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Abstract
We study a first-order functional language with the novel com-
bination of the ideas of refinement type (the subset of a type to
satisfy a Boolean expression) and type-test (a Boolean expression
testing whether a value belongs to a type). Our core calculus can
express a rich variety of typing idioms; for example, intersection,
union, negation, singleton, nullable, variant, and algebraic types
are all derivable. We formulate a semantics in which expressions
denote terms, and types are interpreted as first-order logic formu-
las. Subtyping is defined as valid implication between the seman-
tics of types. The formulas are interpreted in a specific model that
we axiomatize using standard first-order theories. On this basis, we
present a novel type-checking algorithm able to eliminate many dy-
namic tests and to detect many errors statically. The key idea is to
rely on an SMT solver to compute subtyping efficiently. Moreover,
interpreting types as formulas allows us to call the SMT solver at
run-time to compute instances of types.

Categories and Subject Descriptors F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type struc-
ture; D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—Denotational semantics;
Operational semantics; Program analysis

General Terms Languages, Theory, Verification

1. Introduction
This paper studies first-order functional programming in the pres-
ence of both refinement types (types qualified by Boolean expres-
sions) and type-tests (Boolean expressions testing whether a value
belongs to a type). The novel combination of type-test and refine-
ment types appears in a recent commercial functional language,
code-named M [1], whose types correspond to relational schemas,
and whose expressions compile to SQL queries. Refinement types
are used to express SQL table constraints within a type system, and
type-tests are useful for processing relational data, for example, by
discriminating dynamically between different forms of union types.
Still, although useful and extremely expressive, the combination of
type-test and refinement is hard to type-check using conventional
syntax-driven subtyping rules. The preliminary implementation of
M uses such subtyping rules and has difficulty with certain sound
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idioms (such as uses of singleton and union types). Hence, type
safety is enforced by dynamic checks, or not at all.

This paper studies the problem of type-checking code that uses
type-tests and refinements via a core calculus, named Dminor,
whose syntax is a small subset of M, and which is expressive
enough to encode all the essential features of the full M language.
In the remainder of this section, we elaborate on the difficulties
of type-checking Dminor (and hence M), and outline our solution,
which is to use semantic subtyping rather than syntactic rules.

1.1 Programming with Type-Test and Refinement
The core types of Dminor are structural types for scalars, unordered
collections, and records. (Following the database orientation of M,
we refer to records as entities.) We write S <: T for the subtype
relation, which means that every value of type S is also of type T .

Two central primitives of Dminor are the following:

• A refinement type, (x : T where e), consists of the values x of T
satisfying the Boolean expression e.
• A type-test expression, e in T , returns true or false depending on

whether or not the value of e belongs to type T .

As we shall see, many types are derivable from these primitive
constructs and their combination. For example, the singleton type
[v], which contains just the value v, is derived as the refinement
type (x : Any where x == v), where Any is the type of all values.
The union type T |U , which contains the values of T together with
the values of U , is derived as (x : Any where (x in T ) || (x in U)).

Here is a snippet from a typical Dminor (and M) program
for processing a DSL, a language of while-programs. The type
is a union of different sorts of statements, each of which is an
entity with a kind field of singleton type. (The snippet relies on an
omitted—but similar—recursive type of arithmetic expressions.)

type Statement =
{kind:["assignment"]; var: Text; rhs: Expression;} |
{kind:["while"]; test:Expression; body:Statement;} |
{kind:["if"]; test:Expression; tt:Statement; ff:Statement;} |
{kind:["seq"]; s1:Statement; s2:Statement;} |
{kind:["skip"];};

In languages influenced by HOPE [10], such as ML and Haskell,
we would use the built-in notion of algebraic type to represent
such statements. But like many data formats, including rela-
tional databases, S-expressions, and JavaScript Object Notation
(JSON) [11], the data structures of M and Dminor do not take as
primitive the idea of data tagged with data constructors. Instead, we
need to follow an idiom such as shown above, of taking the union
of entity types that include kind fields of distinct singleton types.

If y has type Statement, we may process such data as follows:

((y.kind == "assignment") ? y.var : "NotAssign")

Intuitively, this code is type-safe because it checks the kind field
before accessing the var field, which is only present for assignment



statements. More precisely, to type-check the then-branch y.var to
type Text, we have y : Statement (i.e. a union type encoded using
refinements and type-test), know that y.kind == "assignment",
and need to decide [y]<: {var : Text;}. Subtyping should succeed,
but clearly requires relatively sophisticated symbolic computation,
including case analysis and propagation of equations. This is a typi-
cal example where syntax-driven rules for refinements and type-test
are inadequate, and indeed this simple example cannot be checked
statically by the preliminary release of M. Our proposal is to dele-
gate the hard work to an external prover.

1.2 An Opportunity: SMT as a Platform
Over the past few years, there has been tremendous progress in the
field of Satisfiability Modulo Theories (SMT), that is, for (frag-
ments of) first-order logic plus various standard theories such as
equality, real and integer (linear) arithmetic, bit vectors, and (ex-
tensional) arrays. Some of the leading systems include CVC3 [5],
Yices [17], and Z3 [13]. There are common input formats such
as Simplify’s [15] unsorted S-expression syntax and the SMT-LIB
standard [36] for sorted logic. Hence, first-order logic with standard
theories is emerging as a computing platform. Software written to
generate problems in a standard format can rely on a wide range of
back-end solvers, which get better over time due in part to healthy
competition,1 and which may even be run in parallel when suffi-
cient cores are available. There are limitations, of course, as first-
order validity is undecidable even without any theories, so solvers
may fail to terminate within a reasonable time, but recent progress
has been remarkable.

1.3 Semantic Subtyping with an SMT Solver
The central idea in this paper is a type-checking algorithm for Dmi-
nor that is based on deciding subtyping by invoking an external
SMT solver. To decide whether S is a subtype of T , we construct
first-order formulas F[[S]](x) and F[[T ]](x), which hold when x be-
longs to the type S and the type T , respectively, and ask the solver
whether the formula F[[S]](x) =⇒ F[[T ]](x) is valid, given any ad-
ditional constraints known from the typing environment. This tech-
nique is known as semantic subtyping [2, 22], as opposed to the
more common alternative, syntactic subtyping, which is to define
syntax-driven rules for checking subtyping [34].

The idea of using an external solver for type-checking with re-
finement types is not new. Several recent type-checkers for func-
tional languages, such as SAGE [20, 26], F7 [6], and Dsolve [38],
rely on various SMT solvers. However, these systems all rely on
syntactic subtyping, with the solver being used as a subroutine to
check constraints during subtyping.

To the best of our knowledge, our proposal to implement se-
mantic subtyping by calling an external SMT solver is new. Se-
mantic subtyping nicely exploits the solver’s knowledge of first-
order logic and the theory of equality; for example, we represent
union and intersection types as logical disjunctions and conjunc-
tions, which are efficiently manipulated by the solver. Hence, we
avoid the implementation effort of explicit propagation of known
equality constraints, and of syntax-driven rules for union and inter-
section types [16]. Moreover, we exploit the theories of extensional
arrays [14], integer arithmetic, and algebraic datatypes.

1.4 Contributions of the Paper
(1) Investigation of semantic subtyping for a core functional lan-

guage with both refinement types and type-test expressions (a
novel combination, as far as we know). We are surprised that so
many typing constructs are derivable from this combination.

1 Most important is the SMT-COMP [4] competition held each year in con-
junction with CAV and in which more than a dozen SMT solvers contend.

(2) Development of the theory, including both a declarative type
assignment relation, and algorithmic rules in the bidirectional
style. Our correctness results cover the core type assignment
relation, the bidirectional rules, the algorithmic purity check,
and some logical optimizations.

(3) An implementation based on checking semantic subtyping by
constructing proof obligations for an external SMT solver. The
proof obligations are interpreted in a model that is formalized
in Coq and axiomatized using standard first-order theories (in-
tegers, datatypes and extensional arrays).

(4) Devising a systematic way to use the models produced by the
SMT solver as evidence of satisfiability in order to provide pre-
cise counterexamples to typing, detect empty types and gener-
ate instances of types. The latter enables a new form of declar-
ative constraint programming, where constraints arise from the
interpretation of a type as a formula.

1.5 Structure of the Paper
§2 describes the formal syntax of Dminor together with a small-
step operational semantics, e→ e′, where e and e′ are expressions.
We encode a series of type idioms to illustrate the expressiveness
of the language and its type system.

§3 presents a logical semantics of pure expressions (those with-
out side-effects) and Dminor types; each pure expression e is inter-
preted as a term R[[e]] and each type T is interpreted as a first-order
logic formula F[[T ]](t). The formulas are interpreted in a specific
model that we have formalized in Coq. Theorem 1 is a full abstrac-
tion result: two pure expressions have the same logical semantics
just when they are operationally equivalent. We describe how to
show purity of expressions using a syntactic termination restriction
together with a confluence check that relies on the logical seman-
tics. Theorem 2 shows that our algorithmic purity check is indeed
a sufficient condition for purity.

§4 presents the declarative type system for Dminor. The type
assignment relation has the form E ` e : T , meaning that expres-
sion e has type T given typing environment E. Theorem 3 concerns
logical soundness of type assignment; if e is assigned type T then
formula F[[T ]](R[[e]]) holds. Progress and preservation results (The-
orems 4 and 5) relate type assignment to the operational semantics,
entailing that well-typed expressions cannot go wrong.

§5 develops additional theory to justify our implementation
techniques. First, we present simpler variations of the translations
R[[e]] and F[[T ]](t), optimized by the observation that during type-
checking we only interpret well-typed expressions, and so we need
not track error values. Theorem 6 shows soundness of this opti-
mization. Second, since the declarative rules of §4 are not directly
algorithmic, we propose type checking and synthesis algorithms,
presented as bidirectional rules. Theorem 7 shows these are sound
with respect to type assignment.

§6 shows how to use the models produced by the SMT solver
to provide very precise counterexamples when type-checking fails
and to find inhabitants of types statically or dynamically. §7 reports
some details of our implementation. We survey related work in §8,
before concluding in §9.

A technical report [8] contains additional details and proofs.

2. Syntax and Operational Semantics
Dminor is a strict first-order functional language whose data in-
cludes scalars, entities, and collections; it has no mutable state, and
its only side-effects are non-termination and non-determinism. This
section describes: (1) the syntax of expressions, types, and global
function definitions; (2) the operational semantics; (3) the defini-
tion of pure expressions (those without side-effects); and (4) some
encodings to justify our expressiveness claims.



The following example introduces the basic syntax of Dminor.
An accumulate expression is a fold over an unordered collection;
to evaluate from x in e1 let y = e2 accumulate e3, we first evaluate
e1 to a collection v, evaluate e2 to an initial value u0, and then
compute a series of values ui for i ∈ 1..n, by setting ui to the value
of e3{vi/x}{ui−1/y}, and eventually return un, where v1, . . . , vn
are the items in the collection v, in some arbitrary order.
NullableInt

4
= Integer | [null]

removeNulls(xs : NullableInt∗) : Integer∗
{ from x in xs let a = ({}:Integer∗) accumulate (x!=null) ? (x :: a) : a }

The type NullableInt is defined as the union of Integer with the sin-
gleton type containing only the value null. We then define a function
removeNulls that iterates over its input collection and removes all
null elements. As expected, executing removeNulls({1, null, 42, null})
produces {1, 42} (which denotes the same collection as {42, 1}).

Given that the collection xs contains elements of type NullableInt
(xs : NullableInt∗), that x is an element of xs, and the check that
x != null, our type-checking algorithm infers that on the if branch x :
Integer, and therefore the result of the comprehension is Integer∗, as
declared by the function. If we remove the check that x != null, and
copy all elements with x :: a then type-checking fails, as expected.

2.1 Expressions and Types
We observe the following syntactic conventions. We identify all
phrases of syntax (such as types and expressions) up to consistent
renaming of bound variables. For any phrase of syntax φ we write
φ{v/x} for the outcome of a capture-avoiding substitution of v
for each free occurrence of x in φ . We write fv(φ) for the set of
variables occurring free in φ .

We assume some base types for integers, strings, and logical
values, together with constants for each of these types, as well as
a null value. We also assume an assortment of primitive operators;
they are all binary apart from negation !, which is unary.

Scalar Types, Constants, and Operators:
G ::= Integer | Text | Logical scalar type
K(Integer) = {i | integer i}
K(Text) = {s | string s}
K(Logical) = {true, false}
c ∈ K(Integer)∪K(Text)∪K(Logical)∪{null} scalar constants
⊕ ∈ {+,−,×,<,>,==, !,&&, ||} primitive operators

A value may be a simple value (an integer, string, boolean, or
null), a collection (a finite multiset of values), or an entity (a finite
set of fields, each consisting of a value with a distinct label).

Syntax of Values:
v ::= value

c scalar (or simple value)
{v1, . . . ,vn} collection (multiset; unordered)
{`i⇒ vi

i∈1..n} entity (`i distinct)

We identify values u and v, and write u = v, when they are
identical up to reordering the items within collections or entities.
Although collections are unordered, ordered lists can be encoded
using nested entities (see §2.4).

Syntax of Types:
S,T,U ::= type

Any the top type
G scalar type
T∗ collection type
{` : T} (single) entity type
(x : T where e) refinement type (scope of x is e)

All values have type Any, the top type. The values of a scalar
type G are the scalars in the set K(G) defined above. The values
of type T∗ are collections of values of type T . The values of type
{` : T} are entities with (at least) a field ` holding values of type
T . (We show in §2.4 how to define multi-field entity types as a
form of intersection type.) Finally, the values of a refinement type
(x : T where e) are the values v of type T such that the boolean
expression e{v/x} returns true.

Syntax of Expressions:
e ::= expression

x variable
c scalar constant
⊕(e1, . . . ,en) operator application
e1?e2 : e3 conditional
let x = e1 in e2 let-expression (scope of x is e2)
e in T type-test
{`i⇒ ei

i∈1..n} entity (`i distinct)
e.` field selection
{v1, . . . ,vn} collection (multiset)
e1 :: e2 adding element e1 to collection e2
from x in e1

let y = e2 accumulate e3

iteration over collection
(scope of x and y is e3)

f (e1, . . . ,en) function application

Variables, constants, operators, conditionals, and let-expressions
are standard. When ⊕ is binary, we often write e1⊕ e2 instead of
⊕(e1,e2). A type-test, e in T , returns a boolean to indicate whether
or not the value of e inhabits the type T .

The accumulate primitive can encode all the usual operations
on collections: counting the number of elements of or occurrences
of a certain element, checking membership, removing duplicates
and elements, multiset union and difference, as well as LINQ [30]
queries and comprehensions in the style of the nested relational
calculus [9]. The precise definitions are in the technical report.

To complete the syntax of Dminor, we interpret types and
expressions in the context of a fixed collection of first-order,
dependently-typed, potentially recursive function definitions. We
assume for each expression f (e1, . . . ,en) in a source program that
there is a corresponding function definition for f with arity n.

Function Definitions: f (x1 : T1, . . . ,xn : Tn) : U{e}
We assume a finite, global set of function definitions, each of
which associates a function name f with a dependent signature
x1 : T1, . . . ,xn : Tn → U , formal parameters x1, . . . ,xn, and a body
e, such that fv(e)⊆ {x1, . . . ,xn} and fv(U)⊆ {x1, . . . ,xn}.

2.2 Operational Semantics
We define a nondeterministic, potentially divergent, small-step re-
duction relation e→ e′, together with a standard notion of expres-
sions going wrong, to be prevented by typing.

Each primitive operator is a partial function represented by a set
of equations ⊕(v1, . . . ,vn) 7→ v0 where each vi is a value. The ==
operator implements syntactic equality, which for collections and
entities is up to reordering of elements. Apart from ==, the other
operators only act on scalar values.

Reduction Contexts:
R ::= reduction context
⊕(v1, . . . ,v j−1,•,ei+1, . . . ,en)
•?e2 : e3 | let x = • in e2 | • in T
{`i⇒ vi

i∈1.. j−1, ` j⇒•, `i⇒ ei
i∈ j+1..n}

•.` | • :: e | v :: • | from x in • let y = e2 accumulate e3
f (v1, . . . ,v j−1,•,ei+1, . . . ,en)



Reduction Rules for Standard Constructs:
e→ e′ =⇒ R[e]→R[e′]
⊕(v1, . . . ,vn)→ v if ⊕(v1, . . . ,vn) 7→ v defined
true?e2 : e3→ e2
false?e2 : e3→ e3
let x = v in e2→ e2{v/x}
{`i⇒ vi

i∈1..n}.` j→ v j where j ∈ 1..n
v :: {v1, . . . ,vn}→ {v1, . . . ,vn,v}
from x in {v1, . . . ,vn} let y = e2 accumulate e3
→ let y = e2 in let y = e3{v1/x} in . . . let y = e3{vn/x} in y

f (v1, . . . ,vn)→ e{v1/x1} . . .{vn/xn}
given function definition f (x1 : T1, . . . ,xn : Tn) : U{e}

Reduction Rules for Type-Test:
v in Any→ true

v in G→
{

true if v ∈ K(G)
false otherwise

v in {` j : Tj}→
{

v j in Tj if v = {`i⇒ vi
i∈1..n}∧ j ∈ 1..n

false otherwise

v in T∗→
{

v1 in T && . . . && vn in T if v = {v1, . . . ,vn}
false otherwise

v in (x : T where e)→ v in T && e{v/x}

The reduction rules for type-test expressions, e in U , first reduce
e to a value v and then proceed by case analysis on the structure of
the type U . In case U is a refinement type (x : T where e) then v
is a value of U if and only if v is a value of type T and e{v/x} re-
duces to the value true. Nondeterminism arises from the reduction
rule for accumulate expressions. Since collections are unordered,
the rule applies for any permutation of {v1, . . . ,vn}. For example,
consider the expression pick v1 v2

4
= from x in {v1,v2} let y =

null accumulate x; we have both pick true false →∗ true and
pick true false→∗ false.

Next, we use reduction to define an evaluation relation, which
relates a closed expression to its return values, or to Error, in case
reduction gets stuck before reaching a value.
Stuckness, Results, and Evaluation: e ⇓ r for closed e

Let e be stuck if and only if e is not a value and ¬∃e′.e→ e′.
r ::= Error | Return(v) results of evaluation
e ⇓ Return(v) if and only if e→∗ v
e ⇓ Error if and only if there is e′ such that e→∗ e′ and e′ is stuck.

Let closed expression e go wrong if and only if e ⇓ Error.
For example, we have that stuck ⇓ Error, where stuck

4
= {}.` for

some label `. In the presence of type-test and refinement types,
expressions can go wrong in unusual ways. For example, given the
refinement type T = (x : Any where stuck), any type-test v in T goes
wrong. The main goal of our type system is to ensure that no closed
well-typed expression goes wrong.

2.3 Pure Expressions and Refinement Types
A problem in languages with refinement types (x : T where e) is that
the refinement expression e, even though well-typed, has effects,
such as non-termination or non-determinism, and so makes no
sense as a boolean condition. In Dminor calls to recursive functions
can cause divergence, and since collections are unordered, iterating
over them with accumulate may be nondeterministic, as above.

To address this problem, we define the set of pure expressions,
the ones that may be used as refinements. The details, below, are
a little technical, but the gist is that pure expressions must be
terminating, have a unique result (which may be Error), and must
only call functions whose bodies are pure. The typing rule (Type
Refine) in §4 requires that for (x : T where e) to be well-formed, the
expression e must be pure and of type Logical (which guarantees

that e yields true or false without getting stuck). Checking for purity
is undecidable, but we present sufficient conditions for checking
purity algorithmically, in §3.1.

We assume that a subset of the function definitions are labeled-
pure; we intend that only these functions may be called from pure
expressions. Let an expression e be terminating if and only if
there exists no unbounded sequence e → e1 → e2 → . . . . Let a
closed expression e be pure if and only if (1) e is terminating,
(2) there exists a unique result r such that e ⇓ r, (3) for every
subexpression f (e1, . . . ,en) of e, the function f is labeled-pure, and
(4) all subexpressions of e are pure. Let an arbitrary expression e
be pure if and only if eσ is pure for all closing substitutions σ that
assign a value to each free variable in e. Finally, we require that the
body of every labeled-pure function is a pure expression.

2.4 Derived Types
We end this section by exploring the expressiveness of the primitive
types introduced above, and in particular of the combination of
refinement types and dynamic type-test. We show that the range of
derivable types is rather wide. We begin with some basic examples.

Encoding of Empty and Singleton Types:
Empty

4
= (x : Any where false)

[e] 4= (x : Any where x == e) (e pure, x /∈ fv(e))

The type Empty has no elements; it is a subtype of all other
types. The singleton type, [e], contains only the value of pure
expression e (for example, type [null] consists just of the null value).

Our calculus includes the operators of propositional logic on
boolean values. We lift these operators to act on types as follows.
Encoding of Union, Intersection, and Negation Types:
T |U 4

= (x : Any where (x in T ) || (x in U)) x /∈ fv(T,U)
T & U 4

= (x : Any where (x in T ) && (x in U))
!T 4

= (x : Any where !(x in T ))

A value of the union type, T |U , is a value of T or of U . A value
of the intersection type, T & U , is a value of both T and U . A value
of the negation type, !T , is a value that is not a value of T .

Next, we define the types of simple values, collections, and
entities. We rely on the primitive types Integer, Text, and Logical,
the primitive type constructor T∗ for collections, and the fact that
every proper value is either a scalar, a collection, or an entity: so
the type of entities is the complement of the union type General |
Collection.
Encoding of Supertypes:
General

4
= Integer | Text | Logical | [null]

Collection
4
= Any∗

Entity
4
= !(General | Collection)

The primitive type of entities is unary: the type {` : T} is the
set of entities with a field ` whose value belongs to T (and possibly
other fields). As in Forsythe [37], we derive multiple-field entity
types as an intersection type. One advantage of this approach is
that it immediately entails width subtyping for entities.
Encoding of Multiple-Field Entity Types:
{`i : Ti; i∈1..n} 4= {`1 : T1}& . . . & {`n : Tn} (`i distinct,n > 0)

We can also derive closed entity types, which only contain
entities with a fixed set of labels and therefore do allow width
subtyping. To do so we constrain the multiple-field entity types
above to additionally satisfy an eta law.

Encoding of Closed Entity Types:
closed{`i : Ti; i∈1..n} 4=
(x : {`i : Ti; i∈1..n} where x == {`i⇒ x.`i

i∈1..n})



Pair types are just a special case of closed entity types. Given
pair types, refinement types, and type-test, we can also encode
dependent pair types Σx : T.U where x is bound in U .
Encoding of Pair Types and Dependent Pair Types:
T ∗U 4

= closed{fst : T ; snd : U ;}
(Σx : T.U)

4
= (p : T ∗Any where let x = p.fst in (p.snd in U))

Sum types are obtained from union types by adding an addi-
tional Boolean tag; variant types are a simple generalization.
Encoding of Sum and Variant Types:
T +U 4

= ([true]∗T ) | ([false]∗U)
〈`1 : T1; . . . ;`n : Tn〉

4
= ([`1]∗T1) | . . . | ([`n]∗Tn)

Recursive types can be encoded as boolean recursive functions
that dynamically test whether a given value has the required type.
Using recursive, sum, and pair types we can encode any algebraic
datatype. For instance the type of lists of elements of type T can be
encoded as follows.
Encoding List Types
ListT

4
= (T ∗ (x : Any where fListT

(x)))+ [null]
where fListT

(x) is a new labeled pure function defined by
fListT

(x : Any) : Logical {
x in ((T ∗ (x : Any where fListT

(x)))+ [null])}

Lists can be used to encode XML and JSON. Hence, Dminor
can be viewed as a richly typed functional notation for manipulat-
ing data in XML format. In fact, DTDs can be encoded as Dminor
types. XML data can be loaded into Dminor even if there is no prior
schema. We map an XML element to an entity, with a field to rep-
resent the name of the element, additional fields for any attributes
on the element, and a final field holding a list of all the items in the
body of the element.

Next, we show how to derive entity types for the common situ-
ation where the type of one field depends on the value of another.
A dependent intersection type (s : T & U) [27] is essentially the
intersection of T and U , except that the variable s is bound to the
underlying value, with scope U . The type T cannot mention s, but
we can rely on s : T when checking well-formedness of U .
Encoding of Dependent Intersection Types:
(s : T & U)

4
= (s : T where s in U)

With this construct, we can define entity types where the type
of one field depends on the value of another. For example, (p : {X :
Integer} & {Y : (y : Integer where y < p.X)}) is the type of points
below the diagonal.

To further illustrate the power of collection types combined
with refinements, we give types below that express universal and
existential quantifications over the items in a collection. Collection
{v1, . . . ,vn} : T∗ has type all(x : T )e if e{vi/x} for all i ∈ 1..n, and,
dually, it has type exists(x : T )e if e{vi/x} for some i ∈ 1..n.
Quantifying Over Collections:
all(x : T )e 4

= (x : T where e)∗
exists(x : T )e 4

= T∗& !(all(x : T )!e)

3. Logical Semantics
In this section we give a set-theoretic semantics for types and pure
expressions. Pure expressions are interpreted as first-order terms,
while types are interpreted as formulas in many-sorted first-order
logic (FOL). These formulas are interpreted in a fixed model, which
we formalize in Coq. We represent a Dminor subtyping problem as
a logical implication, supply our SMT solver with a set of axioms

that are true in our intended model, and ask the solver to prove
the validity of the implication. We use Coq to state our model and
to derive soundness of the axioms given to the SMT solver, but
semantic subtyping calls only the SMT solver, not Coq.

To represent the intended logical model formally sets are en-
coded as Coq types, and functions are encoded as Coq functions.
We start with inductive types Value and Result given as grammars
in §2 (for brevity we omit the corresponding Coq definitions; they
are given in the technical report [8] ). We define a predicate Proper
that is true for results that are not Error, and a function out V that
returns the value inside if the result passed as argument is proper
and null otherwise.

Model: Proper Results:

Definition Proper (res : Result) :=
match res with | Return v⇒ true | Error⇒ false end.

Definition out V (res : Result) : Value :=
match res with | Return v⇒v | Error⇒v null end.

Our semantics uses many-sorted first-order logic (each sort is
interpreted by a Coq type of the same name). We write predicates as
functions to sort bool, with truth values true and false. We assume
a collection of sorted function symbols whose interpretation in the
intended model is given below. Let t range over FOL terms; we
write t : σ to mean that term t has sort σ ; if we omit the sort of
a bound variable, it may be assumed to be Value. Similarly, free
variables have sort Value by default. If F is a formula, let |= F
mean that F is valid in our intended model.

Our semantics consists of three translations:

• For any pure expression e, we have the FOL term R[[e]] : Result.
• For any Dminor type T and FOL term t : Value, we have the

FOL formula F[[T ]](t), which is valid in the intended model if
and only if the value denoted by t is a member of the type T .
• For type T and FOL term t : Value, we have the formula

W[[T ]](t), which holds if and only if a type-test goes wrong
when showing that the value denoted by t is a member of T . For
instance, we have |=W[[(x : Any where stuck)]](null)⇔ true, but
|= W[[Any]](null)⇔ false.

These three (mutually recursive) translations are defined below.
We rely on notations for let-binding within terms (let x= t in t ′), and
terms conditional on formulas (if F then t else t ′). These notations
are supported directly by most SMT solvers. Given these we can
define the monadic bind for propagating errors as a simple notation.
Notice that |= (Bind x⇐ Return(v) in t) = t{v/x} and |= (Bind x⇐
Error in t) = Error.

Notation: Monadic Bind for Propagating Errors:
Bind x⇐ t1 in t2

4
=

(if ¬Proper(t1) then Error else let x = out V(t1) in t2)

We begin by describing the semantics of some core types and
expressions. The semantics of refinement types F[[(x : T where e)]](t)
relies on the result of evaluating e with x bound to t. Remember
however that operationally the type test v in (x : T where e) evalu-
ates to Error if e{v/x} evaluates to Error or to a value that is not
true or false. We use W[[(x : T where e)]](t) to record this fact, and
we enforce that R[[e in T ]] returns Error if W[[T ]](t) holds. Tracking
type tests going wrong is crucial for our full-abstraction result.

Semantics: Core Types and Expressions:
F[[Any]](t) = true
W[[Any]](t) = false

F[[(x : T where e)]](t) = F[[T ]](t)∧ let x = t in (R[[e]] = Return(true))
W[[(x : T where e)]](t) = W[[T ]](t)∨

let x = t in (¬(R[[e]] = Return(false)∨R[[e]] = Return(true)))



R[[x]] = Return(x)
R[[e1?e2 : e3]] = Bind x⇐ R[[e1]] in

(if x = true then R[[e2]] else (if x = false then R[[e3]] else Error))
R[[let x = e1 in e2]] = Bind x⇐ R[[e1]] in R[[e2]]
R[[e in T ]] = Bind x⇐ R[[e]] in (if W[[T ]](x) then Error else

(if F[[T ]](x) then Return(true) else Return(false)))

Next, we specify the semantics of scalar types and values.

Model: Testers for Simple Values:

Definition In Logical v := (is G v) && is G Logical (out G v).
Definition In Integer v := (is G v) && is G Integer (out G v).
Definition In Text v := (is G v) && is G Text (out G v).

Semantics: Scalar Types, Simple Values and Operators:
F[[Integer]](t) = In Integer(t)
F[[Text]](t) = In Text(t)
F[[Logical]](t) = In Logical(t)

R[[c]] = Return(c)
W[[G]](t) = false

R[[⊕(e1, . . . ,en)]] = Bind x1⇐ R[[e1]] in . . .Bind xn⇐ R[[en]] in
(if F[[T1]](x1)∧·· ·∧F[[Tn]](xn)
then Return(O⊕(x1, . . . ,xn)) else Error)

where ⊕ : T1, . . . ,Tn→ T

The notation⊕ : T1, . . . ,Tn→ T defines type signatures for each
primitive operator ⊕. We omit the details, as well as the definitions
of the functions O⊕ interpreting each primitive operator ⊕.

The semantics of an entity type {` : T} is the set of all val-
ues (denoted by t) that are entities (is E(t)) having the field `
(v has field(`, t)), which contains a value of type T (F[[T ]](v dot(t, `))).

Model: Functions and Predicates on Entities:

Program Definition v has field (s : string) (v : Value) : bool :=
match TheoryList.assoc eq str dec s (out E v) with
| Some v⇒ true | None⇒ false end.

Program Definition v dot (s : string) (v : Value) : Value :=
match TheoryList.assoc eq str dec s (out E v) with
| Some v⇒v | None⇒v null end.

Semantics: Entity Types and Expressions:
F[[{` : T}]](t) = is E(t)∧ v has field(`, t)∧F[[T ]](v dot(t, `))
W[[{` : T}]](t) = is E(t)∧ v has field(`, t)∧W[[T ]](v dot(t, `))
R[[{`i⇒ ei

i∈1..n}]] = Bind x1⇐ R[[e1]] in . . .Bind xn⇐ R[[en]] in
Return({`i⇒ xi

i∈1..n})
R[[e.`]] = Bind x⇐ R[[e]] in
(if is E(x)∧ v has field(`,x) then Return(v dot(x, `)) else Error)

The semantics of from x in e1 let y = e2 accumulate e3 relies on
a function res accumulate that folds over a collection by applying
a function of sort ClosureRes2, and if no error occurs at any step
it returns a value, otherwise it returns Error. The model of the
sort ClosureRes2 is the set of functions from Value to Value to
Result. We write the lambda-abstraction fun x y→ R[[e3]] for such
a function. There are several standard techniques for representing
lambda-abstractions in first-order logic [31]. Since the accumulate
expression is pure it produces the same result no matter what order
is used when folding.

Model: Functions and Predicates on Collections:

Program Definition v mem (v cv : Value) : bool :=
mem eq rval dec v (out C cv).

Program Definition v add (v cv : Value) : Value :=
(C (insert in sorted vb v (out C cv))).

Definition ClosureRes2 := Value→Value→Result.

Program Fixpoint res acc fold (f : ClosureRes2) (vb : VBag) (a :
Result) {measure List.length vb} : Result :=

match vb with
| nil⇒a
| v :: vb’⇒match a with Return va⇒ res acc fold vb’ (f va v) |

Error⇒Error end
end.

Definition res accumulate (f : ClosureRes2) (cv v : Value) : Result :=
if is C cv then res acc fold f (out C cv) (Return v) else Error.

The semantics of the collection type T∗ is the set of all val-
ues (denoted by t) that are collections (is C(t)) containing only el-
ements of type T (∀x.v mem(x, t)⇒ F[[T ]](x)).
Semantics: Collection Types and Expressions:
F[[T∗]](t) = is C(t)∧ (∀x.v mem(x, t)⇒ F[[T ]](x)) x /∈ fv(T, t)
W[[T∗]](t) = is C(t)∧ (∃x.v mem(x, t)∧W[[T ]](x)) x /∈ fv(T, t)

R[[{v1, . . . ,vn}]] = Return({v1, . . . ,vn})
R[[e1 :: e2]] =

Bind x1⇐ R[[e1]] in Bind x2⇐ R[[e2]] in
(if is C(x2) then Return(v add(x1,x2)) else Error)

R[[from x in e1 let y = e2 accumulate e3]] =
Bind x1⇐ R[[e1]] in Bind x2⇐ R[[e2]] in
res accumulate((fun x y→ R[[e3]]),x1,x2)

In order to give a semantics to function applications we recall
that pure expressions may only call labeled-pure functions, and
that the body of a labeled-pure function is itself a pure expres-
sion. For each labeled-pure function definition f (x1 : T1, . . . ,xn :
Tn) : U{e}, the model of the symbol f is the total function f ∈
Valuen → Result such that f (v1, . . . ,vn) is the result r such that
e{v1/x1} . . .{vn/x1} ⇓ r. (We know that there is a unique r such
that e{v1/x1} . . .{vn/x1} ⇓ r because e is pure.) Hence, the follow-
ing holds by definition:

LEMMA 1. If f (x1 : T1, . . . ,xn : Tn) : U{e} and e is pure and
e{v1/x1} . . .{vn/xn} ⇓ r then |= f (v1, . . . ,vn) = r.

Semantics: Function Application:
R[[ f (e1, . . . ,en)]] =

Bind x1⇐ R[[e1]] in . . .Bind xn⇐ R[[en]] in f (x1, . . . ,xn)

The operational semantics preserves logical meaning:

PROPOSITION 1. For all closed pure expressions e and e′, if e→ e′
then |= R[[e]] = R[[e′]].

Moreover, we have a full abstraction result for this first-order
language: the equalities induced by the operational and logical
semantics of closed pure expressions coincide.

THEOREM 1 (Full Abstraction). For all closed pure expressions e
and e′, |= R[[e]] = R[[e′]] if and only if, for all r, e ⇓ r⇔ e′ ⇓ r.

3.1 Algorithmic Purity Check
The purity property defined in §2.3 is undecidable. We use a syntac-
tic termination condition on the applied functions together with a
restriction on the accumulate expressions to make the purity checks
tractable.

We call an expression e algorithmically pure if and only if the
following three conditions hold:

(1) if e is a function application f (e1, . . . ,en) then f is labeled-pure,
and only calls f (directly or indirectly) on structurally smaller
arguments;

(2) if e is of the form from x in e1 let y = e2 accumulate e3 then

|= R[[let y = e3{x1/x}{y1/y} in e3{x2/x}]] =
R[[let y = e3{x2/x}{y1/y} in e3{x1/x}]]



(where the variables x1, x2, and y1 do not appear free in e3);

(3) all the proper subexpressions of e are algorithmically pure (in-
cluding the ones inside all refinement types contained by e).

Condition (1) enforces termination of algorithmically pure ex-
pressions: only labeled-pure functions can be called and if these
functions are recursive then recursive calls can only be on syntac-
tically smaller arguments. Condition (2) only allows accumulates
in an algorithmically pure expression if the order in which the ele-
ments are processed is irrelevant for the final result. In general we
call a (mathematical) function f : X ×Y → Y order-irrelevant if
f (x1, f (x2,y)) = f (x2, f (x1,y)) for all x1, x2 and y. Enforcing that
the semantics of the body of accumulate expressions is an order-
irrelevant function is a sufficient condition for the uniqueness of
evaluation results. We phrase this condition in terms of the logical
semantics and check it using the SMT solver. Order-irrelevance is
less restrictive than conditions found in the literature such as asso-
ciativity and commutativity [28]. If f is associative and commuta-
tive then f is also order-irrelevant, but the converse fails in general.
If f is order-irrelevant its two arguments need not even have the
same type.

THEOREM 2. If e is algorithmically pure then e is pure.

The logical semantics is defined only on pure expressions.
Given the logical semantics, we obtain algorithmic purity, a suf-
ficient condition for purity. In the remainder of the paper we rely
only on algorithmic purity.

4. Declarative Type System
In this section, we give a non-algorithmic type assignment relation,
and prove preservation and progress properties relating it to the
operational semantics. In the next section, we present algorithmic
rules—the basis of our type-checker—for proving type assignment.

Each judgment of the type system is with respect to a typing
environment E, of the form x1 : T1, . . . ,xn : Tn, which assigns a type
to each variable in scope. We write ∅ for the empty environment,
dom(E) to denote the set of variables defined by a typing environ-
ment E, and F[[E]] for the logical interpretation of E.

Environments and their Logical Semantics:
E ::= x1 : T1, . . . ,xn : Tn type environments
dom(x1 : T1, . . . ,xn : Tn) = {x1, . . . ,xn}
F[[x1 : T1, . . . ,xn : Tn]]

4
= F[[T1]](x1)∧·· ·∧F[[Tn]](xn)

Environments and Judgments of the Declarative Type System:
E ` � environment E is well-formed
E ` T in E, type T is well-formed
E ` T <: T ′ in E, type T is a subtype of T ′
E ` e : T in E, expression e has type T

Global Assumptions:
For each function definition f (x1 : T1, . . . ,xn : Tn) : U{e f }
we assume that x1 : T1, . . . ,xn : Tn ` e f : U .

Rules of Well-Formed Environments and Types: E ` �, E ` T
(Env Empty)

∅ ` �

(Env Var)
E ` T x /∈ dom(E)

E,x : T ` �

(Type Any)
E ` �

E ` Any

(Type Scalar)
E ` �
E ` G

(Type Collection)
E ` T

E ` T∗

(Type Entity)
E ` T

E ` {` : T}

(Type Refine)
E,x : T ` e : Logical
e alg. pure
E ` (x : T where e)

The subtype relation is defined as logical implication between
the logical semantics of well-formed types.
Rule of Semantic Subtyping:
(Subtype)
E ` T E ` T ′ x /∈ dom(E)
|= (F[[E]]∧F[[T ]](x)) =⇒ F[[T ′]](x)

E ` T <: T ′

Rules of Type Assignment: E ` e : T
(Exp Singular Subsum)
E ` e : T E ` [e : T ]<: T ′

E ` e : T ′

(Exp Var)
E ` � (x : T ) ∈ E

E ` x : T

(Exp Const)
E ` �

E ` c : Any

(Exp Eq)
E ` e1 : T1
E ` e2 : T2
T = Logical

E ` e1 == e2 : T

(Exp Operator)
⊕ 6= (==)
⊕ : T1, . . . ,Tn→ T
E ` ei : Ti ∀i ∈ 1..n
E ` ⊕(e1, . . . ,en) : T

(Exp Cond)
E ` e1 : Logical
E, : Ok(e1) ` e2 : T
E, : Ok(!e1) ` e3 : T

E ` (e1?e2 : e3) : T

(Exp Let)
E ` e1 : T E,x : T ` e2 : U x /∈ fv(U)

E ` let x = e1 in e2 : U

(Exp Test)
E ` e : Any E ` T

E ` e in T : Logical

(Exp Entity)
E ` ei : Ti ∀i ∈ 1..n E ` �

E ` {`i⇒ ei
i∈1..n} : {`i : Ti

i∈1..n}

(Exp Dot)
E ` e : {` : T}

E ` e.` : T

(Exp Coll)
E ` vi : T ∀i ∈ 1..n E ` �

E ` {v1, . . . ,vn} : T∗

(Exp Add)
E ` e1 : T E ` e2 : T∗

E ` (e1 :: e2) : T∗
(Exp Acc)
E ` e1 : T∗ E ` e2 : U
E,x : T,y : U ` e3 : U
x,y /∈ fv(U)

E ` from x in e1
let y = e2
accumulate e3

: U

(Exp App)
given f (x1 : T1, . . . ,xn : Tn) : U{e f }
{x1, . . . ,xn}∩ dom(E) =∅
σi = {e1/x1} . . .{ei/xi} ∀i ∈ 0..n
ei alg. pure E ` ei : Tiσi−1 ∀i ∈ 1..n

E ` f (e1, . . .en) : Uσn

The rule (Exp Cond) records the appropriate test expression in
the environment, when typing the branches. The actual value of a
type Ok(e) is arbitrary, the point is simply to record that condition
e holds [23], provided it is pure. When e is not pure, Ok(e) is
equivalent to Any.

Typed Singleton Types and Ok Types:

[e : T ] 4=
{

(x : T where x == e) (x /∈ fv(e)) if e alg. pure
T otherwise

Ok(e) 4=
{

(x : Any where e) (x /∈ fv(e)) if e alg. pure
Any otherwise

The rule (Exp Singular Subsum) can be seen as a combination
of the following conventional rules of subsumption and singleton
introduction.
(Exp Subsum)
E ` e : T E ` T <: T ′

E ` e : T ′

(Exp Singleton)
E ` e : T

E ` e : [e : T ]

Both these rules are derivable from (Exp Singular Subsum). In
fact, we can go in the other direction too so that the type assign-
ment relation would be unchanged were we to replace (Exp Sin-
gular Subsum) with (Exp Subsum) and (Exp Singleton). Still, the
given presentation is simpler to work with because (Exp Singular
Subsum) is the only rule not determined by the structure of the ex-
pression being typed.



In the rule (Exp App), we require that each ei in a dependent
function application f (e1, . . .en) is (algorithmically) pure. This al-
lows us to substitute these expressions into U . To form, say, f (e)
where e is impure, we can work around this restriction by writing
let x = e in f (x) instead.

The following soundness property relates type assignment to
the logical semantics of types and expressions. Point (1) is that the
logical value of a well-typed expression satisfies the interpretation
of its type as a predicate. Point (2) is that evaluating a type-test for
a well-formed type cannot go wrong.

THEOREM 3 (Logical Soundness).

(1) If e is alg. pure and E ` e : T then:
• |= F[[E]] =⇒ Proper(R[[e]])
• |= F[[E]] =⇒ F[[T ]](out V(R[[e]]))

(2) If E `U then |= F[[E]] =⇒ ∀y.¬W[[U ]](y), for y /∈ fv(U).

The rule (Exp Singular Subsum), depends on the relation E `
[e : T ] <: T ′, which we refer to as singular subtyping. We illus-
trate (Exp Singular Subsum) and singular subtyping with regard
to (Exp Const). For example, to derive that E ` [42 : Any] <:
Integer note that |= F[[[42 : Any]]](x) ⇔ x = 42 and hence that
|= F[[[42 : Any]]](x) =⇒ In Integer(x).

LEMMA 2 (Singular Subtyping).
Suppose E ` e : T and E ` T ′ and x /∈ dom(E).

(1) If e is alg. pure then:
E ` [e : T ]<: T ′ iff |= F[[E]]∧F[[T ]](out V(R[[e]]))

=⇒ F[[T ′]](out V(R[[e]]))
(2) If e is not alg. pure then:

E ` [e : T ]<: T ′ iff |= F[[E]]∧F[[T ]](x) =⇒ F[[T ′]](x)

By the following lemma, singular subtyping is transitive, and
hence we have that any derivation of a type assignment can be seen
as one instance of a structural rule plus one instance of (Exp Sin-
gular Subsum). This observation is useful, for example, in proving
type preservation, Theorem 4.

LEMMA 3 (Transitivity of Singular Subtyping).
If E ` [e : T ]<: T ′ and E ` [e : T ′]<: T ′′ then E ` [e : T ]<: T ′′.

We have proved standard derived judgment, weakening, bound
weakening, and substitution lemmas for the type system, which are
used in the proofs of the progress and preservation theorems.

THEOREM 4 (Preservation).
If E ` e : T and e→ e′ then E ` e′ : T .

THEOREM 5 (Progress).
If ∅ ` e : T and e is not a value then ∃e′.e→ e′.

5. Algorithmic Aspects
5.1 Optimizing the Logical Semantics
Our logical semantics propagates error values so as to match the
stuck expressions of our operational semantics. Tracking errors
is important, but observe that when we use our logical semantics
during semantic subtyping, we only ever ask whether well-formed
types are related. Every expression occurring in a well-formed type
is itself well-typed, and so, by Theorem 3, its logical semantics is a
proper value, not Error.

This suggests that when checking subtyping we can optimize
the logical semantics given the assumption that the expressions
occurring within the two types are well-typed. In particular, we can
apply the following lemma to transform monadic error-checking
binds into ordinary lets.

LEMMA 4. If e alg. pure and E ` e : T then |=F[[E]] =⇒ (Bind x⇐
R[[e]] in t) = (let x = out V(R[[e]]) in t).

Proof: By definition of notation, Bind x⇐ R[[e]] in t is the term
(if ¬Proper(R[[e]]) then Error else let x = out V(R[[e]]) in t). By
Theorem 3, |= F[[E]] =⇒ Proper(R[[e]]). Hence the result. 2

The following tables present the optimized definitions used in
our type-checker, and the following theorem states their correctness
with respect to the error tracking semantics of §3.

Optimized Semantics of Types: F′[[T ]](t)
F′[[Any]](t) = true
F′[[Integer]](t) = In Integer(t)
F′[[Text]](t) = In Text(t)
F′[[Logical]](t) = In Logical(t)
F′[[{` : T}]](t) = is E(t)∧ v has field(`, t)∧F′[[T ]](v dot(t, `))
F′[[T∗]](t) = is C(t)∧ (∀x.v mem(x, t)⇒ F′[[T ]](x)) x /∈ fv(T, t)

F′[[(x : T where e)]](t) =
F′[[T ]](t)∧ let x = t in V[[e]] = true x /∈ fv(T, t)

Optimized Semantics of Pure Typed Expressions: V[[e]]
V[[x]] = x
V[[c]] = c
V[[⊕(e1, . . . ,en)]] = O⊕(V[[e1]], . . . ,V[[en]])
V[[e1?e2 : e3]] = (if V[[e1]] = true then V[[e2]] else V[[e3]])
V[[let x = e1 in e2]] = let x = V[[e1]] in V[[e2]]
V[[e in T ]] = (if F′[[T ]](V[[e]]) then true else false)
V[[e : T ]] = V[[e]]
V[[{`i⇒ ei

i∈1..n}]] = {`i⇒ V[[ei]]
i∈1..n}

V[[e.`]] = v dot(V[[e]], `)
V[[{v1, . . . ,vn}]] = {v1, . . . ,vn}
V[[e1 :: e2]] = v add(V[[e1]],V[[e2]])
V[[from x in e1 let y = e2 accumulate e3]] =

v accumulate((fun x y→ V[[e3]]),V[[e1]],V[[e2]])

We omit the definition of the function v accumulate, which is a
variant of res accumulate that works with values rather than results.
See the technical report for the full details [8].

THEOREM 6 (Soundness of Optimized Semantics).

(1) If E ` T and x /∈ dom(E) then:
|= (F[[E]] =⇒ (F[[T ]](x)⇔ F′[[T ]](x)).

(2) If E ` e : T then:
|= F[[E]] =⇒ (R[[e]] = Return(V[[e]])).

Proof: The proof is by simultaneous induction on the derivations
of E ` T and E ` e : T , with appeal to Theorem 3 and Lemma 4.2

5.2 Bidirectional Typing Rules
The Dminor type system is implemented as a bidirectional type
system [35]. The key concept of bidirectional type systems is that
there are two typing relations, one for type checking, and one for
type synthesis. The chief characteristic of these relations is that
they are local in the sense that type information is passed between
adjacent nodes in the syntax tree without the use of long-distance
constraints such as unification variables, as used in, e.g., ML.

Judgments of the Algorithmic Type System:
E ` e→ T in E, expression e synthesizes type T
E ` e← T in E, expression e checks against type T
E B � environment E is alg. well-formed
E B T in E, type T is alg. well-formed
E B S <: T in E, type S is alg. a subtype of type T

Both subtyping and well-formedness rely on type-checking, so
we need to distinguish versions of these judgments that use the



declarative typing rules from versions that use the bidirectional typ-
ing rules (and in the case of subtyping, the optimized semantics).
For brevity we omit the definitions, which may be found in the
technical report [8].

Rules of Type Synthesis: E ` e→ T
(Synth Var)
E B � (x : T ) ∈ E

E ` x→ [x : T ]

(Synth Const)
E B �

E ` c→ [c : typeof (c)]

(Synth Operator)
E ` ei← Ti ∀i ∈ 1..n ⊕ : T1, . . . ,Tn→ T

E ` ⊕(e1, . . . ,en)→ [⊕(e1, . . . ,en) : T ]

(Synth Cond)
E ` e1← Logical E, : Ok(e1) ` e2→ T2 E, : Ok(!e1) ` e3→ T3

E ` (e1?e2 : e3)→ (if e1 then T2 else T3)

(Synth Let)
E ` e1→ T1 E,x : T1 ` e2→ T2 E ` T2{e1/x}

E ` let x = e1 in e2→ T2{e1/x}
(Synth Test)
E ` e← Any E B T

E ` e in T → Logical

(Synth Ascribe)
E ` e← T

E ` (e : T )→ T

(Synth Entity)
E ` e1→ T1 · · · E ` en→ Tn E B �

E ` {`i⇒ ei
i∈1..n}→ {`1 : T1}& · · ·& {`n : Tn}

(Synth Dot)
E ` e→ T norm(T ) = D D.`;U

E ` e.`→ [e.` : U ]

(Synth Coll)
E ` vi→ Ti ∀i ∈ 1..n E B �

E ` {v1, . . . ,vn}→ (T1 | . . . | Tn)∗
(Synth Add)
E ` e1→ T1 E ` e2→ T2 norm(T2) = D2 D2.Items ;U2

E ` e1 :: e2→ ([e1 : T1] |U2)∗
(Synth Acc)
E ` e1→ T1 norm(T1) = D1 D1.Items ;U1
E ` e2→ T2 E,x : U1,y : T2 ` e3← T2

E ` from x in e1 let y = e2 accumulate e3→ T2

(Synth App)
given f (x1 : T1, . . . ,xn : Tn) : U{e f }
σi = {e1/x1} . . .{ei/xi} ∀i ∈ 0..n
ei is alg. pure E ` ei← (Tiσi−1) ∀i ∈ 1..n

E ` f (e1, . . .en)→Uσn

The rules (Synth Var), and (Synth Const) yield singleton types
for all variables and constants, where the function typeof returns
the type of a given constant. Rule (Synth Entity) uses intersection
types to encode record types.

The (Synth Cond) rule synthesizes a conditional type, which is
the union of the two types synthesized for the branches along with
the test expression (if it is pure) to allow more precise typing.

Encoding of Conditional Types:
if e then T else U 4

={
( : T where e) | ( : U where !e) if e alg. pure
T |U otherwise

The (Synth Ascribe) rule allows the user to provide hints to
the type-checker in the form of type annotations (e : T ). Such

type annotations have no operational significance (in the small-step
semantics e : T → e), and are necessary in case the type-checker
cannot infer the loop invariants of accumulate expressions.

In several of the type synthesis rules we need to inspect compo-
nents of intermediate types. In simple type systems this is straight-
forward as one can rely on the syntactic structure of types, but for
rich type systems such as the one of Dminor this is not possible.
In other dependently-typed languages, either the programmer is re-
quired to insert casts to force the type into the appropriate syntac-
tic shape [43], or types are first executed until a normal form is
reached [3]. Unfortunately, neither approach is acceptable in Dmi-
nor: the former forces too many casts on the programmer, and the
latter is not feasible because refinements often refer to potentially
very large data sets. One pragmatic possibility is to attempt type
normalization but place some ad hoc bound on evaluation [26].
As an alternative, we define a disjunctive normal form (DNF) for
types, along with a normalization function, norm, for translating
types into DNF, and procedures for extracting type information
from DNF types. In practice, this approach works well.
Normal Types (DNF):
D ::= R1 | . . . | Rn normal disjunction (Empty if n = 0)
R ::= x : C where e normal refined conjunction
C ::= A1 & . . . & An normal conjunction (Any if n = 0)
A ::= G | T∗ | {` : T} atomic type

We can define two partial functions to extract field and item
types from normalized entity and collection types. These are
written D.` ; U and D.Items ; U , respectively. For example
({` : Integer} | {` : Logical}).` ; Integer | Logical and ((Text∗ &
Logical) | Integer∗).Items ; Text | Integer. Note that both these
functions are partial, e.g. ({` : Integer} | {`′ : Logical}).` 6;. The
simple definitions of these functions are in the technical report [8].
Rules of Type Checking: E ` e← T

(Swap)
E ` e→ T E B [e : T ]<: T ′

E ` e← T ′

(Check Cond)
E ` e1← Logical
E, : Ok(e1) ` e2← T
E, : Ok(!e1) ` e3← T

E ` e1?e2 : e3← T

(Check Let)
E ` e1→ T E,x : T ` e2←U x 6∈ fv(U)

E ` let x = e1 in e2←U

(Check Dot)
E ` e←{` : T}

E ` e.`← T

The (Swap) rule tests for singular subsumption and applies if the
expression to be type-checked is not a conditional, let-expression
or a field selection. Typically (e.g. SAGE [26]), the type checking
relation for a bidirectional type system consists of a single rule of
the form:

E ` e→ S E B S <: T

E ` e← T
However, we have found in practice that in the cases where the ex-
pression is a conditional or a let-expression, we get better precision
of type checking by passing the type through to the subexpressions,
as shown in the (Check Cond) and (Check Let) rules. Similarly, we
can pass through an entity type in the (Check Dot) rule.

LEMMA 5 (Synthesis Checkable). If E ` e→ T then E ` e← T .

THEOREM 7 (Soundness of Algorithmic Type System).

(1) If E B � then E ` �.
(2) If E B T then E ` T .
(3) If E B S <: T and E ` S then E ` S <: T .
(4) If E ` e→ T then E ` e : T .
(5) If E ` e← T then E ` e : T .



6. Exploiting SMT Models
SMT solvers such as Z3 can produce a potential model in case they
fail to prove the validity of a proof obligation (that is, when they
show the satisfiability of its negation, or when they give up). In
our case such models can be automatically converted into assign-
ments mapping program variables to Dminor values. Because of
the inherent incompleteness of the SMT solver2 and of the axiom-
atization we feed to it, the obtained assignment is not guaranteed
to be correct. However, given a way to validate assignments, one
can use the correct ones to provide very precise counterexamples
when type-checking fails, and to find inhabitants of types statically
or dynamically, in a way that amounts to a new style of constraint
logic programming.

6.1 Precise Counterexamples to Type-checking
The type-checking algorithm from §5.2 crucially relies on subtyp-
ing, as in the rule (Swap), and our semantic subtyping relation
E ` T <: T ′ produces proof obligations of the form

|= (F[[E]]∧F[[T ]](x)) =⇒ F[[T ′]](x)

for some fresh variable x. If the SMT solver fails to prove such an
obligation, it produces a potential model from which we can extract
an assignment σ mapping x and all variables in E to Dminor values.
To verify that σ is a valid counterexample, we check the following
three conditions:

(1) E ` T and E ` T ′

(2) (yσ in Uσ)→∗ true, for all (y : U) ∈ E;

(3) (xσ in (T &!T ′)σ)→∗ true.

Condition (1) enforces that we only evaluate pure expressions
therefore ensuring termination and confluence of the reduction.
Condition (2) enforces that the values for all variables in E have
their corresponding (possibly dependent) types. Condition (3)
checks whether the value assigned to x by σ is an element of T
but not an element of T ′. If these three checks succeed, σ is a valid
counterexample to typing that we display to the user.

LEMMA 6. If the three checks above succeed then E 6` T <: T ′.

Since the type-checker is itself over-approximating, there is no
guarantee that an expression e that fails to type-check is going to
get stuck when evaluated. The best we might do is to evaluate eσ

for a fixed number of steps, a fixed number of times (remember that
e can be non-deterministic), searching for a counterexample trace
we can additionally display to the user.

6.2 Finding Elements of Types Statically
Type emptiness can be phrased in terms of subtyping as E ` T <:
Empty, or equivalently |= ¬(F[[E]]∧ F[[T ]](x)) for some fresh x.
We additionally check that F[[E]] is satisfiable (and the model the
SMT solver produces is a correct one) to exclude the case that the
environment is inconsistent and therefore any subtyping judgment
holds vacuously. Hence, we can detect empty types during type-
checking and issue a warning to the user if an empty type is found.
This is useful, since one can make mistakes when writing types
containing complicated constraints. Moreover, if the SMT solver
cannot prove that a type is empty we again obtain an assignment σ ,
which we can validate as in §6.1. If validation succeeds we know
that xσ is an element of T σ , and we can display this information if
the user hovers over a type.

2 Other than background theories with a non-recursively enumerable set of
logical consequences such as integer arithmetic, other sources of incom-
pleteness in SMT solvers are quantifiers (which are usually heuristically
instantiated) and user-defined time-outs.

LEMMA 7. If the three checks in §6.1 succeed for T ′ = Empty then
∅ ` xσ : T σ and ∅ ` yσ : Uσ for all (y : U) ∈ E.

6.3 Finding Elements of Types Dynamically
We can use the same technique to find elements of types dynam-
ically. We augment the calculus with a new primitive expression
elementof T (not present in the M language) which tries to find an
inhabitant of T . If successful the expression returns such a value,
but otherwise it returns null. (We can always choose T so that null
is not a member, so that returning null unambiguously signals that
no member of T was found.)

Operational Semantics for Finding Elements of Types:
elementof T → v where v in T →∗ true
elementof T → null

Finding elements of types is actually simpler to do dynamically
than statically: at run-time all variables inside types have already
been substituted by values, so there are fewer checks to perform.

The outcome of elementof T is in general non-deterministic,
and depends in practice on the computational power and load of
the system as well as on the timeout used when calling the SMT
solver. Because of this elementof T expressions are considered
algorithmically impure, and therefore cannot appear inside types.

Typing rules for elementof:
(Exp elementof)

E ` T

E ` elementof T : (T | [null])

(Synth elementof)
E ` T

E ` elementof T → (T | [null])

LEMMA 8. If elementof T → v and ∅ ` T then ∅ ` v : T | [null].

The new elementof T construct enables a form of constraint
programming in Dminor, in which we iteratively change the con-
straints inside types in order to explore a large state space. For in-
stance the following recursive function computes all correct config-
urations of a complex system when called with the empty collection
as argument. Correctness is specified by some type GoodConfig.

allGoodConfigs(avoid : GoodConfig∗) : GoodConfig∗ {
let m = elementof (GoodConfig where !(value in avoid)) in
(m == null) ? {} : (m :: (allGoodConfigs(m :: avoid)))

}

Programming in this purely declarative style can be appealing
for rapid prototyping or other tasks where efficiency is not the main
concern. One only needs to specify what has to be computed in the
form of a type. It is up to the SMT solver to use the right (semi-
)decision procedures and heuristics to perform the computation. If
this fails or is too slow one can instead implement the required
functionality manually. There is little productivity loss in this case
since the types one has already written will serve as specification
for the code that needs to be written manually.

7. Implementation
Our prototype Dminor implementation is approximately 2700 lines
of F] code, excluding the lexer and parser. Our type-checker imple-
ments the algorithmic purity check from §3.1, the optimized logical
semantics from §5.1, and the bidirectional typing rules from §5.2.
We use Z3 [13] to discharge the proof obligations generated by se-
mantic subtyping. Together with the proof obligations we feed to
Z3 a 500 line axiomatization of our intended model in SMT-LIB
format [36], which uses the theories of integers, datatypes and ex-
tensional arrays. The formal definition of our intended model of
Dminor is just over 4000 lines of Coq.



We have tested our type-checker on a test suite consisting of
about 130 files, some type-correct and some type-incorrect, some
hand-crafted by us and some transliterated from the M preliminary
release. Even without serious optimization the type-checker is fast.
Checking each of the 130 files in our test suite on a typical laptop
takes from under 1 second (for just startup and parsing) to around
3 seconds (for type-checking an interpreter for while-programs—
see §1.1—that discharges more than 300 proof obligations). Also,
our experience with Z3 has been very positive so far—whilst it is
possible to craft subtyping tests that cannot be efficiently checked,3
Z3 has performed very well on the idioms in our test suite. Still,
we cannot draw firm conclusions until we have studied bigger
examples.

We have also implemented the techniques for exploiting SMT
solver models described in §6. We built a plugin for the Microsoft
Intellipad text editor [1] that displays precise counterexamples to
typing, flags empty types and otherwise displays one element of
each type defined in the code. Moreover, our interpreter for Dminor
supports elementof for dynamically generating instances of types
(§6.3). This works well for simple constraints involving equalities,
datatypes and simple arithmetic, and types that are not too deeply
nested. However, scaling this up to arbitrary Dminor types is a chal-
lenge that will require additional work, as well as further progress
in SMT solvers.

8. Related Work
Whilst Dminor’s combination of refinement types and type-tests is
new and highly expressive, it builds upon a large body of related
work on advanced type systems. Refinement types have their ori-
gins in early work in theorem proving systems and specification
languages, such as subset types in constructive type theory [33], set
comprehensions in VDM [25], and predicate subtypes in PVS [39].
In PVS, constraints found when checking predicate subtypes be-
come proof obligations to be proved interactively. More recently,
Sozeau [41] extends Coq with subset types; as in PVS the proofs of
subset type membership have to be constructed using tactics.

Freeman and Pfenning [21] extended ML with a form of re-
finement type, and Xi and Pfenning [43] considered applications of
dependent types in an extension of ML. In both of these systems,
decidability of type checking is maintained by restricting which ex-
pressions can appear in types. Lovas and Pfenning [29] presented a
bidirectional refinement type system for LF, where a restriction on
expressions leads to an expressive yet decidable type system.

Other work has combined refinement types with syntactic sub-
typing [6, 38] but none includes type-test in the refinement lan-
guage. Closest to our type system is the work of Flanagan et al. on
hybrid types and SAGE [26]. SAGE also uses an SMT solver to
check the validity of refinements but not for subtyping (checked by
traditional syntactic techniques), and does not allow type-test ex-
pressions in refinements. However, SAGE supports a dynamic type
and employs a particular form of hybrid type checking [20] that
allows particular expressions to have their type-check deferred un-
til run-time. The idea of hybrid types is to strike a balance between
runtime checking of contracts, as in Eiffel [32] and DrScheme [18],
and static typing. Compared to purely static typing this can reduce
the number of false alarms generated by type-checking.

In spite of early work on semantic subtyping by Aiken and
Wimmers [2] and Damm [12], most programming and query lan-
guages instead use a syntactic notion of subtyping. This syntactic
approach is typically formalized by an inductively or co-inductively
defined set of rules [34]. Unfortunately, deriving an algorithm from
such a set of rules can be difficult, especially for advanced features
such as intersection and union types [16].

3 Z3 gets at most 1 second for each proof obligation by default.

X10 [40] is an object-oriented language that supports refine-
ment types. A class C can be refined with a constraint c on the
immutable state of C, resulting in a type written C(:c). The base
language supports only simple equality constraints but further con-
straints can be added and multiple constraint solvers can be inte-
grated into the compiler. In comparison with Dminor, X10 uses a
mixture of semantic and syntactic subtyping, while its constraint
language [40, §2.11] does not support type-test expressions.

The introduction of XML and XML query languages led to
renewed (practical) interest in semantic subtyping. In the context of
XML documents, there is a natural generalization of DTDs where
the structures in XML documents can be described using regular
expression operations (such as *, ?, and |) and subtyping between
two types becomes inclusion between the set of sequences that
are denoted by the regular expression types. Hosoya and Pierce
first defined such a type system for XML [24] and their language,
XDuce. Frisch, Castagna, and Benzaken [22] extended semantic
subtyping to function types and propositional types, with type-test,
but not refinement types, resulting in the language CDuce [7].

CDuce allows expressions to be pattern-matched against types
and statically detects if a pattern-matching expression is non-
exhaustive or if a branch is unreachable. If this is the case a coun-
terexample XML document is generated that exhibits the problem.
CDuce also issues warnings if empty types are detected. These
tasks are much simpler in CDuce than they are in our setting, since
we additionally have to deal with general refinement types.

Typed Scheme [42] makes use of type-test expressions, union
types and notions of visible and latent predicates to type-check
Scheme programs. It would be interesting to see if these idioms
can be internalized in the Dminor type system using refinements.

PADS [19] develops a type theory for ad hoc data formats such
as system traces, together with a rich range of tools for learn-
ing such formats and integrating into existing programming lan-
guages. The PADS type theory has refinement types, dependent
pairs, and intersection types, but not type-test. There is a syntactic
notion of type equivalence, but not subtyping. Dminor would be a
useful language for programming transformations on data parsed
using PADS, as our type system would enforce the constraints
in PADS specifications, and hence guarantee statically that trans-
formed data remains well-formed. Existing interfaces of PADS to
C or to OCaml do not offer this guarantee.

9. Conclusions
We have described Dminor, a simple, yet flexible, functional lan-
guage for defining data models and queries over these data models.

The main novelty of Dminor is its especially rich type system.
The combination of refinement types and type-test appears to be
new. On top of familiar arithmetic constraints on types (analogous
to the sort checked dynamically by other data modeling languages)
we have given examples of how this type system can, in addition,
encode singleton, nullable, union, intersection, negation, and alge-
braic types, although without first-class functions.

The other main contribution of this paper is a technique to type-
check Dminor programs statically: we combine the use of a bidirec-
tional type system with the use of an SMT solver to perform seman-
tic subtyping. (Other systems have either devised special purpose
algorithms for semantic subtyping, or used theorem provers only
for refinement types.) The design of our bidirectional type system
to enable precise typing of programs appears novel. We have im-
plemented our type system in F] using the Z3 SMT solver. SMT
solvers are now of sufficient maturity that they can realistically be
thought of as a platform upon which many applications, including
type systems, may be built.

Our type-checker, like all static analyzers, has the potential to
generate false negatives, that is, rejecting programs as type incor-



rect that are, in fact, type correct. As any SMT solver is incomplete
for the first-order theories that we are interested in, it is possible
that the solver is unable to determine an answer to a logical state-
ment. SAGE [20] avoids these problems by catching these cases and
inserting a cast so that the test is performed again at run-time. This
has the pleasant effect of not penalizing the developer for any pos-
sible incompletenesses of the SMT solver. The techniques used in
SAGE should apply to Dminor without any great difficulty.

Finally, the implications of this work go beyond the core cal-
culus Dminor. PADS, JSON, and M, for example, show the sig-
nificance of programming languages for first-order data. Our work
establishes the usefulness of combining refinement types and type-
test expressions when programming with first-order data, and the
viability of type-checking such programs with an SMT solver.
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