

phone but the verification will occur only on the agent’s 

phone, which is more capable. (Thus, physical proximity to 

the agent is necessary.) Transactions would be treated as 

complete only if the signature verification is successful.9 10 

Designing mobile-based authentication schemes that are 

secure against MITM-based forgery and that work with 

                                                           
9 We remark that this solution is still susceptible to phone-rigging 

attacks by malicious agents who collude with network 

interceptors. To prevent phone-rigging, physical security must 

be built into the system using tamper-proof firmware. 

10 By utilizing short signature schemes [19], the information flow 

from the server to the user can be kept small (an overhead of 20 

bytes only) and can even happen via SMS. Plus, the information 

sent from the user to the bank remains the same as in the original 

schemes, which is very nominal. 

 

 



 

 

arbitrary low-end phones seems rather non-trivial and is left 

as an open problem by this work. 
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