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Abstract. Inspired by virtual machine placement problems, we study
heuristics for the Vector Bin Packing problem, where we are required to
pack n items represented by d-dimensional vectors, into as few bins of
size 1d each as possible. We systematically study variants of the First Fit
Decreasing (FFD) algorithm that have been proposed for this problem.
Inspired by bad instances for FFD-type algorithms, we propose new ge-
ometric heuristics that run nearly as fast as FFD for reasonable values
of n and d.

We report on empirical evaluations of the FFD-based, as well as the
new heuristics on large families of distributions. We identify which FFD
variants work best in most cases and show that our new heuristics usually
outperform FFD-based heuristics and can sometimes reduce the number
of bins used by up to ten percent. Further, in all cases where we were
able to compute the optimal solution we found our new heuristics within
few percent of optimal. We conclude that these new heuristics are an
excellent alternative to FFD-based heuristics and are prime candidates
to be used in practice.

1 Introduction

In the d−dimensional Vector Bin Packing Problem (VBPd) we are given a set
I of n items I1, I2, ..., In where each Ii ∈ Rd. A valid packing is a partition of
I into k sets (or bins) B1, ..., Bk where for each bin j and for each dimension i,∑
`∈Bj

I`i ≤ 1. The goal in the VBPd problem is to find a valid packing while
minimizing k. VBPd is NP-hard for every d and APX-hard for d ≥ 2.

Vector bin packing models well static resource allocation problems where
there is a set of servers with known capacities and a set of services with known
demands. The demands of services and the capacity of servers span across sev-
eral dimensions. Recently there is renewed interest in the VBP problem because
it models particulary well the problem of virtual machine placement. Virtualiza-
tion has been a growing trend in the data-center with the promise of utilizing
compute power more efficiently. Many businesses have started adopting this tech-
nology to save on IT budgets and maintenance costs. However the power of this
technique is only as good as the management layer that schedules/assigns the
virtual machines into a pool of machines in the data-center. When doing this
assignment, it is important to ensure that no host gets overloaded while min-
imizing the number of hosts used. The goal is not only to reduce the upfront



investment in hardware, but to minimize the energy cost of operating the data
center, even when hardware may have been over-provisioned.

This problem is made difficult by the multidimensional nature of load. For
example, each virtual machine has its own CPU utilization, memory, and disk
and network input and output requirements. Analogously, each host has a ca-
pacity across each of these dimensions, and the assignment should ensure that
the number of hosts is minimized while no capacity constraint is violated. More-
over, often these requirements vary over time, and if we wish to avoid migration,
we can model the problem by having a dimension for each resource, for each
time epoch. This has the effect of further increasing the dimensionality of the
problem.

If we assume that when different virtual machines are placed in the same
host, their load across each dimension is accrued additively then the problem of
statically assigning virtual machines to hosts is exactly the vector bin packing
problem. It is therefore not surprising that algorithms for VBP had been pro-
posed as early as four decades ago [15], [17] and heuristics have been implemented
in systems that perform Virtual Machine consolidation.

Roughly speaking there are two types of algorithms that have been suggested
for this problem. Perhaps the most natural set of heuristics for VBP are First
Fit Decreasing (FFD) algorithms. In these heuristic there is some weight func-
tion applied to the items so that each item is assigned a single scalar. The items
are then sorted and placed sequentially from large to small. For the case d = 1
this approach is known to be very effective, both formally and in practice. We
discuss this family of heuristics in greater length in Section 2. Several systems
and research prototypes have suggested and implemented variants of FFD (see
related work section). Another approach is phrasing the problem as an Integer
Linear Program (ILP) and then either solving the ILP with branch and bound
methods (via some ILP solver) or solve the relaxed linear program, and employ
some method for rounding the solution. This approach could yield good theo-
retical guarantees (see Section 1.1), however it has been our experience and the
experience of others (c.f. [22]) that these algorithms do not scale beyond rather
smallish instances. For n beyond a few hundred the LP-based algorithms in our
experiments were prohibitively slow. Due to lack of space we omit a report on
these experiments from this manuscript.

Our Contributions Our goal is to design and evaluate the most effective heuris-
tics for VBPd. We investigate various variants of FFD, and propose new geomet-
ric heuristics. We empirically evaluate these heuristics on synthetic data drawn
from several distributions previously suggested in literature. We show that our
new heuristics always do at least as well as the best FFD variants, and often
noticeably improve on them. In cases that we were able to compute the truly
optimal solution our heuristics proved to be within a few percent from optimal.

1.1 Related Work

The Vector bin packing problem is NP hard, even when restricted to the one-
dimensional case, for which there is an asymptotic PTAS (see e.g. [24]). The



running time of this algorithm however is prohibitively large in practice. The
most popular heuristics are FFD and its variants. There are many excellent
books such as [13],[14] that detail most of the theory literature on bin packing
problems.

For d ≥ 2 the vector bin packing problem is known to be APX-hard[25]
which means that there is no asymptotic PTAS for the problem, unless P = NP .
Moreover, [5] show a d

1
2−ε hardness of approximation. For any ε > 0, there is a

classic (d+ ε)-approximation [11]. Fernandez de la Vega and Lueker [8] showed
that one can get a (d+ε)-approximation in time linear in n. Chekuri and Khanna
showed a (1 + dε+ ln(1/ε))-approximation which gives a O(ln d) approximation
when d is constant. Bansal, Caprara and Sviridenko [2] improve this to get an
(1 + ln d + ε)-approximation,for any ε > 0. Both these algorithms run in time
that is exponential in d (or worse). Yao [27] showed that no algorithm running
in time o(n log n) can give better than a d-approximation.

In light of previous results it makes sense to study heuristics that may
have worse formal guarantees but run well in practice. Maruyama, Chang and
Tang [17] studied generalizations of one dimensional heuristics to the multidi-
mensional case, and compared various variants. Spieksma [20] studied the two-
dimensional version of the problem and gave lower bounding and heuristics for
the problem. Han, Diehr and Cook [12] present heuristics and exact algorithm
for a variant where the bins are not identical. Caprara and Toth [3] studied
the 2-dimensional case in detail, and gave improved lower bounding techniques,
heuristics, and exact algorithms for the problems. Many of these are tailored to
the two-dimensional case. Finally, Stillwell et. al [22] studied variants of FFD
concluding that the algorithm we call FFDAvgSum is best in practice. They also
show that genetic algorithms don’t perform well.

To the best of our knowledge, for the large dimensional case, no practical
algorithms better than variants of FFD have been explored.

In general systems that manage resources in a shared hosting environment
can all benefit from good heuristics for VBP (c.f. [4, 7, 6, 18]), there are far too
many of those to be covered extensively here. Focusing on virtual machine place-
ment there are several VM consolidation heuristics currently used in research
prototypes and real VM management tools. We briefly outline how they are re-
lated to the heuristics described here. Sandpiper [26], a research system that
enables live migration of VMs around overloaded hosts, uses a heuristic cor-
responding to FFDProd, taking the product of CPU, memory, and network
loads. Another work from IBM research [23], an application placement con-
troller for data centers, performs application assignment/consolidation handling
resource demands for CPU and memory. This work combines the two dimen-
sions into a scalar by taking the ratio of the CPU demand to the memory
demand. Even though this heuristic does not fit into the FFDAvgSum or FFD-
Prod, it shares the similar characteristic of ignoring complementary distributions
of resource demands in different dimensions. Microsoft’s Virtual Machine Man-
ager [29] uses the Dot-Product and Norm-based Greedy, heuristics described
below. The work [21] proposes to use Euclidean distance between resource de-



mands and residual capacity as a metric for consolidation, a heuristic analogous
to Norm-based Greedy.

2 The FFD Family of Algorithms

One of the most natural heuristics for one dimensional bin packing is a greedy
algorithm in which items are sorted by size in decreasing order and then items
placed sequentially in the first bin that has sufficient capacity. This algorithm is
often referred to as First Fit Decreasing (FFD). FFD is guaranteed to find an
allocation with at most 11

9 OPT + 1 bins in the one dimensional case (c.f. [24])
and is known to be effective in practice.

There isn’t a unique obvious way of generalizing FFD for the multi-dimensional
case. One has to decide how to assign a weight to a d-dimensional vector. In this
work we’ve tested two natural options:

w(I) =
∏
i≤d

Ii (FFDProd) (1)

w(I) =
∑
i≤d

aiIi (FFDSum) (2)

where the vector a = a1, ...ad is a scaling vector of our choosing. The vector
a has two functions. First, it is needed to scale and normalize demand across
dimensions (which not needed when taking the product of the demands). Sec-
ondly, it allows us to weight the demands according their importance, or their
likelihood of actually being a bottleneck for placement. We test several ways of
doing that.

Selecting the weights If the placement problem is effectively constrained by
a single resource, say all VM’s are CPU bound, then the problem is in essence
one dimensional and FFD should probably be the algorithm of choice. Thus for
example, if the demands in the first dimension always dominate the demands in
the other dimension, the FFD variant should ignore the demands in the other
dimensions. The FFD algorithm that uses the product weight (FFDProd) does
not have this property: variations in all dimensions affect the ordering, irrespec-
tive of the importance of the dimension. FFDSum is more robust in this regard,
the dimensions that are not scarce can be assigned smaller coefficients ai’s and
have a smaller impact on the ordering. A natural choice is to take ai to be equal
to the average demand avdemi = 1

n

∑n
`=1 I

`
i in dimension i. This leads to the

heuristic that we call FFDAvgSum. Another option we explore is to take ai to
be exponential in avdemi, i.e. ai = exp(ε · avdemi) for some suitable constant
ε. We call this heuristic FFDExpSum. These weights are also used in the geo-
metric heuristics described in Section 3. We observe that in [22] it is reported
that FFDSum showed the best performance, however in their case the demands
across the dimensions were sampled i.i.d and thus a was taken to be the all ones
vector.



Running time of FFD Recall that FFD has two phases, in the first phase the
items are sorted, which takes O(nd+n log n) time. In the second phase the items
are placed sequentially in the first bin with sufficient remaining capacity. In the
one dimensional case the total running time of the algorithm is bounded by
O(n log n). Unfortunately, in the multi-dimensional case this is not known to be
the case as the shape of the item determines whether a bin has sufficient capacity.
An algorithm that scans all bins whenever an item is to be inserted has a running
time of Ω(n log n + nk), where k is the number of bins in the solution. This is
the algorithm which we used in our implementation. An asymptotically faster
algorithm can be derived by observing that each iteration we need to perform a d-
dimensional orthogonal range-max operation. Using data structures designed for
this problem (see e.g. [1]), one can get an O(n logd−2 n) time implementation.
It is not clear whether these algorithms are more efficient than the naive n2

algorithms for reasonable sized high dimensional data. For example, when d = 6
and n = 1000, logd−1 n is rougly 104, so that a quadratic time algorithm would
already seem more efficient than the O(n logd−2 n) one.

Bad instances for FFD

It is easy to see that any greedy algorithm has an approximation ratio of at
most 2d. Since this is a weak guarantee it is important to identify inputs for
which FFD performs particularly poor. In this section we identify such a family
and argue that it is natural enough to motivate us to look for other algorithms.

Consider the two-dimensional instance where half the items are of size ( 1
3 ,

1
6 ),

and the other half of size ( 1
6 ,

1
3 ). In this case, the optimal solution puts four items

per bin, two of each kind, while any FFD variant would place three items per
bin. This example can be easily generalized to give a worse class of instances.

Theorem 1. For any integer k and large enough n there is an instance for
which FFD partitions the n items into n

k bins, while it is possible to partition
the items into n

(k−1)d . Thus the approximation ratio of FFD is at least (1− 1
k )d.

Proof. Assume we have items of d types. Every item I of type Ti has

Ij =

{ 1
k j = i

1
(d−1)(k−1)k j 6= i

Assume we have exactly n/d items of each type. Observe that if we pack in
each bin exactly k − 1 items of each type then the load in each dimension is
k−1
k + (d−1)(k−1)

(d−1)(k−1)k = 1, so OPT≤ n/d(k − 1). On the other hand, every FFD

algorithm, irrespective of how exactly the weights are calculated would assign
the same weight to all items of the same type, and thus would place all items of
the same type one after the other (if items of two types have the same weight
we can perturb them by a small amount to break the tie). Now, once k items of
type Ti are placed in the same bin, dimension i is at full capacity and no more
items can be placed. We conclude that FFD would pack the items into at least
n/k items.



The distribution described above is somewhat contrived, but it is also quite
robust. Observe that even if the demand vector of each item is perturbed by
O(1/dk2), the approximation ratio of FFD is still Ω(d). Further, FFD would
perform poorly even if we don’t have exactly n/d items of each type. Given
these observations we expect FFD not to perform particularly well when the
input exhibits strong negative dependence across dimensions. This intuition is
confirmed in our experiments.

3 Geometric heuristics

As the example in Theorem 1 demonstrates, FFD-based heuristics can be far
from optimal. Instances similar to those are likely to arise in virtual machine
placement settings: scientific computations may have high CPU requirements
but low I/O requirements while web servers would behave in the opposite way.
Similarly if the dimensions represent time epochs, then a service that has high
demand during the day may have low demand during the night and vice versa.
FFD based heuristics may fail to take advantage of such complementarities. To
alleviate this, we propose a different generalization of FFD to multiple dimen-
sions. The algorithms in the previous section generalize the item-centric view of
FFD:

FFD Item-centric
1. Sort items in decreasing order of “size”.
2. For ` = 1 to n do
2.1 Place item ` in first bin where it will fit.
2.2 endfor

Any definition of
“size” in the multi-
dimensional case will
lead to a variant of
FFD as in the last
section. A different
view of the (one-dimensional) FFD is what we call the bin-centric view:

FFD Bin-centric
1. While there are items remaining to be placed do
1.1 Start a new bin
1.2 While some item fits in this bin do
1.2.1 Place “largest” remaining item that fits in the bin
1.2.2. endwhile
1.3.end while

Viewed this way,
FFD has one bin
open at any time,
and in each time
step, places the largest
item that will fit the
current bit. If there
is no such item, the
bin is declared closed, and we open a fresh bin. In one dimension these are
implementations of exactly the same algorithm.

In multiple dimensions, any definition of ”largest” will lead to a generalization
of FFD. We would like heuristics that takes into account not only the item’s
demand, but also how well it aligns with the remaining capacities in the open
bin. We next suggest such generalizations.

Dot-Product (DotProduct): This heuristic defines “largest” to be the item that
maximizes the dot product between the vector of remaining capacities and the
vector of demands for the item. Formally, at time t let r(t) denote the vector
of remaining or residual capacities of the current open bin, i.e. subtract from



the bin’s capacity the total demand of all the items currently assigned to it. It
places the item I` that maximizes the a-weighted dot product

∑
i aiI

`
i r(t)i with

the vector of remaining capacities without violating the capacity constraint. The
weights ai are calculated in the same manner as described in Section 2.

Norm-based Greedy (L2): This heuristic looks at the difference between the
vectors I` and the residual capacity r(t) under a certain norm, instead of the
dot product. For example, for the `2 norm, from all unassigned items, it places
the item I` that minimizes the quantity

∑
i ai(I

`
i − r(t)i)2 and the assignment

does not violate the capacity constraints. The weights ai are again chosen as in
Section 2. Similarly, using the | · |1 and | · |∞ norms instead of the | · |2 norm
gives us algorithms L1 and ELInf.

Grasp and Bubblesearch The above heuristics can be augmented with Grasp[k]
[10, 19] or Bubblesearch [16]. In Grasp[k], instead of picking the best option at
any time step, a random one from the best k is chosen. In Bubblesearch, the
kth best is chosen with probability proportional to (1− p)k, for an appropriate
parameter p. Thus Step 1.2.1 is replaced by ”Choose the kth “largest” item,
where k is chosen from a geometric distribution with parameter p. One can run
this random experiment nruns many times, and pick the allocation that uses
the fewest number of bins.

Bad Example for our new heuristics We remark that the example of The-
orem 1 can be modified to create an instance where the new proposed heuristics
are off by the same factor. Indeed suppose that the items of type Ti were to be

each split uniformly into (dk)i items of equal size, so that there are n(dk)i

d items
of size 1

(dk)i times the size of the type Ti items in Theorem 1. This instance

forces our algorithms to make the same choices as FFD and results in the same
approximation ratio. Note however that these new instances are significantly less
robust to perturbations.

4 Experiments

We empirically evaluate our algorithms for the vector bin packing problem with
identical bins. Realistic workloads vary widely across organizations in their het-
erogeneity and in their resource requirements, so it would be difficult to gen-
eralize from any given set of real workloads. Following the work in [3] and [22]
we instead run our algorithms on synthetic instances generated randomly from
many different distributions, and would like to compare the quality of our solu-
tion to the best possible solution. This lets us test our heuristics under a variety
of different correlations across dimensions. Our synthetic workloads are taken
from previous work on the problem [3] and cover several parameter values, as
well as cover positive, negative and no correlations.

Input Distributions We first describe the classes of random instances we use;
most of these were also used by [3]. To ease description, we do not scale the bin
sizes to be 1 any more, but let the parameter h denote the bin size. The first



six classes all have VM sizes in each dimension drawn randomly and indepen-
dently from the range [α, β] for parameters α and β; thus such a distribution
is fully specified by h, α, β. In the first five classes, h = 1000, and [α, β] is set
to [100, 400], [1, 1000], [200, 800], [50, 200], and [25, 100] respectively. Class 6 has
h = 150 and [α, β] = [20, 100]; the hardest instances for one-dimensional bin
packing in literature are the one dimensional case of this distribution, and this
was the motivation for this choice in Caprara and Toth [3].These different pa-
rameter value lead to different values for the average number of items per bin.

While in the above classes, the dimensions are independently sampled, classes
7 and 8 have slightly correlated dimensions. Both these classes have h = 150 and
for each VM, the demand in first dimension v1 is sampled from [20, 100] as in
class 6. Demand in the second dimension v2 is sampled from [v1−10, v1 +10] for
class 7 (positive correlation) and from [110 − v1, 130 − v1] for class 8 (negative
correlation). For higher dimensional variants, dimensions (2i − 1) and 2i are
correlated as defined, and independent of the other dimensions.

To generate negative correlation across all dimensions, we propose a new
distribution. In our class 9, h is set to 100. An item in Class 9 is generated as
follows: Throw 2d balls independently and randomly into d bins (dimensions),
giving us random variables X1, . . . , Xd where Xi denotes the number of balls that
fall in bin i, and thus the sum of Xi’s is 2d. We choose s uniformly in [10, 40],
and set I`i to be sXi/2. We further noise the input by adding a uniformly chosen
random value in [0, 1] to each dimension. Finally, any items that end up being
larger that the bin size in any dimension are ignored. Each item is generated
uniformly at random from this distribution.

Thus classes 1-6 are generated from independent distributions, class 7 is
positively correlated and classes 8 and 9 are negatively correlated. We remark
that [3] considered two other classes that they call 9 and 10, which were very
specific to the two-dimensional case and thus we do not show results for those.

Lower Bounds For dimension i, let demi be the total demand
∑
` I

`
i in this

dimension. Since each bin has capacity 1 in every dimension, any solution must
use at least demi bins. We use SumLB to denote the quantity maxi demi, which
is always a lower bound on the optimal solution.

A stronger lower bound can be obtained by writing the (exponential sized)
configuration LP where the variables xC correspond to valid configurations C
(i.e. subsets of items that can fit together in one bin), with the constraint that∑
C:i∈C xC ≥ 1 for each item i, and we minimize

∑
C xC . Though exponential

sized, this linear program can be solved by column generation [9] when the
number of items is small. In our experiments, we use the Gurobi [28] LP solver
to solve the linear programs, and the Gurobi IP solver to solve the knapsack
subroutines that need to be solved to generate columns. This leads to a better
lower bound when the linear program can be quickly solved (in our case for n
up to a 100).

For the 2-dimensional version of the problem, we have an even better option.
We use eight of the input distributions that were used by Caprara and Toth [3],



who also computed lower bounds for these classes. For our experiments, we use
the best available lower bound in each case.

4.1 Results

FFD and the New Heuristics We coded up our algorithms in C# and ran
them on random instances generated from these classes with several values if n
between 100 and 5000. We vary the number of dimensions in the set of values
(2, 3, 4, 6, 10). We sample 100 instances from each class of random inputs and
compare the average number of bins used by each of the heuristics. For all
algorithms involving weights, we chose ai to be exp(0.01 · avdemi).
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Fig. 1. Performance of the different algo-
rithms with 100 items with 2 dimensions.
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Fig. 2. Performance of the different algo-
rithms with 100 items with 3 dimensions.

Figure 1 shows the percentage overhead (over the configuration LP lower-
bound) of several algorithms for various input classes with n = 100 in 2 di-
mensions. These examples show that the algorithms FFDExpSum, DotProduct
and L2 show the most promise amongst these and we restrict our attention to
these. In this and other cases, FFDAvgSum’s behavious is very similar to FFD-
ExpSum and we omit it from the other experiments. The LPBasedFFD and the
DotProductBubble are visited later in this section.

Already in the two-dimensional case, one can observe that the new heuristics
DotProduct and L2 outperform the best of the FFD based heuristics on input
classes 6, 7, and 9. Figures 2, 3 and 4 compare these three chosen algorithms
in higher dimensions for the input classes described above. For input classes
1, 4, and 5, where the average number of items per bin is large, we see that
the geometric heuristics outperform FFD by nearly 5 percent in dimension 6.
For other input classes, we see a few percent improvement over FFD. These
results are relatively robust to change in dimension and in n. In the appendix,
we show the results for n = 3000 (compared to the weaker SumLB). We also
show the effect of increase in the number of dimensions in Figure 5 (and some
more in the appendix). We conclude that the new geometric heuristics L2 and
DotProduct nearly always do as well as, and often noticeably outperform FFD-
based heuristics.

Bubble Search We implemented a bubblesearch version of the DotProduct algo-
rithm. We ran it with nruns set to 200 and p set to 0.6. In Table 1, we compare
performance of DPBubble and DotProduct over different options. We see that
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bubble search offers some improvement over the simple dot product algorithm
at the cost of a higher run time. We observe that the bubble search is easily
parallelized. Similar gains were shown for Grasp[3] version of the algorithm.

Input DP (d=2) DPBubble(d=2) %age saving(d=2) DP (d=6) DPBubble(d=6) %age saving(d=6)

1 261.838 260.54 0.495726365 284.05 283.09 0.337968667
2 544.199 543.37 0.152333981 785.142 781.81 0.424381832
3 543.608 544.89 -0.235831702 782.528 780.64 0.241269322
4 128.846 128.3 0.4237617 133.594 133.15 0.332350255
5 64.002 63.75 0.393737696 65.324 65.14 0.281672892
6 420.118 420.03 0.020946496 483.24 481.99 0.25867064
7 408.798 409.08 -0.068982725 448.258 447.41 0.189176769
8 500.506 500.42 0.017182611 501.248 500.11 0.227033325
9 262.204 261.55 0.249424113 282.012 282.53 -0.183680127

Table 1. Number of bins used by DP Bubble and DP
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Comparison to the Optimal In the two-dimensional case, Caprara and Toth [3]
use the distributions 1-8 above, and computed the optimal value of the solution
for small values of n. We use the numbers reported in their work to compare
ourselves to the optimal rather than to the näive lower bound. Figure 6 shows
the percentage overhead of the different algorithms over the optimum taken from
Caprara and Toth in the first 8 classes with n = 200 in 2 dimensions. We ob-
serve that our geometric heuristics perform extremely well, and get within a few
percent of the optimum on nearly all the distributions.

Running Times Table 2 shows the running time in seconds of the different
algorithms with 1000 items in 6 dimensions generated using input case 5. The
running times for the other input classes were not significantly different. All these



FFDSum FFDExp DP EL2 Dpbubble

0.002738433 0.002750367 0.025017907 0.024320518 5.00201

Table 2. Running times in seconds of different heuristics with 1000 items in 6 dimen-
sions; input class 5.

numbers are on an HP Desktop with a Intel Core 2 Duo CPU E8500 @3.16 GHz.
The computer has 4GB of memory and runs Windows 7.

5 Conclusions

Our evaulation suggests that our new heuristics compare favorably with natural
generalizations of FFD proposed in literature. We show that while the benefit
is small when the dimensions are positively correlated (in which case they all
reduce to the one dimensional case), the benefit increases when the dimensions
are negatively correlated. We believe that the new proposed heuristics should be
the algorithms of choice in many applications.
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Fig. 7. Performance of the different algorithms with 3000 items with 2 dimensions.
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rithms with 3000 items with 6 dimensions.
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Fig. 9. Performance of the different algo-
rithms with 3000 items with 10 dimensions.

A More Results

FFD and the new heuristics

Figure 7 shows the percentage overhead of several different algorithms in
four of the input classes with n = 3000 in 2 dimensions. Already in the two-
dimensional case, one can observe that the new heuristics DotProduct and L2
outperform the best of the FFD based heuristics on input classes 6, 7, and 9.
Figures 8 and 9 compare these three chosen algorithms in 6 and 10 dimensions
respectively, for all the nine input classes described above. First note that on
input classes 2 and 3, the performance overhead of all the algorithms is fairly
large. We believe that this is due to the SumLB being inadequate. In both these
cases, the item sizes are fairly large and in high dimensions, few pairs of items
would be able to occupy the same bin. All of these algorithms would greedily
search for pair of items that fit together, and these algorithms place less than 1.1
item per bin on an average in the 10-dimensional case. The SumLB only implies
an average occupancy of two.

For input classes 1, 4, and 5, where the average number of items per bin is
larger, we see that the geometric heuristics outperform FFD by 7-10 percent.



For other input classes, we see a few percent improvement over FFD, except for
input class 8.

These results are relatively robust to change in dimension. We show in Fig-
ures 10 and 11 the effect of increasing the number of dimensions on the number
of bins used with n = 3000 with classes 7 and 9.

We conclude that the performance gain of the new geometric heuristics L2
and DotProduct holds for large n as well.
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