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Abstract

Smart grid proposals threaten user privacy by poten-
tially disclosing fine-grained consumption data to utility
providers, primarily for time-of-use billing, but also for
profiling, settlement, forecasting, tariff and energy effi-
ciency advice. We propose a privacy-preserving proto-
col for general calculations on fine-grained meter read-
ings, while keeping the use of tamper evident meters to a
strict minimum. We allow users to perform and prove the
correctness of computations based on readings on their
own devices, without disclosing any fine grained con-
sumption. Applying the protocols to time-of-use billing
is particularly simple and efficient, but we also support a
wider variety of tariff policies. Cryptographic proofs and
multiple implementations are used to show the proposed
protocols are secure and efficient.

1 Introduction

The concept of smart grid refers to the modernization
of the existing electrical grid, including bidirectional
communication between meters and utilities, more ac-
curate meter readings and flexible tariffs [12]. Expected
electricity savings depend on matching generation and
demand, achieved partly through dynamic tariffs with
higher rates during peak consumption periods. Further
savings are expected through the use of smart meter data
for more accurate forecasting, more accurate settlement
of costs between suppliers and producers (in the UK en-
ergy market) as well as customised energy efficiency ad-
vice. Both the United States and the European Union
currently promote the deployment of smart grids.!
Currently, most smart grid deployment projects lean
towards an architecture with severe privacy problems [1]:
meters send all fine-grained measurements to the utilities
or a centralised database. Yet, it is recognised that meter

1US Energy Independence and Security Act of 2007 and EU direc-
tive 2009/72/EC
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readings leak personal information. For example, load
monitoring [25, 26] allows the identification of specific
electrical appliances. As a result, detailed consumption
data would facilitate the creation of user lifestyle pro-
files, including but not limited to house occupancy, meal
times, working hours, or prayer or fasting patterns.

To alleviate such concerns, privacy impact assess-
ments (PIA) are included in ongoing standardization pro-
cesses. The National Institute of Standards and Tech-
nology (NIST) [38] lists fine-grained readings as being
used for load monitoring, forecasting, demand-response,
efficiency analysis and billing. Time-of-use billing is a
major reason for collecting and storing all fine-grained
readings, and thus we use it to illustrate our techniques.
Other computations on readings are also supported.

Consumer privacy concerns have already jeopardised
the mandatory deployment of smart meters in the Nether-
lands [15], leading to a deployment deadlock. This dead-
lock stems from the assumption that smart metering is
necessarily privacy invasive and that a balance needs to
be struck between privacy and the social utility of fine-
grained billing. Our work refutes this assumption: we
demonstrate an architecture that guarantees privacy and
high integrity for a very broad set of smart-metering and
billing applications.

Our Contribution. We propose a set of protocols
amongst a provider, a user agent and a simple tamper-
evident meter. The meter outputs certified readings of
measurements and gives them to the user, either directly
or through a wide area network secure channel. For
billing, the user combines those readings with a certified
tariff policy, to produce a final bill. The bill is then trans-
mitted to the provider alongside a zero-knowledge proof
that ensures the calculation to be correct and leaks no ad-
ditional information. Complex non-linear tariff policies
can be applied over individual meter readings or arbitrary
periods of time (i.e. per day, per week).

Other calculations can also be performed and certified



to support forecasting, profiling, settlement, or fraud de-
tection. Complex calculations are enabled by our scheme
for applying non-linear functions as well as look-ups to
certified readings, with efficient zero-knowledge proofs
based on re-randomizable signatures.

The need for certifying meter readings is the only
modification necessary to the meters. Users can delegate
the calculation of their bill or other computations to any
device or service they trust without compromising the in-
tegrity of the scheme. Our key aim is for users to be able
to perform all privacy friendly operations within a web-
browser, keeping their experience of interacting on-line
with their provider unchanged.

Variants of the scheme eliminate covert channels and
ensure privacy even if the meter actively attempts to
leak information to the provider. On the other hand,
when a simple tariff policy is applied, we can construct
a very efficient protocol for billing that requires no zero-
knowledge proofs and is particularly well suited for time-
of-use billing.

Although no other information needs to be leaked for
billing purposes, we allow individual or aggregate meter
readings to be disclosed according to a privacy policy,
in order to facilitate further smart-grid functions such as
abuse prevention or load prediction.

2 Related Work

The damage that smart meters can cause to users’ pri-
vacy has previously been studied both from a techni-
cal [28, 30] and a legal perspective [12, 34]. These works
propose enforcement of privacy properties based on or-
ganizational means, codes of conduct and regulations,
subject to current legislation. These works assume that
billing inevitably requires the sharing of detailed meter
readings.

Little work exists on the design of technical solutions
to protect privacy in the smart grid. Wagner et al. [40]
propose a privacy-aware framework for the smart grid
based on semantic web technologies. Garcia and Ja-
cobs [21] design a multiparty computation protocol that
allows a set of users (those living in the same neighbour-
hood) to compute the sum of their consumption without
disclosing their individual consumption. The NIST pri-
vacy subgroup [38] suggests anonymizing traces of read-
ings, as proposed by Efthymiou et al. [18], but also warns
of the ease of re-identification. Molina et al. [32] high-
light the private information that current meters leak, and
sketch a protocol that could use zero-knowledge proofs
to achieve privacy in metering.

Some work focuses on more general aspects of smart
grid security. Anderson and Fuloria [1] analyze the secu-
rity economics of electricity metering. In addition to pri-
vacy issues, they discuss pricing policies, the behavioural

economics needed to understand how smart meters re-
duce electricity usage, and the conflict of interests among
the different entities. McLaughlin et al. [31] analyze se-
curity of smart grids and conclude that they introduce
new vulnerabilities that ease electricity theft. The design
of algorithms that schedule energy consumption to re-
duce costs has also been addressed [24]. Proposals to en-
hance the security of the smart grid infrastructure include
Fatemieh et al. [19]. No complete and thorough solution
exists for computing privately individual bills when com-
plex time-of-use tariffs are applied, or perform general
private computations needed to run a modern grid.

Smart-metering is a special case of metering. LeMay
et al. propose an architecture for attested metering [27]
based on calculations performed on trusted hardware.
Our protocol follows an approach similar to the one de-
scribed in [3, 16] for the design of a privacy-friendly
electronic toll pricing system. Whereas Balasch et al.
use ‘spot checks’ to ensure the correctness of the calcu-
lation, we use simple tamper evident meters. This intro-
duces no additional trust assumptions as current smart-
grid proposals already rely on tamper-resistant meters.
We extend their paradigm of proving some aspects of
a metering system using cryptography by providing full
end-to-end verifiability for computations.

Troncoso et al. [39] propose an architecture in which
secure meters are used to calculate final bills for pay-
as-you-drive insurance. Although this architecture could
be used in our secure metering setting, it has drawbacks.
Meters are larger and more complex than in our scheme,
making them more expensive and their independent cer-
tification by metrological authorities harder. Changing
complex tariff structures would require remote upgrade
facilities or physical inspection, which is not desirable
for electricity meters (the aim of smart-grids is to limit
physical inspections). End-to-end verifiability is lim-
ited as the integrity of the bill depends on the correct
functioning of the software performing the calculation.
Different parties cannot rely on the same set of certi-
fied readings to bill customers for different usages. Most
importantly, the black box model might misalign incen-
tives [2]: meters are provided by utilities that have no
incentive to invest in high quality privacy for their cus-
tomers. They are regulated by metrological authorities
that have no established competence in mandating pri-
vacy features?.
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Figure 1: Interactions between parties.

3 Design Goals & Rationale

We propose a protocol to preserve user privacy in smart
metering applications that is flexible enough to be ap-
plied in a number of settings including electricity, water
and gas metering. Our protocol guarantees the following
security properties. First integrity: the utility provider is
assured that the user reports the correct results of calcu-
lations. Second privacy: the provider does not learn any
information but the result of computations. For the case
of billing, the provider is ensured the correct fee is calcu-
lated based on the actual readings and time-of-use tariffs,
without learning any fine grained readings. Finally, the
provider cannot claim that a user must pay an incorrect
fee.

The aim of our protocols is to keep meters extremely
simple and to rely on cryptographic calculations outside
the tamper-evident part of the meter for the integrity or
specific calculations like billing. Meters need to be cheap
and as a result have limited connectivity and bandwidth.
They offer only a very limited user-interface that can-
not deliver information about energy usage, efficiency
advice, or detailed billing. Our protocols have been de-
signed to impose a small computational overhead on me-
ters, and a negligible communication overhead — both of
which should be achievable without any additional hard-
ware.

Once meter readings are certified and output from the
meter, our protocols provide flexibility about where cal-

2For example, the UK SI 2006 No. 1679 “The Measuring Instru-
ments (Active Electrical Energy Meters) Regulations 2006” sets out the
regulatory framework for certifying meters. The UK National Mea-
surement Office certifies metrological units.

culations are performed without compromising integrity.
This flexibility means that devices and software perform-
ing the actual billing can evolve over time while the
meters remain the same. In particular additional un-
foreseen computations on certified readings can be per-
formed without changing and re-certifying meters.

Figure 1 illustrates a key use case we would like to
support: meter readings are certified by the meter, en-
crypted using a local symmetric key and uploaded to
remote servers using a wide-area network. A customer
simply uses a web-browser to connect to their supplier’s
site, at which point the meter readings are downloaded
and decrypted with the key. Privacy-friendly calculations
are performed in the browser, along with the proofs they
are correct, for billing, settlement, fraud detection and
profiling. The results and proofs are then relayed back to
the provider for verification and further processing. The
client side web-application can make further use of the
meter readings to generate efficiency reports and a rich
user interface based on the actual energy consumption
of the user. The provider never learns the detailed read-
ings, yet is able to provide a rich user experience, as well
as compute highly reliable results on readings to support
billing and other processes.

Alternative user agents for computations could include
smart phones, standalone software clients, as well as
third party service providers trusted by the users. In all
those cases, as above, certified bills or other computa-
tions can be proved correct, ensuring high integrity.

System Model. Without loss of generality we will de-
scribe our protocols in terms of billings, where certified
fine-grained readings and certified time-of-use tariffs are
used to calculate how much money a customer owes an
electricity supplier for some period of consumption.

We describe our protocol in an abstract setting that
comprises three parties, as illustrated in Figure 1: a
tamper-resistant meter M that outputs consumption data
cons and related information other; a service provider
P that establishes a pricing policy T and that, at each
billing period, requests the user to pay the fee fee cor-
responding to her total consumption; finally a user U
that receives consumption readings from meter M and
pays a fee to provider P. The pricing policy T
(cons, other) — price is a public function that takes
in consumption data cons along with other information
other (e.g., the time of consumption) and outputs a price.
The fee is computed by adding the prices corresponding
to the total consumption in a billing period, i.e. if n is the
number of readings, fee = Z?:l price;. Pricing policies
can also be applied to aggregates of readings, to charge a
tariff as a function of consumption per day or per week.

The basic operation of the system is as follows: the
provider P sends the user U a pricing policy Y. During



a billing period, the meter M outputs consumption read-
ings cons along with other information other that influ-
ences the cost. This output is collected by the user U who
computes, on a device or service they trust, the total fee
and sends it to the provider P. The user U also produces
and sends a proof that the fee has been correctly com-
puted using the pricing policy Y and all the consumption
measurements output by the meter M.

We present some example pricing policies that are
fairly generic as well as efficient: a Linear Policy sets
a cost per unit of consumption (for example, how much
each unit of electricity costs at different times); a Cu-
mulative Policy determines the price to be paid as a set
of different linear functions determined by the amount
consumed. The latter mechanism allows the expression
of complex, non-linear pricing policies, such as impos-
ing different rates per unit of electricity before and after
a certain consumption threshold. Any policy can be ap-
plied for any time interval, i.e. per day, week, month, and
policies can be composed readily without leaking addi-
tional information.

4 Preliminaries

Signature Schemes. A signature scheme consists of
the algorithms (Keygen, Sign, Verify). Keygen(1*) out-
puts a key pair (sk, pk). Sign(sk, m) outputs a signature
s on message m. Verify(pk, s, m) outputs accept if s is
a valid signature on m and reject otherwise. This defi-
nition can be extended to support multi-block messages
m = {my,..., m,}. Existential unforgeability [22] re-
quires that no probabilistic polynomial time (p.p.t.) ad-
versary should be able to output a message-signature pair
(s, m) unless he has previously obtained a signature on
m.

Commitment schemes. A non-interactive commit-
ment scheme consists of the algorithms ComSetup,
Commit and Open. ComSetup(1*) generates
the parameters of the commitment scheme par,.
Commit(par.,z) outputs a commitment ¢, to
and auxiliary information open,. A commitment is
opened by revealing (x, open,,) and checking whether
Open(pare, ¢z, x, open,) outputs accept. The hiding
property ensures that a commitment ¢, to x does not
reveal any information about x, whereas the binding
property ensures that ¢, cannot be opened to another
value z’.

Our fast protocols use homomorphic commitment
schemes extensively. A commitment scheme is said to
be additively homomorphic if, given two commitments
¢y, and c;, with openings (x1, open, ) and (x2, open,,)
respectively, there exists an operation ® such that, if

C = Czy @ Cyy, then Open(parc,c,xl + T2, openg, +
open,,) outputs accept. Additionally, we require a
commitment scheme that also provides an operation ®
between a commitment c,;, and a value x3 such that, if
¢ = ¢z, ® x3, then Open(par, ¢, 1 X T2, open,,, X )
outputs accept.

For the purposes of proving security, we employ
a trapdoor commitment scheme, in which algorithm
ComSetup(1*) generates par. and a trapdoor td. Given
a commitment ¢ with opening (z1, open,, ) and a value
T2, the trapdoor td allows finding open,,, such that algo-
rithm Open(par, ¢, r2, open,, ) outputs accept.

Proofs of Knowledge. A zero-knowledge proof of
knowledge [5] is a two-party protocol between a prover
and a verifier. The prover demonstrates to the verifier
her knowledge of some secret input (witness) that fulfills
some statement without disclosing this input to the ver-
ifier. The protocol should fulfill two properties. First,
it should be a proof of knowledge, i.e., a prover with-
out knowledge of the secret input convinces the veri-
fier with negligible probability. Second, it should be
zero-knowledge, i.e., the verifier learns nothing but the
truth of the statement. Witness indistinguishability is a
weaker property that requires that the proof does not re-
veal which witness (among all possible witnesses) was
used by the prover.

We use several existing results to prove statements
about discrete logarithms: proof of knowledge of a dis-
crete logarithm [37]; proof of knowledge of the equality
of some element in different representations [13]; proof
with interval checks [33], range proof [8] and proof of
the disjunction or conjunction of any two of the previ-
ous [14]. These results are often given in the form of
Y-protocols but they can be turned into non-interactive
zero-knowledge arguments in the random oracle model
via the Fiat-Shamir heuristic [20].

When referring to the proofs above, we follow the
notation introduced by Camenisch and Stadler [10] for
various proofs of knowledge of discrete logarithms and
proofs of the validity of statements about discrete loga-
rithms. NIPK{(c, 8,0) : 4y = go®91° A§ = Go%1° A
A < «a < B} denotes a “zero-knowledge Proof of
Knowledge of integers o, [, and 6 such that y =
90%91°, § = Go®Gi° and A < o < B holds”, where
Y, 90,91, Y, 9o, g1 are elements of some groups G =
(go) = (1) and G = (go) = (¢1) that have the same
order. The convention is that letters in the parenthesis, in
this example «, 3, and J, denote quantities whose knowl-
edge is being proven, while all other values are known to
the verifier. We denote a non-interactive proof of signa-
ture possession as NIPK{(z, s;) : Verify(pk,x,s,) =
accept}.



5 Construction

Intuition Behind Our Construction. We consider a
setting with the entities presented in Section 3, a meter
M, a user U and a provider P. After M is installed at U’s
side, no communication between M and P is possible.3
Consequently, P communicates with U to bill U’s con-
sumption, and, if permitted by U, to learn consumption
data.

Every entity computes a key pair of a signature
scheme, stores the secret key and reveals the public key
to the other entities. P also computes the parameters of a
commitment scheme and reveals them to U and to M.

At the initialization phase, P chooses a pricing pol-
icy T : (cons, other) — price that maps consumption
values to prices. The variable other denotes any other
parameter that influences the price to be paid, e.g. time
of day. The policy T is signed and sent to U. We note
that P can update the policy later on by sending a new
signed policy to U.

During a billing period, M obtains consumption val-
ues cons and outputs tuples (d, cons, other), where d is
a counter initialized at O that is incremented each time
M outputs a new tuple. These tuples are signed as fol-
lows. First, M commits to cons and to other, and then
computes signatures sc on the commitments and on d. U
is given the message-signature pairs and the openings of
the commitments.

At the end of a billing period, U stores the signed pol-
icy given by P and a set of tuples (d, cons, other) signed
by M. Using these signatures, U is able to reveal the total
fee fee to P and prove that fee is correct without disclos-
ing any information about the tuples (cons, other). U
only reveals to P the signatures sc by M on the commit-
ments to cons and other. For each signature, U com-
putes:

1. a commitment to the price price to be paid accord-
ingto T;

2. a non-interactive zero-knowledge proof 7 that she
(a) knows the openings of the signed commitments,
(b) knows the opening of the commitment to the
price, and (c) possesses a signature computed by P
on (cons, other, price) that states that price is the
price to be paid for (cons, other).

Additionally, U aggregates all the openings of the price
commitments to obtain an opening open ., to the total
fee. U creates and signs a payment message that contains
fee, open fee and, for each signature sc, the commitment
to the price and the corresponding proof 7.

3The meter here abstracts the metrological unit producing readings.
In practice functions of the meter that have no access to readings can
communicate with the Provider freely.

Upon receiving the payment message, P verifies the
signature by U, and the signatures by M on the com-
mitments to (cons, other) and on d. P also verifies the
proofs 7. P then uses the homomorphic property of the
commitment scheme to aggregate all the commitments to
the prices and get a commitment to fee. Finally P checks
whether (fee, open,, ) is a valid opening for it before ac-
cepting the reported bill. The counter d is used by P to
check that U reports all the signatures output by M.

P can also ask U to reveal some (cons, other) tuples.
If U agrees to P learning this information, U reveals to
P the openings of some commitments to (cons, other).

Security. In Appendix 11 we describe the secu-
rity model we employ, the ideal-world/real-world
paradigm [11], and we propose an ideal functionality
Fpsm, which defines the security properties for privacy-
preserving smart metering. Any construction that real-
izes Fpsm ensures that U pays the right fee for the con-
sumption data output by M, i.e., that the fee is computed
following Y. It also ensures that, if M and P do not
collude, P only learns the fee paid, not the consump-
tion data cons nor the other information other used to
compute fee. Additionally, it ensures that a malicious
provider cannot claim that the fee that U must pay is dif-
ferent from the one computed following Y.

This protocol provides all the security properties re-
quired in Fpgy. P is only given the total fee, but he
is assured that the fee is correct in accordance with the
pricing policy T and the consumption values output by
M. U’s privacy relies on the hiding property of com-
mitments and on the zero-knowledge property of proofs.
P’s security rests on the binding property of the commit-
ment scheme and on the unforgeability of the signature
schemes employed by P and M. Additionally, P can-
not claim that U must pay a fee other than the one re-
ported, owing to the unforgeability property of U’s sig-
nature scheme. Finally, the binding property ensures that
U cannot reveal to P (cons, other) tuples different from
the ones committed to and signed by M.

5.1 Construction

In the following sections, we denote the signa-
ture schemes used by M, U and P as (Mkeygen,
Msign, Mverify), (Ukeygen, Usign, Uverify)  and
(Pkeygen, Psign, Pverify) respectively. H stands for a
collision-resistant hash function.

In the setup phase, M runs Mkeygen(1¥) to obtain a
key pair (skn, pky), U runs Ukeygen(1%) to get a key
pair (sky, pky) and P runs Pkeygen(1%) to get a key pair
(skp, pkp). Each party registers its public key with Frgg
and retrieves public keys from other parties by querying
Frec- P runs ComSetup(1¥) to get par, and a trapdoor



Protocol PSM

e Initialization. When P is activated with (policy, T), P
runs SignPolicy(skp, T) to get a signed policy Ts. P
sends Y5 to U. U runs VerifyPolicy(pkp, Ts) to get a bit
b. If b = 0, U rejects the policy. Otherwise U stores Y.

e Consumption. When M is activated with
(consume, cons, other), M increments a
counter dy; (initialized at zero) and runs
SignConsumption(skyr, pare, cons, other, dyp)
to obtain a signed consumption SC. M sends
(SC) to U. U increments a counter dy and runs
VerifyConsumption(pkys, pare, SC, dy) to obtain a
bit b. If b = 0, U rejects SC and sends P a message
indicating malfunctioning meter. Otherwise U appends
SC to atable T that stores all the consumptions.

e Payment. When P is activated with (payment),
P sends (payment) to U. Let N be the number
of (consume,...) messages received by U since the

previous message (payment) was received. U runs
Pay(sky, pare, Ts, T[dy — N dy]) to obtain a
payment message () and sends (Q) to P. P runs

VerifyPayment(pkys, kv, pkp, pare, @, dp) to obtain
(b, dl/)). If b = 0, P rejects the bill, otherwise the bill is
accepted dp = dj, is set.

e Reveal. When P is activated with (reveal,i), P
checks that ¢ € [0, dp] and sends (¢) to U. U runs
Reveal(sky, T, %) to get an opening message R and sends
(R) to P. P picks the payment message @ that contains %
and runs VerifyReveal(pky, pare, Q, R, 1) to get a bit b.
If b = 0, P sends (reject, @, R) to U, otherwise it sends
(accept) to U.

Figure 2: The concrete implementation of privacy-
friendly metering.

td, computes a proof 7 = NIPK{(¢d) : (pare,td) +
ComSetup(1¥)} and sends (par., ) to U and (par.) to
M. U verifies .

The outline of our concrete construction is presented
in Figure 2, and the functions called are detailed in Fig-
ure 3.

5.2 Policies

We detail here the computation of the signed policy T,
and how to prove that the price for a tuple (cons, other)
is computed in accordance with the right entry specified
in the policy Y. They differ depending on different types
of policies T. We provide details of two policies: a linear
policy that can be used to apply a different rate to each
measurement and a “cumulative” policy that allows the
application of a non-linear function to measurements in
order to calculate their contribution to the bill (see Fig-
ure 4). The linear policy implements the tariff policy for
smart-metering, where a different rate is applied per half-

(a) Two linear policies (b) Two cumulative policies
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Figure 4: (a) A linear policy specifies the rate per unit
consumption that is applied to determine the price to be
paid for each measurement. The rate can be selected
through information associated with the reading, like the
time of the day or the location of a vehicle (without re-
vealing this information). (b) A cumulative policy speci-
fies a rate per unit that is determined as a function of the
hidden consumption — allowing non linear functions to
be applied for pricing. Higher order polynomials can be
used to express pricing functions within intervals allow-
ing pricing functions that can be expressed as arbitrary
splines.

hour according to the policy a customer has subscribed
to. The cumulative policy illustrates the generality of the
scheme.

Three other policies considered are the discrete policy,
which looks up a tariff in a table, and the interval policy
which charges a fixed premium per different ranges of
consumption (see Appendix 14). These are special cases
of the cumulative policy or linear policy, with some effi-
ciently improvements, and are not discussed in detail. A
more generic construction for building and proving the
application of non-linear functions using splines is also
described. It is worth noting that all pricing policies can
be composed to express complex composite policies, e.g.
to apply a different non-linear policy to the total con-
sumption of each day, and subtracting from the final bill
a rebate of 10% if the total units of consumption exceeds
a threshold.

Linear Policy. A linear policy specifies the price per
unit consumption for different contexts. For instance, if
the policy says that the price per unit is 3 and your con-
sumption is 6 units, the price due is 18. Therefore, since
a linear policy specifies the price per unit of consump-
tion, it is given by T : other — price. The parame-
ter other denotes any variable that influences the price
per unit, e.g., the time interval in which the consumption
takes place.

To sign this policy, for ¢ = 1 to n, P runs



Cryptographic functions used by Protocol PSM
SignPolicy(skp, ). For each tuple (cons, other, price) € Y, compute sp = Psign(skp, (cons, other, price)).* Let Ts =
(cons;, other;, price;, sp;)I_; be the set of message-signature tuples. Output Y.

VerifyPolicy(pkp,Ts). For i@ = 1 to n, parse Ty as (cons;, other;, price;, sp;)* 4, and, for i =
Pverify(pkp, sp;, (cons;, other;, price;)). If any of the outputs is reject, output b = 0, else output b = 1.

1 to n, run

SignConsumption(sknp, pare, cons, other, dy).  Execute both (ccons, open,,,) = Commit(parc, cons) and (cother,
open yuper) = Commit(pare, other). Run sc = Msign(skn, (du; Ceonss Cothery) and output SC = (d, cons, open .o,
Ccons; Otherv OPEN 4ihers Cothers SC)'

VerifyConsumption(pkyy, parc, SC, dy). Parse message SC as (dn, cons, open ., g, Ccons, OtRET, OPEN 4y ers Cothers SC)-
Compute Open(pare, Ceons, CONS, 0pen .., ) and Open(pare, Cother, Other, open ,,.,.) and output b = 0 if any of them outputs
reject. Run Mverify(pky, s¢, (du, Ccons, Cother)) and output b = 0 if the output is reject. Otherwise output b = 1.
Pay(sky, pare, Ts,T). For each entry (dy, cons, 0pen g, Cconss OLher, 0Den oupors Cother, S€) € T, calculate price =

Y (cons, other), ran (cprice, 0PN i) = Commit(pare, price) and calculate a non-interactive witness-indistinguishable proof

71'15

NIPK{ (price, open CONS, OPEN 4y sy OLRET, ODEN oihery SD)

price?
(ccons, 0PEN o) = Commit(pare, cons) A (Cother, OPEN oiper) = Commit(pare, other) A

(Cprice, OPEN e ) = Commit(pare, price) A Pverify(pkp, sp, (cons, other, price)) = accept}.

Let N be the number of entries in 7". Compute the total fee fee = Zﬁvz 1 price; and add all the openings open,, = Zivz 1 0PEMprice
to get an opening to the commitment to the fee. Set a message p = (fee, open ., {sci, dn; ;s Ceons; s Cother s Cprice; » m}i\él)
Compute a signature® s, = Usign(sky, p) and set a payment message Q = (p, sp).

VerifyPayment(pkys, pkys, pkp, pare, @, dp). Parse Q as (p, sp) and run Uverify(pky;, sp, p). Output b = 0 if it rejects. Else
parse p as (fee, open s, {s¢i, di, Ccons; , Cothery s Cprice; » wi}ﬁvzl) and, for ¢ = 1 to NV, increment dp, run Mverify(pky;, sci, (dp,
Ceons; s Cother;)) and verify 7;. Output b = 0 if any of the signatures or the proofs is not correct. Add the commitments to the prices
c}ee = ®lN:1cp,.,-cei and execute Open(pare, c}ee,fee, openy,,). If the output is accept, set b = 1 and else b = 0. Output (b, dp).

Reveal(sky, T, ). Pick the tuple r = (i, cons, open other, open ,u,.,) in the entry (¢,...) € T, sign s, = Usign(sky,r)

and output R = (7, sr).

cons?

VerifyReveal(pkys, pare, @Q, R, j). Parse Q as (p, sp) and p as (fee, open ., {sci, dsi, ceons; s coth(i”,cpm@i,m}f\rzl). Pick the
tuple (sci, di, Ccons; » Cother; » Cprice; » i) such that d; = j. Parse Ras (r, s) and r as (i, cons, open .o, other, open ,up...). Run
algorithms Open(parec, ccons; , cONS, open and Open(pare, Cother,; , Other, open ,u,,,.). If both algorithms output accept,
output b = 1 and else b = 0.

cons )

Figure 3: Cryptographic functions called by Protocol PSM.

Psign(skp, (other;, price;)), and sets Y5 =

(other;, price;, sp;)"_,. To compute a proof 7, U uses
the commitments to the consumption c.,,s and to other
parameters Cohe included in sc, and commits to the to-
tal price price, ((Cprice,; 0PN ppice,) = Commit(pare,
price,)). U then computes a proof of possession of a
signature sp € Y5 on (other, price), a proof of equal-
ity between other and the values committed to in c,¢per,
and a proof that price, committed to in c,pice, €quals
price - cons:

NIPK{ (price,, open

price, » PTICE; CONS, OPEN cop; OheET,

ope/n/()the’r" sp) :

(ccons, opeN ooy, ) = Commit(pare, cons) A
(Cother> OPEN yiper) = Commit(parc, other) A
(cprice » openp”-mt) = Commit(pare, price,) A
Pverify(pkp, sp, (other, price)) = accept A

price, = price - cons}.

Cumulative Policy. A cumulative policy allows the
computation and proof in zero-knowledge of non linear
functions. It can be used to apply different rates accord-
ing to the hidden consumption, expressing rates getting
cheaper or more expensive as consumption rises.

To apply the cumulative policy, the consumption val-
ues domain is divided into intervals and each interval is
mapped to a rate per unit of consumption. The price
due is the definite integral of the policy Y over the in-
terval [0, cons]. For instance, let T be a policy as fol-
lows’: [0,3] — 2, (3,7] — 5, (7,00) — 8, and let your
consumption be 9. The price due is 3 X 2 4+ 4 x 5 +
2 x 8 = 42. Therefore, a cumulative policy is given by
T : (conSmin, CONSmax, F, other) — price, where it is

TThe parameter other is left unused, in this example, but can in
general be used to select the rate.



required that intervals defined by [consmin, CONSmaz] be
disjoint. F' is the definite integral of Y over the interval
[07 Consmin]-

To sign this policy, for ¢ = 1 to n, P runs
sp; = Psign(skp, (consmin,, cONSmaz,, Fi, other;,
price;)), and sets Yy = (conSmin,, CONSmaz;, Fis
other;, price;, sp;)?_;. In the previous example, the tu-
ples to be signed are (0,3,0,L,2), (3,7,6,L1,5) and
(7,max, 26, 1, 8) (max represents the maximum con-
sumption). To compute a proof 7, U uses the commit-
ments to the consumption c.,,s and to other parameters
Cother 1ncluded in sc, and commits to the price price,
((cprice, openpmet) Commit(par,, price,)) to be
paid, which equals price, = (cons — cons») X price+
F). Then U computes a proof of possession of a signa-
ture sp € Y5 on (ConSmin, CONSmaz, F, other, price), a
proof of equality between (other) and the value commit-
ted to in Cotper, @ proof that cons € [consmin, CONSmaz)
and a proof that price, = (cons— consmin) X price+ F"

NIPK{ (price,, open , CONS, OPEN, oo o, OLher, open ,ip o,

price,
price, CONSmin, CONSmaz, F, $p) :

(Ccons, OPEN ) = Commit(pare, cons) A
(Cother, ODEN oyer) = Commit(parc, other) A
(Cpricey s OPET price, ) = Commit(pare, price,) A
Pverify(pkp, sp, (consmin, consmaz, F, other,
price)) = accept A

cons € [coOnSmin, CONSmaz]| N

price; = (cons — consmin) X price + F'}.

Other Policies. Another possible NPOHCY.T is that de-
fined by a polynomial function » ;" ) a;z* over a com-
mutative ring R, which in our implementation is given
by the integers modulo a composite (see Section 6). The
price due is the evaluation of Y for x = cons.

Let n be the number of polynomials that define the
policy (e.g., each of them associated with a different
parameter other). To sign this policy, for ¢ = 1 to
n, P runs sp; = Psign(skp, (ani,-..,ao;, other;)),
and sets Ts = (ani,.-.,a0, other,sp;)?,. To
compute a proof w, U uses the commitments to the
consumption C.ons and to other parameters C,¢per in-
cluded in sc, and commits to the price price, ((cp,.icet,
open ,pic.,) = Commit(pare, price,)) to be paid, which
equals price, = Zf\io a;cons®. Then U computes
a proof of possession of a signature sp € Y, on
(an, ..., aq, other), aproof of equality between (other)
and the value committed to in c,¢er, and a proof that

. o N Q.
price, = Y i a;cons’:

NIPK{ (price;, open , CONS, OPEN 4y, OLRET,

price,
0PN gihers 5P)
(ccons, 0pEN o) = Commit(pare, cons) A
(Cother> OPEN yiper) = Commit(parc, other) A
(Cprice, » OPEM price,) = Commit(pare, price,) A

Pverify(pkp, sp, {(an, - .., ao, other)) = accept A

N
price, = E a;cons'}.
i=0

The combination of the polynomial policy and the cu-
mulative policy allows the evaluation and proof of arbi-
trary polynomial segments. Therefore complex policies
expressed as polynomial splines can be used for pricing
or any other calculation in zero-knowledge.

5.3 Fast-PSM for public linear policies

In the previous construction, the policy T consisted of
several formula that map consumption values to prices.
The formula that should be applied to a particular tuple
(cons, other) depends on the consumption cons, on the
other parameters other, or on both. Therefore, the for-
mula used to compute the fee needs to be hidden from
P, because otherwise P can learn some information on
(cons, other).

However, if the choice of formula depends on parame-
ters already known by P, then the formula used does not
need to be hidden. In this case, when Y consists of linear
formula of the form price = a; - cons + ay, we pro-
vide an efficient construction that avoids the use of non-
interactive zero-knowledge proofs®. This construction is
based on the use of a commitment scheme provided with
two operations ® and ©® (see Section 4) that allow the
computation of a commitment to the price, given a com-
mitment to the consumption value.

The protocol is described in Figure 5, and the func-
tions called are detailed in Figure 6.

The security of this scheme relies on the unforgeability
of the signature schemes and on the binding and hiding
properties of the commitment schemes. The policy iden-
tifier ¢d r is introduced to ensure that U and P employ the
policy published previously by P to compute and verify
the payment message.

5.4 Discussion

We discuss here possible optimizations of the scheme, as
well as modifications needed when it is applied to certain
settings or if an adversary corrupts more than one party.

8This is the case for time-of-use billing in smart-grids.



Protocol Fast-PSM

e Initialization. When P is activated with (policy, T),
where Y is a linear policy, P publishes a unique policy
identifier ¢dy and sends (idy, Y) to U.

e Consumption. Works as in the Protocol PSM.

e Payment. When P is activated with (payment),
P sends (payment) to U. Let N be the number
of (consume,...) messages received by U since the
previous message (payment) was received. U runs
EffPay(sky, pare, idy, T, T[dy — N : dy]) to ob-
tain a payment message ) and sends (Q) to P. P runs
EffVerifyPayment(pky, pky, pare, idr, @, dp) to ob-
tain (b, dj,). If b = 0, P rejects the payment, and other-
wise accepts it and sets dp = dj;.

e Reveal. Works as in the Protocol PSM.

Figure 5: The fast protocol for billing in smart-grids.

Efficient functions for Protocol Fast-PSM

e EffPay(skuy, pare,idr, Y, T). For each table entry (dy;,
CONS, OPEN ¢y Ceons, OLRET, OPEN Lipors Cother, SC) €
T, calculate price = a1 - cons + ao and open,,.;.. =
open .,ns - @1. Let N be the number of entries in T
Compute the total fee fee = Zf\il price; and add
the openings open = -\ open . to get an
openigg togthe Izzorr{:rfitment%_tﬁe ?ee. Wéceetl a pa%lment
message p = (idr, fee, openg,., {sci, dm;, Ccons, ,
cothe”}fil). Compute a signature’ s, = Usign(sky,
p) and set a payment message Q = (p, sp).

o EffVerifyPayment(pky, pkyy, pare, idr, Q, dp). Parse
Q as (p, sp) and run Uverify(pkyy, sp, p). Output b = 0
if it rejects. Otherwise parse p as (idr’, fee, OpeN e,
{sci, di, Ccons;» Cother; Y11, check that idy = idy’
and, for ¢ = 1to N, increment dp and run Mverify(pky;,
s¢q, (dp, Ccons; s Cother;))-  Output b = 0 if any
of the signatures or the proofs is not correct. Com-
pute commitments to the prices Cprice; = (cw"si ®
a1) ® Commit(pare,ap,0), add them by computing
Clee = ®;_1Cprice; and execute Open(pare, Cfee, fee,
openy,, ). If the output is accept, set b = 1 else b = 0.
Output (b, dp).

Figure 6: Efficient pay & verify functions.

Optimizations. In the construction depicted above, M
commits separately to cons and to other. This is done in
order to allow U to selectively disclose either value to P
in the reveal phase. However, in applications where both
parameters are always disclosed together or where the re-
veal phase never takes place, M can commit to both val-
ues in a single commitment (see the commitment scheme
we employ in Section 12) in order to improve efficiency.

Additionally, in the construction above, for each tu-

ple (cons, other) output by M, U computes a commit-
ment to the price to be paid and a proof that this price
is correct. To prove that the total fee is the sum of all
the committed prices, U provides P with the sum of the
openings of all the commitments. Computing a commit-
ment and a proof for each tuple (cons, other) is done
primarily to allow U to start the computation of the pay-
ment from the beginning of the billing period, when the
total fee is still unknown. Nevertheless, in applications
in which the computation of the payment message can be
delayed until all the tuples (cons, other) are known by
U, it is possible to avoid the computation of the commit-
ments to prices and of one proof of knowledge per tuple.
Instead, it suffices to compute only one zero-knowledge
proof of knowledge per payment message. This proof
should prove that the sum of the prices to be paid for
each (cons, other) tuple equals the total fee.

Modifications. We note that the scheme described
above only works when P knows the amount of tuples
that M outputs at each billing period. Otherwise, U can
report fewer tuples in order to pay less. This is suitable
in applications like electricity metering, where M outputs
(cons, other) tuples periodically. However, this may not
be the case in other applications. To solve this problem,
one possibility is to require M to output, at the end of
the billing period, a signature on the number of tuples
that were output at that period. This signature must be
reported by U to P.

We also note that we prove the construction secure
when only one party is corrupted (see Section 13), and
thus not when two parties collude against the remaining
one. A collusion between U and P against M is mean-
ingless, and a collusion between M and U against P is
avoided by the fact that we assume meters to be tamper-
resistant. A collusion between M and P against U is pos-
sible if both parties were already corrupted at the setup
phase (later on, no communication from the meter to
the provider is allowed). Such collusion makes sense in
practical applications, in which P is likely to provide the
meters and thus can manipulate them at the setup phase.
Our construction fails to protect U against such collu-
sion. For example, P can choose the seed of the pseu-
dorandom number generator of M in order to know later
the openings of the commitments computed by M.

Nevertheless, the construction can be modified in or-
der to protect U against such a collusion, at the cost
of proving possession of more signatures. In the mod-
ified construction, M outputs signatures on the tuples
(d, cons, other) and does not compute any commitment.
Then, instead of revealing the signature to P, U commits
to (cons, other) and computes a non-interactive zero-
knowledge proof of possession of a signature by M on
messages (d, cons, other) (d is disclosed to P). This



proof is combined with the proof of possession of a sig-
nature on (cons, other, price) given in the signed policy
Y. In this modified construction, the zero-knowledge
property of proofs and the hiding property of commit-
ments (computed with randomness chosen by U), ensure
no information is revealed to P.

Finally, we note that in the construction described
above, the pricing policy T is sent by P to U at the ini-
tialization phase and is not updated later. To update the
policy and ensure that U only employs the new policy to
compute the payment message, one possibility is that P
generates a new key pair each time a new policy needs
to be signed. Therefore, since a different public key of P
will be used to verify the payment message, U must use
the new policy.

6 Implementation

We propose an efficient instantiation for the commitment
scheme, for the signature schemes used by M, U and P,
and for the non-interactive proofs of knowledge that are
used in the construction described in Section 5.

Commitment Scheme. We choose the integer com-
mitment scheme proposed by Groth [23].

Signature Schemes. The signature schemes of M and
U can be instantiated with any existentially unforge-
able signature scheme. For P’s signature scheme, we
choose the signature scheme proposed by Camenisch and
Lysyanskaya [9].

Non-Interactive Zero-Knowledge Proof. We de-
scribe the basic buildings blocks that compose the non-
interactive zero-knowledge proofs utilized in our con-
struction in Section 5. Such non-interactive zero-
knowledge proofs consist of the conjunction of some of
those building blocks. The basic building blocks are a
non-interactive zero-knowledge proof of possession of a
Camenisch-Lysyanskaya signature, a proof that a com-
mitted value is the product of two committed values and
a proof that a committed value lies in an interval.

To prove possession of a Camenisch-Lysyanskaya sig-
nature, we employ the proof described in [17]. To prove
that a message mg committed to in ¢, = g7 "*hP"ms
is the product of two messages m; and msy committed to
in ¢y, = gy h°P*" ™1 and ¢, = g7 ?hP"m2 respec-
tively, the following proof can be used:

NIPK{ (m1, open,, ,ma, open,,,,ms, open .,
m2 - 0pen,, ) : Cmy = g7 ROP ML A
Cmy = g1 PR A ey = g R A

L= cp2(1/g1)™2 (1/h)"2 0 ma ),
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To prove that a committed value x lies in an interval
[a, b], it is necessary to prove that z—a > 0 and b—z > 0.
We employ the non-interactive zero-knowledge proof by
Groth [23] to prove that an integer m > 0.

7 Security Evaluation

In Appendix 13 we prove that protocol PSM realizes the
ideal functionality Fpgn. We do not consider the cases
where all the parties are honest, where all the parties are
dishonest or where the user U and the provider P are dis-
honest because they do not have practical interest. The
case in which both U and M are dishonest is not possible
because we assume tamper-resistant meters. To prove se-
curity when P and M are dishonest, we need to modify
protocol PSM as described in Section 5.4.

When P is dishonest, we claim and prove indistin-
guishability between real and ideal world under the un-
forgeability of the signature schemes (Mkeygen, Msign,
Mverify) and (Ukeygen, Usign, Uverify), under the hid-
ing property of the commitment scheme and the ex-
tractability and witness-indistinguishability of proofs of
knowledge. The proof of this claim ensures that P is not
able to get any information from U except the total fee
and the number of consumption readings, and that P is
not able to claim that U must pay a fee different from the
one calculated on input of the consumption readings and
the pricing policy.

When U is dishonest, we prove indistinguishability
under the unforgeability of the signature schemes
(Mkeygen, Msign, Mverify)  and  (Pkeygen, Psign,
Pverify), under the binding property of the commitment
scheme and under the extractability and zero-knowledge
property of proofs of knowledge. This proof ensures that
the total fee calculated by U is correct.

8 Performance Evaluation

We implemented all the functionality required to gener-
ate keys, policies, prove bills and verify bills in C++. The
system spans 8200 lines of code, including 1000 lines
for interfacing with big number libraries and 800 lines to
implement fast exponentiation using pre-computation ta-
bles. The proof libraries provide generic support for ex-
pressing computations on certified inputs, generate and
verify proofs of the correctness of their results. The
smart-metering specific code spans about 250 lines of
code — including measurement code.

The reference platform for our measurements is an In-
tel Xeon E5440 running at 2.83GHz (8 cores split over 2
processors) with 32GB Ram running a 64 Bit Windows
Server Enterprise operating system. All our experiments



Generic Protocol 1024 bits 2048 bits

(per reading) ticks sec ! ticks sec™ !
Gen. policy 147522 (97.0579) 489754  (29.2355)
Prove bill 162816  (87.9409) 586586  (24.4093)
Verify bill 344703  (41.5377) 1270456  (11.2701)

Table 1: Generic protocol timings. Policy generation per
line of policy (amortised over 100 lines). Proof and ver-
ification per reading (amortised and averaged over 1000
readings).

Fast Protocol 1024 bits 2048 bits

(per reading) ticks sec™ ! ticks sec™ !
Prove bill 48 ticks  (298295) 59ticks  (242681)
Verify bill 158 ticks  (90621.4) 504 ticks  (28409.1)

Table 2: Fast protocol timings. Proof and verification per
reading (amortised and averaged over 1000 readings).
Policy packaging requires no cryptography.

were performed on a single core executing 14318180
ticks/s. The reference platform is typical of the systems
we expect verifiers to use, but our tick count should be
stable over any 64 bit amd64 platform that could be used
to prove bills.

Two reference billing problems were considered:

e Generic Protocol. A user needs to certify 1000
meter readings, corresponding to approximately 3
weeks of electricity measurements, using a complex
cumulative pricing policy. A 100 line policy is certi-
fied and the verifier needs to verify the resulting bill.
This illustrates a complex billing scenario where a
non-linear policy is applied at the finest granularity
of readings. For each reading the user needs to com-
pute a zero-knowledge proof of several statements:
possession of a CL signature, range proof including
proving twice the decomposition of integers into 3
sums of squares, proof that a value is the result of
multiplying two committed values and proofs of lin-
ear operations.

Fast Protocol. A user needs to certify 1000 meter
readings, corresponding to approximately 3 weeks
of electricity measurements, by applying a linear
public policy. This corresponds to the smart-grid
billing problem, and we apply our fast protocol for
the proof and verification. In this case the user only
uses the homomorphisms of commitments to calcu-
late the final bill.

For both settings all timings are calculated over 1000
readings and averaged. Two reference security parame-
ters are used, namely a 1024 bit and 2048 bit RSA mod-
ulus (all other security parameters are the same as rec-
ommended in Appendix 12.)

Table 1 illustrates the time required to create policies,
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Proof size 1024 bits 2048 bits
(for 1000 readings) KBytes KBytes
Generic Protocol ~ 6586 Kb ~ 10586 Kb
Fast Protocol ~ 125 Kb ~ 250 Kb
Fast ECC Protocol

(Estimate) ~ 20 Kb

Table 3: Size in kilo bytes required to transmit the proof
associated with 1000 meter readings in (a) the generic
protocol (b) the fast protocol and (c) an elliptic curve im-
plementation of the fast protocol (estimate for 160 bit
curve).

prove and verify bills for the generic protocol setting,
while Table 2 illustrates the fast protocol setting. Table 3
describes the sizes of the bill and its proof for different
settings.

Verifying bills is about twice as slow as generat-
ing bills in the generic protocol, due to aggressive pre-
computations that are not available to the verifier (the
cost of pre-computations is folded into the timing mea-
surements). In real terms it takes from a few seconds to
a few minutes to calculate and verify 3 weeks of billing
data depending on the security parameter.

The fast protocol is extremely efficient: generating
bill proofs requires a few tens of ticks since it does not
involve any exponentiation. Verifying bills is also ex-
tremely fast as the exponentiations only involve very
small exponents. In real terms, our reference platform
could verify the 3 weekly bills of 120 households in just
one second if all 8 cores were involved in the verification.
A single core could verify 3 weeks of readings from ev-
ery household equipped with a smart meter in the UK (27
million) in about 12 days, even using the slowest, highest
security 2048 bit parameter.

In the generic protocol setting, over 90% of the time is
spent in the modular multiplication libraries, which are in
turn called by the modular exponentiation libraries. Any
performance improvement in these will have a dramatic
impact on the performance of the protocols. Similarly, if
proof size was a crucial factor, an elliptic curve could be
used to implement the fast protocol to reduce bill sizes
to about 20 KBytes. Since these proofs are transmitted
over commodity broadband networks, so we did not im-
plement the techniques for minimizing their size.

Minimal meter overhead. We optimized our proto-
cols to impose a minimal communication, storage and
computation overhead on meters.

Assuming a non privacy preserving meter outputs
readings in clear in batches with a single signature over
the batch, we can augment it to be privacy preserving
with no communication overhead. The meter computes
commitments to the readings, using opening values de-
rived from a pseudo-random stream keyed with a sym-



metric key shared with the user. The commitments are
signed, but not transmitted. The meter transmits only
readings (possibly encrypted if a WAN is to be used) and
a single batch signature, leading to no overhead. The user
reconstruct the commitments using the readings and the
derived opening values, for use in further computations
and proofs.

The only additional storage required in the meter is a
symmetric key shared with the user (i.e. about 128 to 160
bytes). Computations of the commitments and signature
are done on the fly, updating the state of a hash function,
and discarding the commitments once they are part of the
signature.

We did not explicitly evaluate the cryptographic load
of the meter. It consists of performing one commitment
(one short and one long modular exponentiation with
fixed generators) per reading per 15 or 30 minutes, and
one signature on a set of commitments per billing period.
This is well within the capabilities of cheap, off-the-
shelf, tamper resistant smart-cards or microcontrollers as
documented in [7].

Web-deployment evaluation. The design rational for
privacy preserving metering includes deployment of the
schemes using web technologies, as illustrated in Fig-
ure 1. We implemented a billing back-end using off-
the-shelf web technologies: the meter registers encrypted
readings with a server in the cloud. Users can then ac-
cess a billing portal, running on an ASP.NET server, that
delivers an HTMP page with an embedded Silverlight
4 control to perform the privacy preserving computa-
tions for billing. The control runs on the web-client: it
downloads and decrypts the readings and the tariff pol-
icy, computes and proves the bill, and uploads it for veri-
fication back to the server. The decrypted readings never
leave the client side Silverlight 4 control.

To evaluate the performance of the web-deployment
we used an Intel Core 2 Duo P9600 CPU, running at
2.66GHz, with 4GB RAM, running the 32 bit Windows
7 OS. The machine was running both the client (Inter-
net Explorer 8 Browser with Silverlight 4) and the server
software (bundled with Visual Studio 2010). The .NET
4 and Silverlight 4 big number library was used to im-
plement both the proofs and verification of the Fast-PSM
scheme in 641 lines of C# code.

The performance of computing, proving and verifying
bills within the browser and on the server side is entirely
consistent with responsiveness requirements of web ap-
plications. Proving the bill for 7 days (336 readings) in
the Silverlight 4 control took 190ms, while verifying the
bill took on the server side 107ms. It is clear that the
web-platform big number performance on the client lags
behind the server side libraries. Yet, proving the bill for
a few months of readings takes only a couple of seconds,
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demonstrating that our scheme is practical, and can be
deployed within current client side web-applications.

9 Deployment & integration

Smart metering provides a portfolio of functionality, one
of which is fine-grained billing of energy usage. A fully
fledged smart meter is a complex device, with a full CPU,
display, local or wide area network telecommunications
and remote upgrade capabilities. According to the PIA
performed by NIST, time-of-use billing calculations re-
quire detailed readings. Other functions, such as load
forecasting, efficiency analysis or demand-response can
be performed through private calculations on certified
readings or by pushing data to customers or using sam-
pled, anonymized or aggregated readings volunteered by
users.

Meters. Our scheme requires only a small sub-system
to be adapted and secured, the metrological unit, to en-
sure the correctness of billing. Current metrological units
have to be augmented with the ability to certify readings
through commitments and signatures. We chose not to
rely on the meters further to minimise the requirements
for storage, communications, upgradability, and generic
computations. This keeps the meter Trusted Computing
Base small and as a result cheap and amenable to veri-
fication [29]. As argued by Garcia and Jacobs [21], in-
dependently verified tamper-resistant meters are also re-
quired for consumer protection.

In our scheme, each meter stores a signature key and
signs the readings it outputs. This is a low-value key,
unique to the meter; compromising it does not affect the
integrity of other meters. No other computation is per-
formed within the tamper-resistant enclosure, no mobile
code needs to be executed within and no updates are nec-
essary, making it cheap to manufacture and easy to for-
mally verify.

Our system model differs from ongoing smart grid
projects as we restrict the unidirectional communication
from the metering core M and the provider P to pro-
tect privacy. A multi-level security policy [4] is defined
to protect confidentiality: raw readings in the meter M
are classified as “high” and the provider P systems are
cleared only for “low” information, i.e. the final billing
information. It is safe for information to flow “up” from
the provider P to the meter M, for example to push up-
dates or commands. Any flow of information from the
meter M to the provider P has to be mediated and de-
classified through the user U running our protocols to
ensure it leaks only the final bill and, optionally, other
information according to the policy.

Functions of the smart meter not related to consump-



tion measurements and billing can be performed outside
the tamper-evident metrological unit. Proposals for mod-
ern meters include provisions for updating policies, mea-
suring tamper resistance parameters, testing whether a
meter is on-line, switching electricity supply to pre-paid
mode, and offering a rich user interface displaying cur-
rent energy prices. All these functions can be performed
as long as they do not interfere with the integrity of the
metrological unit that certifies reading, and cannot access
raw meter readings directly.

Private Computations. Computations derived from
certified readings and policies are guaranteed to be cor-
rect through our cryptographic scheme. This allows cal-
culations to be done outside the tamper-evident enclo-
sure, on commodity hardware, mobile devices or on-line
services.

A variety of tariff policies can be applied to the certi-
fied readings to calculate the final bill without changes to
the meter. The tariffs can vary over time, even at a high
frequency, and their structure can change as long as the
software producing the bill can be updated. In all cases
the integrity of the billing is guaranteed by the verifica-
tion process. This property is similar to the “software
independence” [36] that is sought in electronic election
protocols.

Privacy relies on the platform and software process-
ing the certified reading to produce the bill without leak-
ing information. The user is free to choose any software
package to produce bills on any platform. They can del-
egate the calculation to any third party entity they trust
with their data, use any vendors product, or even write
their own. Users can switch platform at will. This is in
stark contrast to a privacy-invasive architecture where the
user has to trust the utility provider with the safekeeping
of their consumption data, or even a privacy-friendly ar-
chitecture that performs calculations in a complex smart
meter provided by a fixed third party (often the provider).
The flexibility the user has to freely choose any platform
to process the bill and protect their own privacy provides
the right alignment of incentives to maintain privacy.

We implemented and evaluated a web-platform de-
ployment setting, where the private computations are
performed on a web-client using a downloaded control.
Alternative deployments on smart devices, standalone
applications on personal computers or fully delegating
all computations (and privacy) to third party services are
possible. They offer different trade-offs in terms of avail-
ability, interactivity and privacy for customers.

Interoperability. A key consideration when it comes
to rolling out smart metering infrastructure is interoper-
ability of meters among providers. Our cryptographic
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approach to billing has distinct advantages over the tra-
ditional approach that requires the full smart meter to be
trusted by the provider. The small metrology unit is certi-
fied according to existing national and international stan-
dards!® to produce readings trusted by all parties. The
rest of the smart meter can act in arbitrary ways without
compromising the integrity of the computations. Differ-
ent calculations can be performed on meter readings by
different providers without updating the metrology unit.
Such a scheme future-proofs the infrastructure: even if
new methods are developed to transmit, display, or bill
consumption the same trusted core can be used to cer-
tify readings. Functions of the metering infrastructure
can migrate to different technologies and novel business
models can be used to perform billing on the same certi-
fied readings.

Other applications. The privacy-preserving metering
and billing protocols are quite generic. They accommo-
date any situation in which certified readings are billed
according to a policy, without revealing other informa-
tion. In particular we can implement pay-as-you-drive
insurance schemes with much simpler on-board units
than assumed in previous solutions [39]. Similarly,
we can implement complex road charging and tolling
schemes without the need for spot-checks [3], but in-
stead relying on the correctness of a simpler on-board
unit. These applications are enabled by our use of re-
randomizable signatures to efficiently implement look-
up table functionality, also used to implement arbitrary
non-linear functions as splines.

10 Conclusion

Privacy is a serious concern raised by smart-metering
and failure to protect it has jeopardised smart-meter de-
ployments in the Netherlands. Naively, it appears that
a balance must be struck between the intrusion neces-
sary for time-of-use billing and the claimed social bene-
fits of smart-grids. We show this intuition to be false and
present practical privacy-friendly metering systems that
do not necessarily leak any information to third parties
but provide unforgeable bills based on complex dynamic
tariff policies.

Our schemes use simple cryptography on the meters
to certify readings and then perform all other operations
outside the metrological unit. This allows high-integrity
calculations to be done on any device under the control of
the user. The integrity of the bill is software independent
and correctness is ensured through cryptographic verifi-
cation. Our evaluation ensures the security of the scheme

10For example the UK SI 2006 No. 1679 “The Measuring Instru-
ments (Active Electrical Energy Meters) Regulations 200”.



through rigorous proofs and its practicality through a
complete software implementation. It is striking that the
Fast-PSM algorithm could verify 3 weeks of bills from
27 million UK homes in a few days on a single core of a
modern PC.

An advantage of the proposed schemes is their flexi-
bility: they offer different options on how to certify me-
ter readings depending on the level of trust the user is
ready to place on the privacy of the meter itself. Further-
more, complex tariff policies can be applied to extract
bills from measurements and other associated informa-
tion without revealing information. Since we allow bill
calculations to be performed on any device, the schemes
proposed can keep up with changes of tariff structure or
policy, as well as changes in technologies for processing
or transmitting of the readings and bills.

Beyond smart-grids, the proposed protocols are appli-
cable to any setting where a bill has to be produced from
a set of certified readings and a policy. We have dis-
cussed automotive location-based applications. Contrary
to common wisdom dictates, they do not have to lead to
privacy-invasion.
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APPENDIX

11 Definitions

11.1 Security Model

We define security following the ideal-world/real-world
paradigm [11]. In the real world, a set of parties interact
according to the protocol description in the presence of
a real adversary A, while in the ideal world dummy par-
ties interact with an ideal functionality that carries out the
desired task in the presence of an ideal adversary £. A
protocol ¥ is secure if there exists no environment Z that
can distinguish whether it is interacting with adversary .4
and parties running protocol ¢ or with the ideal process
for carrying out the desired task, where ideal adversary
& and dummy parties interact with an ideal functionality
F. More formally, we say that protocol ¢ emulates the
ideal process when, for any adversary A, there exists a
simulator £ such that for all environments Z, the ensem-
bles IDEALr, ¢ z and REALy, 4 z are computation-
ally indistinguishable. We refer to [11] for a description
of how these ensembles are constructed. Every function-
ality and every protocol invocation should be instantiated
with a unique session-ID that distinguishes it from other
instantiations. For the sake of ease of notation, we omit
session-IDs from the description of our ideal functional-
ities.

11.2 Privacy-Preserving Smart Metering

We first define an ideal functionality Fpgy for privacy-
preserving smart metering (see Figure 7). Any construc-
tion that realizes Fpgy ensures that U pays the right fee
for the consumption data output by M, i.e., that the fee
is computed following Y. It also ensures that, if M and
P do not collude, P only learns the fee paid, not the con-
sumption data cons nor the other information other used
to compute fee. Additionally, it ensures that a malicious
provider cannot claim that the fee that U must pay is dif-
ferent from the one computed following Y.

Our construction operates in the JFrgg-hybrid
model [11] (Figure 8), where parties register their public
keys at a trusted registration entity. Below we depict
the ideal functionality Frgg, which is parameterized
with a set of participants P that is restricted to contain
M, U and P only. This functionality abstracts key
management, which is a separate concern from privacy.

12 Implementation in detail

We propose an efficient instantiation for the commitment
scheme, for the signatures schemes used by M, U and P,
and for the non-interactive proofs of knowledge that are
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Functionality Frgg

Parameterized with a set of parties P, Frgg works as follows:

- Upon receiving (register, v) from party P € P, it records the
value (P, v).

- Upon receiving (retrieve, P) from party P’ € P, if (P,v)
is recorded then return (retrieve, P,v) to P’. Otherwise
send (retrieve, P, L) to P’.

Figure 8: The Frgg functionality abstracting key man-
agement.

used in the construction described in Section 5. More
details can be found in Appendix 12.

Commitment Scheme. We choose the integer com-
mitment scheme due to Groth [23]. Let /,, be the bit-
length of a special RSA modulus n and [, be the bit-
length of the security parameter. Typical values are
l,, = 2048 and [,, = 0.

e ComSetup(1¥).
pick a random generator h € QR,.

Given a special RSA modulus,
Pick ran-

dom ay,...,ap <+ {0,1}»*l and, fori = 1 to
k, compute g; = h%. Output commitment pa-
rameters par. = (g1,...,9k,h,n) and trapdoor
td = (a1,..., Q).

e Commit(par., (m1,...,mg)). On input integers
(mq,...,mg) of length [,, choose a random
open € {0,1}»* and compute C = g"* - ... -
gp*h°P¢™(mod n). Output the commitment ¢ and
the opening open.

e Open(pare,c, (m},...,m}), open’). On inputs in-

tegers (771’1, ...,m},) and open’, compute ¢’ = g{"*-

. g;n" heren’ (mod n) and check whether ¢ = ¢'.

Signature Schemes. The signature schemes of M and
U can be instantiated with any existentially unforge-
able signature scheme. For P’s signature scheme, we
choose the signature scheme proposed by Camenisch and
Lysyanskaya [9].

e Keygen(1%). On input 1¥, generate two safe primes
p,q of length k such that p = 2p’ + 1 and q =
2q' + 1, where p’ and ¢’ are also primes. The spe-
cial RSA modulus of length [,, is defined as n = pq.
Output secret key sk = (p,q). Choose uniformly
at random S < QR,, and Ry,...,R;, Z < (5).
Compute a non-interactive zero-knowledge proof
7= NIPK{(zz,zR,,...,2R,) : Z=5"2 ARy =



Functionality Fpgng

Running with a meter M, a service provider P, and a user U, Fpgn works as follows:
- On input (policy, T) from P, Fpgy stores T and sends (policy, Y) to U.

- On input (consume, cons, other) from M, Fpgn increments a counter d and appends (d, cons, other) to a table T that stores all the

consumptions. Fpgp sends (consume, cons, other) to U.

- On input (payment) from P, Fpgy computes the total fee fee as follows. Let N be the number of entries stored in T after the

d — N to d, Fpgm calculates price; = Y(cons;, other;). The fee is
fee = Zf:di price;. Fpsm sends (payment, fee, N) to U and, if U is corrupted, Fpsn receives (pay, fee’, N'). If fee # fee’
or N # N', Fpsw sets fee = fee’, N = N’ and b = 0, and otherwise it sets b = 1. Fpgy sends (pay, fee, N, b) to P.

- On input (reveal,:) from P, Fpgn checks that ¢ € [0, d], sends (reveal, ) to U and picks the entry (i, cons, other) € T. If U

is corrupted, Fpgn receives (revresp, cons’, other’) and, if (cons’, other’) does not equal those in (i, cons, other) € T, then
FpsM sets cons = cons’, other = other’ and b = 0. Otherwise it sets b = 1. Fpgn sends (revresp, cons, other, b) to P.

previous (payment) message was received. For ¢

Figure 7: The Fpgy functionality defining the security properties of our scheme.

STRL A A R; = S®R}. Output public key
pk = (n,Rl,...,Rk,S,Z,TF).
e Sign(sk, (m1,...,mg)). On input messages

(mq, ..., my) of length [,,, choose a random prime
number e of length [, > [,,, + 2, and a random num-
ber v of length I, = [, + [,, + [,. Compute the
value A such that Z = A°R{" - ... - R;"* S”(mod
n). Output the signature s = (e, A, v).

o Verify(pk, s, (m1,...,mg)). On inputs messages
(mq,...,my) and signature s = (e, A,v), check
that Z = A°RY"* - ... R}"*S"(mod n), that m; €
4{0,1}!", and that 2! < e < 2t~ 1,

Typical values are [,, = 2048, [, = 80, l,,, = 256, [, =
597, 1, = 2724 ([17]).

Non-Interactive Zero-Knowledge Proof. We de-
scribe the basic buildings blocks that compose the non-
interactive zero-knowledge proofs utilized in our con-
struction in Section 5. Such non-interactive zero-
knowledge proofs consist of the conjunction of some of
those building blocks. The basic building blocks are a
non-interactive zero-knowledge proof of possession of a
Camenisch-Lysyanskaya signature, a proof that a com-
mitted value is the product of two committed values and
a proof that a committed value lies in an interval.

To prove possession of a Camenisch-Lysyanskaya
signature, we employ the proof described in [17].
Given a signature s (e, A,v) on messages
(mq,...,my), randomize the signature s by picking
random r <+ {0,1}»*'@ and computing (e, A’ =
AS™"(mod n),v’ = v + er). Additionally set €
e —2le=1 Send A’ to the verifier along with the follow-

17

ing non-interactive zero-knowledge proof:

NIPK{ (e,v,m1,...,mg) :
Z==xAR™ -...- R S"(mod n) A
m; € {0, 1}imHintlot2

e — 2lg—1 c {0’ l}l/e+lH+l®+2}

We turn this proof into a non-interactive zero-
knowledge argument via the Fiat-Shamir heuristic as fol-
lows. (All the proofs in our implementation are com-
puted via the Fiat-Shamir heuristic in a similar way.) Let
H be a hash function modeled as a random oracle [6].
The prover picks random values:

Te « {0, 1}leHmtlo
T’ — {0, 1}l'U+ZH+l®
{rm,Yr, < {0, 1}imHlutlo

where [ is the size of the challenge, [, controls sta-
tistical zero-knowledge and I, < I, — Iy —lp — 3 is
the bit-length that determines the interval from which e
must be taken in order to succeed in the proof with in-
terval checks e — 21 € {0, 1}l tlr+lo+2 The prover
computes a commitment tz = A’ R,™ -...- R, S
and a challenge ch = H(n||A’||R1]|- .. ||Rk||S||Z||tz)-

The prover computes responses:

Se = r,—ch-¢
Sy = 7y —ch-v
{Smi ?:1 = Tm; — ch-m;
and sends to the verifier T =
(A’ ch, Sey S0y {8m, }¥_1).  The verifier computes
t, = (Z/<A/)2"/e_1)chA/sERim1 . Rzmk S5,

verifies if ch = H(n||A'||R1|| ... ||Rk]|S||Z]|t';), and
runs the interval checks s, € £{0,1}tir+lo+l and
{sm, }F_, € £{0, 1}lmHlatlotL Typical values for the
parameters are [y = 256, [p = 80 and [/, = 120.



To prove that a message mg committed to in ¢, =
g1 2 h°P"ms is the product of two messages m; and

. . __ _mj open _
mo committed to in ¢, = ¢7"'h m1 and ¢y, =
g1 2h°P"m2 respectively, the following proof can be
used:

NIPK{ (m1, open,,, , m2, open,,,,ms, open,,

My - Open,, ) : Cmy = g1 hoP" i A
Cmy = 91 2ROP e A ey = g7 ROP s A
1= e (1/g0) " (1B .

To prove that a committed value x lies in an interval
[a, b], it is necessary to prove thatz —a > Oand b —x >
0. We employ the non-interactive zero-knowledge proof
due to Groth [23] to prove that an integer . > 0. The
proof is based on the fact that any positive integer m of
the form 4m + 1 can be written as a sum of three squares
a? 4 b? 4 d?. Therefore, to prove that m > 0, Groth
proposes to prove that 4m + 1 = a? + b% + d?. Values
(a, b, d) can be computed via the Rabin-Shallit algorithm
[35]. The proof is:

NIPK{ (m, open,,,,a,b,d) : C,, = g™h°P"m A
dm+1=a®+b* +d*}

13 Security Analysis

Theorem 1. This PSM scheme securely realizes Fpsn.

The security of protocol PSM is analyzed by proving
indistinguishability between the view of the environment
Z in the real world, where parties interact following the
protocol description in the presence of a real adversary
A, and in the ideal world, which is secure by definition
since an ideal functionality carries out the task. In or-
der to prove indistinguishability, for all real world adver-
saries A, we construct an ideal world adversary £ such
that no environment can distinguish whether it is inter-
acting with A or with £.

Therefore, in order to prove Theorem 1, we need
to build a simulator £ that invokes a copy of adver-
sary A and interacts with Fpgy and environment Z
in such a way that ensembles IDEALr.,, ¢z and
REALpgm, 4,z are computationally indistinguishable.
We divide our proof of Theorem 1 into several claims.
We prove security under static corruptions, and each of
the claims proves indistinguishability when a different
party is corrupted: when only the provider P is cor-
rupted, when only the user U is corrupted, and when only
the meter M is corrupted.

For each of the claims, we prove indistinguishabil-
ity between real and ideal worlds by defining a se-
quence of hybrid games Game 0, ..., Game n, where
Game 0 corresponds to the real word and Game 7 to
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the ideal world. We denote by Pr [Game i] the proba-
bility that Z distinguishes between the distribution en-
semble of Game ¢ and that of the real execution. There-
fore, |Pr [Game ¢ + 1] — Pr [Game ]| denotes the prob-
ability that Z distinguishes between the distribution en-
sembles of two consecutive games. By summing up all
those probabilities, we obtain an upper bound for the
probability that Z distinguishes between the real exe-
cution ensemble REALpgy 4,z and the ideal ensemble
IDEALF¢\ e,z Such upper bound should be negligi-
ble in the security parameter for the claim to hold.

13.1 Security Analysis When Provider Is
Corrupted

Claim 1. When P is corrupted, the distribution ensem-
bles IDEALr.,, .z and REALpgm, 4,z are compu-
tationally indistinguishable under the unforgeability of
the signature schemes (Mkeygen, Msign, Mverify) and
(Ukeygen, Usign, Uverify), under the hiding property
of the commitment scheme and the extractability and
witness-indistinguishability of proofs of knowledge.

Proof. We show by means of a series of hybrid games
that the environment Z cannot distinguish between the
real execution ensemble REALpgn 4,z and the sim-
ulated ensemble IDEAL 7, ,, ¢z with non-negligible
probability.

e Game 0: This game corresponds to the execution of
the real-world protocol with honest M and U. Thus
Pr [Game 0] = 0.

e Game 1: This game proceeds as Game 0, except
that the public keys pky; and pky are replaced
by other public keys pk,," and pk’ that are ob-
tained by running Mkeygen and Ukeygen respec-
tively. Since these public keys have the same dis-
tribution as pky; and pky;, then |Pr [Game 1] —
Pr [Game 0]| = 0.

e Game 2: This game proceeds as Game 1, ex-
cept that Game 2 aborts if A sends a message-
signature pair (m, s) verifiable with public key pky,
and A did not receive a signature on m verifiable
with pky,;. The probability that Game 2 aborts is
bounded by the following lemma:

Lemma 1. Under the unforgeability of the sig-
nature scheme defined by algortithms (Mkeygen,
Msign, Mverify), |Pr [Game 2] — Pr [Game 1]| =
v1(K).

e Game 3: This game proceeds as Game 2, except
that Game 3 aborts if .4 sends a message-signature
pair (m, s) verifiable with public key pk; and A did



not receive a signature on m verifiable with pky;.
The probability that Game 3 aborts is bounded by
the following lemma:

Lemma 2. Under the unforgeability of the sig-
nature scheme defined by algorithms (Ukeygen,
Usign, Uverify), |Pr [Game 3] — Pr [Game 2]| =
va (k).

e Game 4: This game proceeds as Game 3, except
that Game 4 extracts the witness ¢d from the proof
7. Since extraction fails with negligible probability,
[Pr [Game 4] — Pr [Game 3]| = v3(k).

e Game 5: This game proceeds as Game 4, except

that the commitments ¢, that are sent to Ain the
payment message () are replaced by commitments
to prices price; that add to the fee fee, and com-
mitments (Ceons;, Cother; ) are replaced by commit-
ments to tuples (cons’, other;) that map to price;
following Y. The proofs 7; are replaced by proofs
that prove knowledge of the opening of those com-
mitments and of a signature sp € Y, that signs
(cons!, other?, price,).
Lemma 3. Under the assumption that the commit-
ment scheme is hiding and that the non-interactive
proofs of knowledge are witness indistinguishable,
|Pr [Game 5] — Pr [Game 4]| = v4(k).

& performs all the changes described in Game 5, and
forwards and receives messages from Fpgys as described
in our simulation below.

o Setup. When A sends a request (register, pkp) to
register the public key pkp, & stores pkp. When A
sends a request (retrieve, M), & runs Mkeygen in
order to generate a key pair (pky;, sknv) and sends
(retrieve, M, pky;) to A. When A sends a request
(retrieve, U), £ runs Ukeygen in order to generate
a key pair (pky;, skv) and sends (retrieve, U, pky;)
to A. When A sends (par,, 7), € verifies 7, extracts
td and stores pare.

o Initialization. When A sends T, £ gets T from
Y, and sends (policy, T) to Fpgm.

e Payment. When A sends (payment), &
sends (payment) to FpsMm. Upon receiv-
ing (pay, fee, N,b) from Fpgy, & picks a

set of N prices price; that add to fee and
N tuples (cons., other}) that map to price,
following Y. (We note that such values al-
ways exist.) Let d be a counter initialized
at 0. For ¢ dtod+ N —1, £ runs
SignConsumption sk, par., cons’, other?, i)

19

to obtain SC. & creates a table T" with the signed
consumptions SC' and runs Pay(sky, par., Ts,T)
to obtain a payment message Q). £ sends (Q) to A
and updates d = d + N.

e Reveal. When A sends (i), £ sends (reveal, )
to  Fpsu. Upon receiving (revresp, cons,
other,b) from JFpsm, & picks the tuple
(Ccons’s Cother’) In the message SC = (d,...)
such that d 1, and, by means of trapdoor
td, computes open,,,, and open such
that Open(]()arm Ceons’y CONS, OpeEN and
Open(parC7 Cother’ , Other, openother) output
accept. & sets r = (i, cons, open,,,,, other,
ODEN yyper)s Signs s, = Usign(sky,r) and sends
R = (r,s,) to A. & aborts if A returns (reject, @,
R) such that @) or R contain a message-signature
pair that was not sent to A.

other

CO’ﬂS)

The distribution produced in Game 5 is identical to
that of our simulation. By summation we have that
[Pr [Game 5] < vs. O

13.2 Security Analysis When User Is Cor-
rupted

Claim 2. When U is corrupted, the distribution ensem-
bles IDEAL g, ..z and REALpg\m 4,z are compu-
tationally indistinguishable under the unforgeability of
the signature schemes (Mkeygen, Msign, Mverify) and
(Pkeygen, Psign, Pverify), under the binding property of
the commitment scheme and under the extractability and
zero-knowledge property of proofs of knowledge.

Proof. We show by means of a series of hybrid games
that the environment Z cannot distinguish between the
real execution ensemble REALpgn 4,z and the sim-
ulated ensemble IDEAL £, ¢,z with non-negligible
probability.

e Game 0: This game corresponds to the execution of
the real-world protocol with honest M and P. Thus
Pr [Game 0] = 0.

e Game 1: This game proceeds as Game 0, ex-
cept that the public keys pky; and pkp and the
commitment parameters par, are replaced by other
values pky;’, pkp’ and par.’ that are obtained by
running Mkeygen, Pkeygen and ComSetup respec-
tively. Since these values have the same distribu-
tion as pky, pkp and pare, then |Pr [Game 1] —
Pr [Game 0]| = 0.

e Game 2: This game proceeds as Game 1, except
that Game 2 extracts the witness of the proofs of
knowledge 7 included in the payment messages ().



Since extraction fails with negligible probability,
|Pr [Game 2] — Pr [Game 1]| = v4 (k).

Game 3: This game proceeds as Game 2, except
that Game 3 aborts if the witness (price, open,,.; .,
CONS, OPEN. 4,5, OLhET, OPEN L4,y $p)  includes a
message-signature pair ({cons, other, price), sp)
that was not sent to .A. The probability that Game 3
aborts is bounded by the following lemma:

Lemma 4. Under the unforgeability of the signa-
ture scheme defined by algorithms (Pkeygen, Psign,
Pverify), |Pr [Game 3] — Pr [Game 2|| = v2(k).

Game 4: This game proceeds as Game 3, except
that Game 4 aborts if any of the message-signature
pairs ({d, Ccons, Cother), S¢) in the payment mes-
sages () was not sent to A. The probability that
Game 4 aborts is bounded by the following lemma:

Lemma 5. Under the unforgeability of the sig-
nature scheme defined by algorithms (Mkeygen,
Msign, Mverify), |Pr [Game 4] — Pr [Game 3]| =
1/3(;‘{).

Game 5: This game proceeds as Game 4, ex-
cept that the proof of knowledge 7 in the messages
(par., ) is replaced by a simulated proof. Under
the zero-knowledge property of proofs of knowl-
edge, |Pr [Game 5] — Pr [Game 4]| = vy(k).

Game 6: This game proceeds as Game 5, except
that Game 6 aborts if A sends a payment message
@ in which (fee, open,, ) is a correct opening of the
commitment ®f\;10pmcei, but fee # Zivzl price;,
where price; is in the witness of proofs m € ). The
probability that Game 6 aborts is bounded by the
following lemma:

Lemma 6. Under the binding property of the com-
mitment scheme, we have that |Pr [Game 6] —
Pr[Game 5]| = v5(K).

Game 7: This game proceeds as Game 6, except
that Game 7 aborts if 4 sends an opening mes-
sage R = (i, cons, open s, Other, open ,pers Sr)
such that the tuple (¢, %, Ceons, s Cother, » Cprice, » i)
of the payment message () contains a commitment
Ceons; that is opened correctly (cons, open,,,) or
a commitment C,per, that is opened correctly by
(other, open ., ), but where cons or other do not
equal those in message SC = (i, cons, open gy,
Ceonss OLher, 0pen i, oy Cother, SC) that was previ-
ously sent to A. The probability that Game 7 aborts
is bounded by the following lemma:
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Lemma 7. Under the binding property of the com-
mitment scheme, we have that |Pr [Game T] —
Pr [Game 6]| = vg (k).

& performs all the changes described in Game 7, and
forwards and receives messages from Fpgyr as described
in our simulation below.

e Setup. When A sends a request (register, pky;) to
register the public key pky;, £ stores pky;. When A
sends a request (retrieve, M), £ runs Mkeygen in
order to generate a key pair (pky;, skv) and sends
(retrieve, M, pkyy) to A. When A sends a request
(retrieve, P), £ runs Pkeygen in order to generate a
key pair (pkp, skp) and sends (retrieve, P, pkp) to
A. € runs ComSetup(1*) to get par, and a trapdoor
td and sends par. and a simulated proof 7 to A.

o Initialization. When Fpgy sends (policy, T), &
runs SignPolicy(skp, T) to get T and sends Y to

A.

e Consumption. When  Fpgym  sends
(consume, cons, other), £ increments a counter d,
runs SignConsumption(sk, pare, cons, other, d)
to get SC and sends SC to A.

e Payment. When Fpgy sends (payment, fee, N),
& sends (payment) to A.  Upon receiving

Vi
Q = (fee ) Openfeg’a {SCi7 d’ia Ccons;s Cother; s
/ .
Cprice;s T 7,};]\;1) from A, €& extracts the wit-
ness (price, 0pen,.; ., CONS, 0PEN s, other,

open ., Sp) of proofs 7 and aborts if any of
the conditions described in Game 3, Game 4 or
Game 6 are fulfilled. & sends (pay, fee’, N') to

FPsMm.

e Reveal. When Fpgy sends (reveal, i), € sends (7)
to A. Upon receiving R from A, £ parses R as (i,
Cons, OPEN 4, 5, Other, open ..., Sr) and aborts if
the condition described in Game 7 is fulfilled. Oth-
erwise £ sends (revresp, cons, other) to Fpgm.

The distribution produced in Game 7 is identical to
that of our simulation. By summation we have that
|Pr [Game 7] < v5. O

13.3 Security Analysis When Meter Is Cor-
rupted
Claim 3. When the meter is corrupted, the distribution

ensembles IDEALr.,, ¢.z and REALpgm, 4,z are un-
conditionally indistinguishable.

Proof. We show by means of a series of hybrid games
that the environment Z cannot distinguish between the



real execution ensemble REALpgy 4,z and the sim-
ulated ensemble IDEAL £, £,z with non-negligible
probability.

e Game 0: This game corresponds to the execution of
the real-world protocol with honest U and P. Thus
Pr [Game 0] = 0.

e Game 1: This game proceeds as Game 0, except
that the the commitment parameters par, are re-
placed by other parameters par,.’ that are obtained
by running ComSetup respectively. Since these
values have the same distribution as par., then
[Pr (Game 1] — Pr [Game 0]| = 0.

& performs all the changes described in Game 1, and
forwards and receives messages from Fpgys as described
in our simulation below.

e Setup. When A sends a request (register, pky;) to
register the public key pky;, £ stores pky;. &€ runs
ComSetup(1%) to get par, and sends par, to A.

e Consumption. When A sends SC,
£ increments a counter d and runs
VerifyConsumption(pky, par., SC,d) to  get

abitb Ifb 1, & parses SC as (dy, cons,
OPEN s Ceonss OLRET, OPEN y4por-s Cother, SC)  and
sends (consume, cons, other) to Fpsy.

The distribution produced in Game 1 is identical to that
of our simulation. We have that [Pr [Game 1] =0. O

14 Other specific policies

14.0.1 Discrete Policy.

The simplest policy to be expressed is a policy that
considers a discrete domain described by n tuples
(cons, other).  Each tuple is mapped to a price
price. To sign the policy, for i 1 ton, P
runs sp; = Psign(skp, (cons;, other;, price;)), and
sets T, (cons;, other;, price;, sp;),. To com-
pute the proof m, U uses the commitments to the
consumption C.ons and to other parameters cCother
included in sc, and commits to the price (Cprice,
open ....) = Commit(par,, price) specified in the pol-
icy for (cons, other). Then U proves possession of a
signature sp € YT, on (cons, other, price) and equality
between the signed values and the values committed to
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m (Cconsa Cother; Cprice):

NIPK{ (price, open,,; ., cons, open ., other,

OPEN gphers SP)

(Ceonss OPEN s ) = Commit(par., cons) A
(Cother, ODEN y4per) = Commit(par., other) A
(Cprices 0PN i) = Commit(pare, price) A
Pverify(pkp, sp, (cons, other, price)) =
accept}.

14.0.2 Interval Policy.

In an interval policy, the consumption values domain is
divided into intervals and each interval is mapped to a
price. For instance, if the policy says that all the con-
sumptions between 4 and 7 must pay price 3 and your
consumption is 5, the price due is 3. Therefore, an inter-
val policy is given by Y : (consmin, CONSmaz, other) —
price, where it is required that intervals defined by
[cOnSmin, CONSmaz] be disjoint.

To sign this policy, for 7 = 1 to n, P runs sp, = Psign
(skp, (cONSmin;, CONSmaz,, other;, price;)), and sets
Yy = (consmin,, CONSmaz,, other;, price;, sp;)™ .1t
To compute a proof m, U uses the commitments
to the consumption c..,s and to other parameters
Cother included in sc, and commits to the price
(Cprices 0PN price) Commit(par,, price) specified
in the policy for (consin, CONSmaz, other) such that
cons € [cONSmin, CONSmaz]. Then U computes a
proof of possession of a signature sp € Y, on
(coNSmin, CONSmaz, other, price), a proof of equal-
ity between (other,price) and the values commit-
ted t0 in (Cother, Cprice)> and a proof that'? cons €
[cOnSmin, CONSmaz):

NIPK{ (price, open cons, open other,

price’ cons»
ODEN ythory CONSmin s CONSmaz, SP) :
(Cconss OPEN cops) = Commit(pare, cons) A
(Cothers OPEN o410 ) = Commit(par., other) A
(Cprices 0PN yyice) = Commit(pare, price) A
Pverify(pkp, sp, (consmin, CONSmaz, other,
price)) = accept A

cons € [coNSmin, CONSmaz]}-

'We note that if Y is a monotonic function, then it is enough to
sign consmaz (When the function is increasing) or consm,in (When
the function is decreasing).

121f the policy is monotonically increasing, it suffices to prove that
cons € [0, consmaz], While if it is monotonically decreasing, it suf-
fices to prove that cons € [consmin, 00).



