
Detail-Preserving Paint Modeling for 3D Brushes

Nelson Chu William Baxter Li-Yi Wei Naga Govindaraju

Microsoft Research

Figure 1: Oil paint simulated by an implementation of the system presented in [Baxter et al. 2001] (left), by our method (middle) and by

the commercial package ArtRage 3 (right). Compared with [Baxter et al. 2001], our technique produces more organic color streaks and

much less color blurring. Compared with the ArtRage strokes, ours appear more natural since the ArtRage method of sweeping a 1D

texture to simulate strokes give less variation and control than the 3D deformable brushes offered by our system.

Abstract

Recent years have witnessed significant advances in 3D brush
modeling and simulation in digital paint tools. Compared with
traditional 2D brushes, a 3D brush can be both more intuitive and
more expressive by offering an experience closer to wielding a
real, physical brush. To support popular media types such as oil
and pastel, most previous 3D brush models have implemented
paint smearing and mixing. This is generally accomplished by a
simple repeated exchange of paint between the 3D brush and 2D
canvas, with the paint picked up by the brush typically mapped
directly onto the brush surface. In this paper we demonstrate that
both repeated exchanges and direct mapping of paint onto brush
surfaces are sub-optimal choices, leading to excessive loss of
color detail and computational inefficiencies. We present new
techniques to solve both problems, first by using a canvas
snapshot buffer to prevent repeated paint exchange, and second by
mapping brush paint onto a 2D, resolution-matched pickup map
that sits underneath the brush, instead of mapping onto the 3D
brush itself. Together, these act to minimize resampling artifacts,
helping to preserve fine streaks and color details in strokes, while
at the same time yielding improved efficiency by never sampling
the brush more densely than necessary. We demonstrate the
effectiveness of our method in a real-time paint system
implemented on the GPU that simulates pastel and oil paint. Our
method is simple and effective, and achieves a level of realism for
these two media not attained by any previous work.

Keywords: digital painting, virtual tools, resampling, oil painting,
pastel, natural media modeling

1. Introduction

Digital painting has been an active subject of study for over 30
years [Smith 2001] and has become an indispensible component
of common graphic tool sets (e.g. the Adobe Creative Suite).
Unlike physical painting with real brush and canvas, digital
painting offers several unique capabilities such as easy undo and
saving the artwork at different stages, as well as lossless copy and

reproduction. As a result, digital painting has become a popular
way to create illustrations for everything from books, to
advertising, to background mattes in movie production.

However there are still some nuances of real art media and
positive attributes of real art tools which are not found in current
digital systems. Specifically, marks made by real-world tools have
an organic richness of detail and expressive variability that have
yet to be captured adequately by any digital painting system. In
this work, we focus in particular on oil and pastel, two media in
which the interactions of tools and media are critical and give rise
to both detail and variability. Researchers have shown that the
lack of expressive variability can be addressed by moving from
simple 2D bitmap ―brushes‖ to more realistic models of real-
world tools, such as deformable 3D paint brush models [Baxter et
al. 2001; Chu and Tai 2002; Adams et al. 2004; Baxter and Lin
2004; Okaichi et al. 2008; Baxter and Govindaraju 2010].
However, basically none of these previous techniques is able to
recreate the fine details seen in real oil or pastel marks due to how
the smearing and mixing of paint are implemented. We find that
even with currently available commercial tools that specialize in
natural art media (see Figure 3), stroke variation and/or color
detail are lacking, making a recreation of effects like in Figure 2
nearly impossible.

Figure 2: Close-up of a real painting showing subtle streaks (top,

oil painting © Scott Burdick; used with permisson) and smearing

(bottom, pastel).

For many artistic styles involving media such as oil paint and
pastel, smearing and the detailed interactions that arise from it are
essential components. We can think of smearing as a bidirectional
and simultaneous process consisting of depositing paint from the
brush to the canvas as well as picking up paint from the canvas
onto the brush. To produce a smearing effect digitally, the
simplest and most direct approach is to approximate the
interaction as a sequence of repeated discrete transfers of paint
between the brush and the canvas. This is the approach taken by
e.g. [Baxter et al. 2001; Baxter et al. 2004a; Baxter et al. 2004b;
Van Haevre et al. 2007; Van Laerhoven and Van Reeth 2007].

Figure 3: A comparison of smearing effects by ArtRage 3 (left)

and by our system (right). In these tests, several horizontal strokes

are smudged in a zigzag motion. Note that in the former only

certain colors are picked up (dominated by black with other

colors mostly ignored). Sweeping a 1D-texture in the former also

creates discontinuity artifacts at acute corners. Corel Painter’s

latest “Artists’Oils” produces results similar to Artrage’s.

In an effort to support such smearing effects, prior 3D brush mod-
els e.g. [Baxter et al. 2001; Baxter and Lin 2004; Van Haevre et
al. 2007; Van Laerhoven and Van Reeth 2007] have allowed the
3D brush to pick up paint on its surface. However, since the brush
samples are generally not aligned with those of the canvas, some
loss of detail due to resampling is inevitable, along with ineffi-
ciencies similar to those that motivate the use of mip-mapping for
texture rendering. This alone might not be catastrophic; however,
in previous work the one-time resampling error is compounded
many fold by repeatedly resampling paint that was just deposited.
Typically, paint is transferred between the canvas and brush
hundreds of times during a stroke, with resampling occurring on
each transfer. This rapidly iterated resampling results in excessive
blurring of the paint color as can be seen in Figure 1 (left) and
Figure 16. We observe that it is essential to minimize this
resampling in order to produce high-quality smearing results
exhibiting sharp detail like that seen in Figure 2.

Contributions: In this paper, we first analyze the key sources of
blurring associated with digital painting algorithms for 3D
brushes. Based on our analysis, we propose two novel techniques
to drastically reduce this blurring. First, we propose a new brush
representation that uses a 3D brush plus a 2D, resolution-matched
pickup map that sits underneath the brush. The pickup map is used
for storing paint picked up from the canvas, instead of mapping
this data directly onto the brush geometry as in previous work.
This eliminates the problems associated with resolution mismatch
between brush and canvas. Second, we introduce a special canvas
snapshot buffer to avoid repeated resampling of the paint by
preventing pickup of paint just deposited. Importantly, with our
snapshot buffer technique, picking up paint less recently deposited
is allowed, leading to more realistic behavior for self-intersecting
strokes. All of our techniques leverage the hardware acceleration
capabilities of GPUs.

Our new techniques have the advantage of minimizing resampling
artifacts associated with the use of a 3D brush model, allowing us
to simulate high-quality paint smearing efficiently. Using these

techniques, we developed a real-time paint system that simulates
pastel and oil paint, two art media that rely heavily on smearing.
We performed quality and performance comparisons with prior
algorithms [Baxter et al. 2001; Baxter and Lin 2004]. In practice,
we observed our algorithms to achieve much higher quality than
prior hardware-accelerated implementations without increasing
the computational cost.

2. Background

Many traditional artists prefer not to use digital paint media
because the existing digital tools lack the complexity and organic
appearance of real media (compare e.g. Figures 2 and 19 with
Figure 3 (left)). The complex nature of brushes and fluid paint is
inherently difficult to reproduce digitally in real time. With
viscous media like oil, or dry particulate media like chalk pastel,
reproducing detailed smearing effects is particularly challenging.

In oil painting, wet-in-wet [Appellof 1993] is a common technique
that artists rely on. Stroking wet-in-wet means applying colors
over and into one another while still wet. Technically, this process
is just smearing wet paint on the canvas while depositing. Wet-in-
wet stroking is a key feature in the alla prima style, in which
colors are laid down more or less as they would appear in the
finished painting. Reworking is kept to a minimum to give a
spontaneous effect. When paints are smeared, one should see
delicate color streaks like those shown in Figure 2 or Figure 19
(left). Artists also invented a technique called broken color
[Appellof 1993; Flattmann 2007], which is to juxtapose different
colors on the canvas and let the viewer’s eye mix them so that the
colors stay vibrant. Often, broken colors are made with quick wet-
in-wet strokes so that traces of previously deposited colors peek
through newly deposited ones (Figure 2). The broken color
technique also applies to other art media like pastel.

To improve the digital painting experience, researchers have
devised computational models of various art media and tools in
the past few decades. Recent advances show a trend towards using
3D deformable brushes instead of 2D ones to better capture
complex brush deformation to give more varied and controllable
brush marks (e.g. [Baxter et al. 2001; Chu and Tai 2002; Adams
et al. 2004; Baxter and Lin 2004; Okaichi et al. 2008]). There is
also a trend towards physically-based methods to better simulate
the organic behavior of real paint (e.g. [Curtis et al. 1997; Baxter
et al. 2004a; Baxter et al. 2004b; Rudolf et al. 2005; Chu and Tai
2005]). The state of the art in watercolor simulation is quite good
[Curtis et al. 1997; Chu and Tai 2005; Van Laerhoven and Van
Reeth 2007]. However, watercolor simulation is based on
modeling low-viscosity fluid, which tends to be very diffusive
when wet and fixed when dry, so detailed smearing effects
(crucial in pastel and oil) do not arise. We next briefly review the
state-of-the-art in the simulation of pastel and oil paint media.

Pastel Simulation: Van Haevre et al. [2007] simulate pastel
painting with a pastel pencil. Deposition and smearing are
implemented by performing two-way paint transfer between
pencil and paper. A height-field is used to represent the 3D
geometry of the pencil tip and a 2D texture stores the paint pickup
and is mapped onto the pencil tip. Paper weathering is also
considered, in which the paper can be dented if the user presses
too hard. Rudolf et al. [2005] also simulated wax crayon similarly
with paper and crayon tip modelled as height-fields. However,
they assumed wax would not be carried a long distance and
modelled smearing by redistributing paint from a paper cell to its
8 neighbors using a 3 × 3 mask rather than using a separate texture
that stores picked up paint. Both Van Haevre et al. [2007] and
Rudolf et al. [2005] simulated crayon weathering by trimming the
crayon height-field.

staircase artifact

discontinuity
artifact

Oil Paint Simulation: Baxter et al. [2001; 2004a; 2004b]
simulated oil paint with various levels of complexity. Their first
method [Baxter et al. 2001] was the simplest and closest to ours:
two-way transfer of paint between canvas and brush was
performed via a few texture buffers. Their second method [Baxter
et al. 2004a] uses a conservative advection scheme in addition to
the two-way transfer to simulate the paint dynamics, and a full-
spectrum rendering method for higher color accuracy. Their third
method [Baxter et al. 2004b] models paint motion with the Stokes'
equations, which are solved in 3D to allow a true volumetric
modeling of oil paint. However, this gives too low a performance
for practical use on current systems due to large computational
requirements. All these paint models are coupled with a 3D brush
model [Baxter et al. 2001; Baxter and Lin 2004]. Note that none
of these three models was capable of preserving fine details.
Okaichi et al. [2008] also simulated thick oil paint with a two-way
transfer model similar to [Baxter et al. 2004a] along with a 3D
painting knife model.

Commercial Packages: Popular digital paint packages like Corel
Painter 11 or Ambient Design ArtRage 3 feature pastel and oil
paint models. To perform smearing, they appear to sample the
paint on the canvas coarsely when they simulate paint pickup
because the results lack detail (Figures 1 right and 3 left). Digital
painters also use Adobe Photoshop to paint, but its tool set is not
specifically designed for simulating real paint media, so the results
tend more towards photorealistic styles. As far as we can tell, all
these packages render the strokes either by dabbing a 2D footprint
or sweeping a 1D texture along a stroke path.

3. Overview

In this section, we first describe a common paint simulation
pipeline. We then explain how the issue of resampling arises and
how our proposed techniques solve the problem.

3.1 Paint Simulation Pipeline

An interactive painting application obtains user input via an input
device such as a graphics tablet, simulates the paint deposition,
and then displays the deposited paint onto the screen. We
specifically focus on interactive techniques for the simulation of
the paint medium using a graphics processing unit (GPU). These
algorithms assume the canvas resolution is fixed during a
simulation and specified a priori by the user. A 3D brush drives
the underlying paint simulation. The brush geometry can deform
based on the orientation of the brush handle and pressure.
Moreover, the brush geometry can transfer paint to and pick up
paint from the canvas, i.e. a bidirectional transfer for paint
smearing and mixing effects. The core steps involved in
implementing the painting simulation in both our system and
previous work are shown in Figure 4.

Figure 4: The core steps for one brush footprint impression.

To generate a footprint, we render the depth value of the brush

geometry into a height-field and modulate this height-field with

the canvas tooth to produce the footprint (Figure 5) similar to

[Baxter et al. 2001; Chu and Tai 2002; Adams et al. 2004; Van

Haevre et al. 2007]. The user input is sampled at discrete points,

and a stroke is generated by repeatedly imprinting the 2D brush

footprint between the two successive input points (Figure 6). The

spacing between adjacent imprints has to be no larger than a

single pixel on the canvas if the stroke is to be free of artifacts

along the edges. While performing the stroke generation, the

system needs to simulate paint being picked up by the brush from

the canvas in addition to depositing the paint from the brush. This

is performed during each imprint step.

Figure 5: Intersecting brush geometry to get a footprint.

Figure 6: Imprinting a brush footprint along a stroke trajectory.

3.2 Sampling and Resampling Issues

Previous researchers [Baxter et al. 2001; Baxter et al. 2004a;
Baxter et al. 2004b; Okaichi et al. 2008] have used the above
pipeline to simulate paint deposition with a smearing effect.
However, the smearing of multiple colors in these works displays
significantly more color diffusion than in real paint. Specifically,
one expects to see streaks of different colors when paint is only
gently mixed (compare Figure 2 (top) and Figure 17 with Figure 1
(left)). We identify two causes for this loss of detail. The first is
that the effective simulation resolution is limited by the lower of
the canvas resolution and the brush pickup resolution. Often, the
canvas and/or the brush resolutions are limited by the real-time
requirement of the application. The other cause is resampling that
occurs during paint transfer. We next examine these causes more
closely.

In general, numerical diffusion is common in digital reproductions
of various natural phenomena. This is due to the finite resolution
and the repeated resampling used in the computation. Researchers
in fluid simulation have come up with various techniques to tackle
this issue (e.g. the classic Riemann problem solutions for shock
preservation in fluid dynamics [LeVeque 1992] or more recent
examples in the graphics literature [Weiskopf 2004; Kim et al.
2005]). In image processing, various methods have also been
applied to preserve edge details while resampling [Barash 2000].
These techniques, however, add significant computational
overhead to the simulation and to our knowledge have not been
implemented in any digital paint programs.

In previous 3D brush (or pastel stick or palette knife) models

[Baxter et al. 2001; Adams et al. 2004; Baxter and Lin 2004; Van

Haevre et al. 2007; Okaichi et al. 2008], paint pickup information

is mapped to the brush geometry. Specifically, pickup is stored

either as textures mapped on to the brush surface [Baxter et al.

2001; Baxter and Lin 2004; Van Haevre et al. 2007], as vertex

data on the brush surface mesh [Okaichi et al. 2008], or as

samples scattered on the brush surface [Adams et al. 2004]. Paint

on the canvas, on the other hand, is stored as textures mapped to

the canvas [Baxter et al. 2001; Baxter and Lin 2004; Van Haevre

et al. 2007; Okaichi et al. 2008] or as samples on the canvas

Generate brush footprint

Update paint pickup from canvas content

Deposit paint to canvas according to footprint and pickup

canvas footprint

brush
or stick

surface [Adams et al. 2004]. In general, using a deformable 3D

brush model makes it hard to ensure we have matched resolutions

on the brush and canvas surfaces, as projecting the brush surface

down to the canvas changes the relative sampling densities. The

brush deformation can also be significant (e.g. the brush tip may

spread). Most previous models (with rare exceptions like [Adams

et al. 2004]) simply use a static resolution for the brush (Figure 7).

This causes paint data to be up-sampled or down-sampled when

we perform paint exchanges between the two surfaces. This

implies the fidelity of the higher resolution data is wasted when

the resolutions do not match.

Figure 7: Canvas and brush with different resolution and

alignment.

The problems of resolution mismatch and sampling are
encountered frequently in computer graphics. In some ways the
problem of establishing a mapping between a 3D brush and the
canvas is exactly the problem of texture filtering. Transferring
paint from the brush to the canvas is essentially a matter of
rendering a textured brush under an orthographic projection. As
such, mip-mapping the brush data would help solve the problems
of either too much or too little resolution on the brush; however, it
becomes expensive to update all the mip levels, and furthermore
mip-mapping is inherently isotropic, whereas the sampling
mismatch between a projected brush and canvas really requires
anisotropic filtering, which is even more expensive.

On the other hand, the problem of mapping from the canvas back
to a 3D brush is in some ways similar to the problem of shadow
mapping or projective texturing. In this case, large stretch in the
some parts of parameterization of the canvas projected onto the
brush is unavoidable. This is the case for portions of the brush
geometry nearly perpendicular to the canvas, which means that for
some portions of the brush, the canvas-to-brush mapping will
always be undersampled.

Even if resolutions were roughly matched, there is another
perhaps even more serious sampling issue. With previous
implementations [Baxter et al. 2001; Van Haevre et al. 2007;
Okaichi et al. 2008], paint just deposited is immediately picked up
again, and thus resampled again, to implement smearing. This
creates a tight feedback loop that magnifies the blurring. For a
brush footprint that is N pixels wide, stroking will resample each
pixel along the stroke about N times, essentially applying an N-
iterated blurring filter to the color data.

In the following discussion of our solutions to these problems, we
adopt the texture-based pickup storage method and call the texture
used to represent a layer of paint picked up by the brush the
pickup map. We denote the texture that stores paint deposited on
the canvas by canvas map.

4. Our Method

The key issue we have identified with previous work which
attempts to simulate media like oil paint and pastel is the inability
to preserve fine-scale color detail during smearing and mixing,
particularly in conjunction with 3D brush models. We propose

two new techniques that eliminate almost all of this blurring,
explained in the next two subsections.

4.1 Resolution-Matched Pickup Map

To address the resampling problem related to differing resolutions
of brush paint and canvas paint, we propose the use of a
resolution-matched pickup map (Figure 8). Conceptually, this is a
bitmap with the same resolution as the canvas, sitting under the
3D brush. We call our proposition a hybrid approach because the
brush geometry is 3D but the pickup information is represented on
a flat 2D surface. Instead of performing bidirectional paint transfer
between the canvas and the 3D brush, we now perform the same
operations between the canvas and this 2D surface. To correlate
the 3D brush motion/deformation with the 2D pickup map, we
have the current footprint of the former act as a mask for the latter
when performing the paint transfer.

Figure 8: A flat pickup map sitting under the 3D brush with

resolution matched to that of the canvas.

We align the center of this pickup map to an anchor point on the
3D brush, which can be the centroid of the bristle geometry for a
brush (Figure 8 right), or the center of the base for a pastel stick.
Given a certain brush size, we use the diagonal of the 3D
bounding-box of the brush in rest position to bound the pickup
map size so it is big enough to cover the brush for all possible
brush transformation. If the user scales the brush, we scale the
pickup map also to maintain matched resolutions. As the reso-
lution of this pickup map matches that of the canvas, there is no
issue of resampling due to a mismatch of resolutions.

Figure 9: Restricting the pickup map to align to the pixel grid of

the canvas irrespective to brush orientation (left) and rotating the

map according the brush orientation (right).

If we restrict the pickup map to align with the canvas pixel grid
irrespective to how the brush is rotated relative to the canvas
(Figure 9 left), we can eliminate resampling due to geometry
misalignment too. However, this also means that paint picked up
on one particular part of the brush does not stick to the same spot
if the brush is rotated. Rotating the pickup map about its center so
that the colors stay close to their original 3D positions (Figure 9
right) largely alleviates this problem - the only dislocation is then
due to the local bristle deformation and twisting of the brush.
Given that even with a real brush it is not always clear exactly
what paint has been picked up where, we find this to be acceptable
for a practical user painting experience. Note that rotating the
pickup map does cause resampling, but this does not significantly

brush

pickup map

centroid

canvas

canvas

brush with
texture

mapped on it

degrade quality since the resolutions between canvas and pickup
maps are matched and the resampling does not happen repeatedly.

4.2 Canvas Snapshot Buffer

The second issue responsible for loss of detail in previous work is
the repeated resampling of paint. To greatly reduce this, we
propose the use of a canvas snapshot buffer, Ω. As previously
explained, in a typical paint pipeline, paint is transferred between
the brush and canvas at every impression along a stroke. We
modify that typical pipeline, using our snapshot buffer, as follows
(see Figure 10). Before the first imprint of a stroke, Ω is initialized
to be identical to the current canvas map. Then, before every
subsequent imprint, Ω is updated to contain the latest version of
the canvas map except for the region covered by the pickup map at
the current brush position (green rectangle, Figure 10). By using
Ω as the input canvas map to our paint pickup update algorithm
instead of the canvas itself, we avoid the tight feedback loop
during the bidirectional paint transfer, and thus effectively prevent
the blurring that has plagued previous systems. The use of Ω also
helps avoid quickly saturating to the brush color when blending
with canvas paint (see Section 5, Deposition). For comparisons
with and without a snapshot buffer see Figure 14 and Figure 16.

Figure 10: The canvas snapshot buffer Ω is all up-to-date except

for the area covered by the pickup map, preventing repeated

resampling and the attending blurring.

The above simple update scheme works well in allowing the effect
of self-overlapping except for acute stroke corners (Figure 11
middle) and a few special cases like drawing a loop smaller than
the pickup map size. These issues can be fixed by keeping track of
the recent addition of the current stroke to produce a mask with
which we decide if we use the current canvas map in our paint
transfer operations. However, in our current system we only tackle
the acute stroke issue by updating Ω with a complete snapshot
when we detect a large change in the stroke direction, because the
other occasions needing a fix are rare in practice. Finally, should
no self-overlapping (Figure 11 left) be preferred, we can simply
update Ω only at the beginning of a stroke.

Figure 11: No self-overlapping (left), self-overlapping with

artifact (middle) and correct self-overlapping (right).

5. Paint Model Details

We have implemented a paint system (Figure 12) that uses the
proposed techniques to simulate pastel and oil paint. In certain
parts of our paint model, we also made the simulation not strictly
physical in favor of artistic control. For pastel simulation, we use
a non-deforming 3D stick model as the paint applicator. We
render pastel artwork with a flat and matte appearance. For oil
painting, we use a deforming brush model as in [Baxter and
Govindaraju 2010]. We also simulate ridges in oil paint formed by

the brush bristles and render the paint glossy. Other parts of the
simulation are essentially the same for both media. Although we
use 3D brush models in our system, we note that our paint transfer
pipeline is not tied to any particular 3D brush simulation
technique. Furthermore, our method also integrates seamlessly
with a traditional 2D brush model by simply treating the brush
footprint as static—the 3D portion of our 3D/2D hybrid then just
goes away. For instance, our system switches to a 2D brush when
we have touch input (Figure 12 inset). In the rest of this section,
we describe the details of our paint modeling. All operations
described are performed in a per-pixel fashion using DirectX 10
HLSL shader programs on a GPU.

Figure 12: User interface of our paint system.

Deposition: If we simply copy the brush source color onto the
canvas as we imprint with the footprint without picking up
existing canvas paint, we obtain solid strokes (Figure 13 left). To
simulate bidirectional transfer, we render the strokes as a blend of
the source color and the canvas map, depending on the brush
footprint height value. To simulate re-deposition of paint pickup
(Figure 13 middle and right), we determine the source color as:

 ,

where is the source color, is the intrinsic color of the pastel
stick or the brush loading, is the color on the pickup map, is
the thickness of the pickup layer, and lerp(a, b, t) is the linear
interpolation function defined as .

Figure 13: Depositing paint simply as solid color (left), and with

textural detail giving a broken-color quality (right).

If we use the deposition algorithm described so far without our
snapshot buffer, the overlapping imprints quickly saturate the
stroke to the source color giving a solid stroke almost like Figure
13 (left) because the pickup map is immediately filled with paint
just deposited. Thus, the use of our canvas snapshot buffer
(Section 4.2) not only helps with resampling issues, but also helps
avoid this quick saturation of color, while keeping the deposition
algorithm simple.

Note that in reality, the canvas tooth grips pastel pigments only up
to a certain extent (amount of pickup is also limited likewise).
Further deposition results in pastel dust that does not stay on the

using finger input

brush

canvas

palette

Ω canvas map

surface. We could model this by adding a step in our deposition
algorithm to check for a maximum deposition limit. However, we
choose not to because this makes it impossible to continue
overlaying strokes with nice textural blending (Figure 13 right).

Ω as Artistic Control: We can actually use the presence or
absence of our snapshot buffer, Ω, as an artistic control. Should
we want the paint to blend more, we can use the current canvas
map instead of Ω in our algorithm (Figure 14 left). The increased
blurring gives the impression of wet blending (when solvent is
added to the paint) where the pigments mix more thoroughly. To
control the amount of blending, we can simply use an
interpolation of the canvas map and Ω as input to our algorithm.

Figure 14: A comparison of smearing using different buffers as

input to our paint pickup update algorithm.

Color Streaks and Ridges: To create color streaks, we use a
bump texture to modulate the brush footprint. To simulate ridges,
we use a separate texture to drive paint thickness accumulation
and removal at various spots touched by the brush. Both color
streaks and ridges are shown in Figures 15 and 19.

6. Results and Discussion

Quality Verification: To confirm that our method of using a
combination of a resolution-matched pickup map and the canvas
snapshot, Ω, minimizes blurring, we conducted simple tests in
which we smear one-pixel grid lines of paint strictly horizontally
(Figure 16). When we use a brush of 60 × 60 pixels dab size with
a brush-mapped texture at 128 × 128 resolution (using an
implementation of [Baxter et al. 2001]), we observe prominent
blurring (Figure 16 first row). We also used a 1024 × 1024 brush-
mapped texture to ensure the brush had sufficient resolution, but
we obtained similar results (not shown), indicating brush
resolution was already matching or exceeding the canvas
resolution. The rest of the entries in Figure 16 were obtained using
a 60 × 60 size brush with a resolution-matched pickup map and
with different options in our simulation toggled. Note that since

we are smearing horizontally, we should see the blue horizontal
lines stay nearly unchanged. We see that the use of resolution-
matched pickup map alone does not remove excessive blurring
because the blue lines diffuse vertically in the second row,
although less severely than in the first row. The blue lines in the
last three rows stay much sharper. With the pickup map restricted
to be canvas-aligned, we see the blue lines stay perfectly sharp
(rows 3 and 5). We conclude, however, that the fourth row with
rotatable pickup map is the best choice overall because it
minimizes blurring while allowing the paint to stick roughly to the
correct location on the brush. Furthermore, the small amount of
resampling due to map rotation can actually be beneficial for its
anti-aliasing effect.

Figure 16: Smearing test results. The top row result was obtained
with previous method of using a brush-mapped texture [Baxter et
al. 2001], while the rest were done with our system.

Performance: Our system is quite responsive even on a low-end
laptop – with a brush of dab size 60 × 60 pixels, it runs at 145
frames per second (FPS) on a tabletPC with an AMD Turion X2
Dual-Core Mobile RM-75 2.2GHz CPU and an ATI Mobility
Radeon HD3200 GPU.

Figure 17: A breakdown of GPU processing cost in our system.

We perform paint simulation entirely on the GPU and brush
dynamics simulation [Baxter and Govindaraju 2010] using a
combination of CPU and GPU. In most cases, our system is GPU
bound. Figure 17 shows a breakdown of GPU processing cost of
our simulation in a typical scenario where the artwork is rendered
at one-to-one zoom level and a brush of dab size 60 × 60 pixels is
dragged at a moderate speed while maintaining a frame-rate of
145 FPS. Note that the brush footprint impression is a major
expense taking 70% or 78% of the total cost for the two cases of
using a deformable brush and a non-deforming stick as the paint
applicator, respectively. For an accurate evaluation of our paint
transfer performance, we vary the brush size within a reasonable
range and plot a graph showing the number of brush footprint

70%

20%
10%

78%

22%

0%

Brush Footprint
Impression

Paint Rendering Brush Deformation
Overhead

Brush

Stick

Resolution
-matched

pickup
map

Pickup
map

canvas-
aligned

Using Ω Smearing results

N/A N/A No

Yes No No

Yes Yes No

Yes No Yes

Yes Yes Yes

 using canvas map using Ω

Figure 15: Close-up of an oil painting simulated with our system

showing subtle ridges and color streaks.

impressions per second (Figure 18). Our data indicates a clear
decrease in number of impressions with increase in brush
coverage, confirming that the paint transfer performance is largely
determined by the number of processed pixels.

Figure 18: Performance data of our paint simulation.

For a system using brush-mapped texture to get a smearing quality
on par with our use of pickup map, one may try to increase the
canvas resolution (although the result would not be as good
because canvas pixels would be blurred). Figure 16 indicates that
at least an increase of 64x higher resolution is needed. This would
have a major impact on the paint transfer performance and would
lead to lower interactivity as demonstrated in Figures 17 and 18.

Sample Artwork: To demonstrate the usability of our system, we
show a few sample artworks, which were all done in a resolution
of 2k × 1k pixels. Figure 19 left is a close-up of a real oil painting
by artist Scott Burdick while Figure 19 right shows a painting
made with our system to mimic that painting. Note that the
simulated ridges and color streaks approach the same level of
organic quality as the real painting. Figure 20 is another painting
made using our oil paint model. Figure 21 shows a pastel painting
created using our system. The background was made by smearing
black and shades of blue. Because of the variations in the
footprint, we have bits of black showing in the blues, which gives
a pleasing, natural look (Figure 21 left inset). Figure 22 is another
sample pastel painting made with our system. Note that our model
is able to give the powdery feel of real soft pastel as colors are
smeared (Figure 22 inset). We encourage the readers to watch our
supplementary video to appreciate the effectiveness of our
simulation.

6. Conclusion and Future Work

We have presented a new simple but effective brush
representation scheme for digital painting that preserves desirable
nuances in the brush marks. Achieving the same level of detail
would otherwise require complex algorithms to reduce data

diffusion or greater computation to maintain a higher effective
simulation resolution. We showed how we apply our scheme in a
simplified simulation pipeline for pastel and oil paint. We are able
to produce high quality artwork in real-time even on a low-end
PC. Our techniques for modeling the brush representation and
paint transfer are general and can be applied to other paint
simulation algorithms including systems with 2D brushes, but
they are particularly effective in minimizing the blurring artifacts
that have been characteristic of previous 3D brush systems.

One major insight we garnered from this research is that storing
paint pickup information in a flat 2D surface would actually
produce better results than doing so on a 3D brush geometry. This
is somehow counter-intuitive, as most people might consider the
latter a more natural choice. Nevertheless, through our analysis
and experiments, we have found that even though using a 2D
pickup map would not attach paints as precisely as mapping the
information onto a 3D brush model, the overall quality still
improves significantly due to much reduced bidirectional
resampling issues with the canvas.

There are several other avenues for future work. To further reduce

the effect of paint picked up not sticking to the same spot on the

brush (Section 4.1), we can shift the pickup map to account for

brush twisting. For oil painting, currently we only simulate

shallow ridges. It would be nice to add thick paint support [Baxter

et al. 2004a; Baxter et al. 2004b; Okaichi et al. 2008] so that the

user can paint in the impasto style [Appellof 1993]. Furthermore,

we have yet to simulate oil paint being thinned to give a semi-

transparent quality. Finally, the current system uses additive RGB

color space; a subtractive color model, or more sophisticated

models [Baxter et al. 2004a; Xu et al. 2007], can be employed

instead should we want the colors to behave more realistically.

For pastel, we can add more realism by modeling tool and surface

weathering [Rudolf et al. 2005; Van Haevre et al. 2007].

Acknowledgments

We would like to thank Craig Mundie, Dan Reed, and John
Manferdelli for their support of this work. We thank Avneesh Sud
for his help in interfacing with multi-touch and pen input in our
prototype system. We are grateful to artists Scott Burdick and
Stéphanie Valentin for allowing us to show their work in Figures
2 and 19 and the accompanying video. Finally, we thank Nicholas
Kamuda for painting Figure 20.

1k

3k

5k

7k

B
ru

sh
 f

o
o

tp
ri

n
t

im
p

re
ss

io
n

s
/

se
c

 302 502 702 902 1102 1302

Brush coverage in pixels

Figure 19: Part of a real oil painting (left) and a similar result created by an artist with our system (right). The real painting was done

by Scott Burdick (© Scott Burdick; used with permission).

Figure 20: An oil painting created with our system.

Figure 21: A pastel painting made with our system.

Figure 22: Close-up of a pastel painting made with our system.

References

ADAMS, B., WICKE, M., DUTRÉ, P., GROSS, M., PAULY, M. AND

TESCHNER, M. 2004. Interactive 3D Painting on Point-
Sampled Objects. Eurographics Sym. on Point-Based
Graphics, 2004.

APPELLOF, M. 1993. Everything You Ever Wanted to Know about
Oil Painting. Watson-Guptill.

BARASH, D. 2000. Bilateral filtering and anisotropic diffusion:
Towards a unified viewpoint. HP Laboratories Technical
Report, 2000.

BAXTER, W. AND GOVINDARAJU, N. 2010. Simple data-driven
modeling of brushes. In Proceedings of the 2010 ACM
SIGGRAPH Symposium on interactive 3D Graphics and
Games.

BAXTER, W. AND LIN, M. 2004. A Versatile Interactive 3D Brush
Model. In Proc. of Pacific Graphics 2004.

BAXTER, W., LIU, Y., AND LIN, M. C. 2004. A viscous paint model
for interactive applications. J. Comput. Animat. Virtual
Worlds 15, 3-4 (Jul. 2004), pp. 433-441.

BAXTER, W., SCHEIB, V., LIN, M., AND MANOCHA, D. 2001. DAB:
Interactive Haptic Painting with 3D Virtual Brushes. In Proc.
of ACM SIGGRAPH 2001.

BAXTER, W., WENDT, J., AND LIN, M. 2004. IMPaSTo: a realistic,
interactive model for paint. In Proc. of the 3rd int’l Sym. on
Non-Photorealistic Animation and Rendering, June, 2004.

CHU, S. H. AND TAI, C.-L. 2002. An efficient brush model for
physically-based 3D painting. In Proc. of Pacific Graphics,
2002.

CHU, S. H. AND TAI, C.-L. 2005. MoXi: Real-Time Ink Dispersion
in Absorbent Paper. In Proc. of ACM SIGGRAPH 2005.

CURTIS, C. J., ANDERSON, S. E., SEIMS, J. E., FLEISCHER, K. W.,
AND SALESIN, D. H. 1997. Computer-generated watercolor. In
Proc. of ACM SIGGRAPH 1997.

DOCIU, D., DAHLING, M., SEEGMILLER, D., AND DELON, M. 2008.
d'artiste - Digital Painting 2, Ballistic Publishing.

FLATTMANN, A. 2007. The Art of Pastel Painting. Pelican
Publishing.

LEVEQUE, R. 1992. Numerical Methods for Conservation Laws.
Birkhäuser, Berlin.

KIM, B. M., LIU, Y., LLAMAS, I., AND ROSIGNAC, J. 2005.
Flowfixer: Using BFECC for fluid simulation. In
Eurographics Workshop on Natural Phenomena 2005, pp. 51-
56.

OKAICHI, N., JOHAN, H., IMAGIRE, T., AND NISHITA, T. 2008. A
virtual painting knife. Vis. Comput. 24, 7 (Jul. 2008), 753-
763.

RUDOLF, D., MOULD, D., AND NEUFELD, E. 2005. A bidirectional
deposition model of wax crayons. Computer Graphics Forum
24(1), pp. 27-39, Mar. 2005.

SMITH, A. R. 2001. Digital Paint Systems: An Anecdotal and
Historical Overview. IEEE Ann. Hist. Comput. 23, 2 (Apr.
2001), pp. 4-30.

VAN HAEVRE, W., VAN LAERHOVEN, T., DI FIORE, F., AND VAN

REETH, F. 2007. From Dust till Drawn: A Real-time
Bidirectional Pastel Simulation. The Visual Computer, pp.
925-934, 2007.

VAN LAERHOVEN, T., AND VAN REETH, F. 2007. Brush up your
painting skills: Realistic brush design for interactive painting
applications. The Visual Computer, pp. 763-771, 2007.

WEISKOPF, D. 2004. Dye Advection without the Blur: A Level-Set
Approach for Texture-Based Visualization of Unsteady Flow,
Computer Graphics Forum 23(3), pp. 479-488, 2004.

XU, S., TAN, H., JIAO, X., LAU, F.C.M., AND PAN, Y. 2007. A
generic pigment model for digital painting. Comput. Graph.
Forum (EG 2007), Vol. 26, 2007.

