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ABSTRACT

We address the problem of finding multiple groups of words
or phrases that explain the underlying query facets, which
we refer to as query dimensions. We assume that the impor-
tant aspects of a query are usually presented and repeated in
the query’s top retrieved documents in the style of lists, and
query dimensions can be mined out by aggregating these sig-
nificant lists. Experimental results show that a large number
of lists do exist in the top results, and query dimensions gen-
erated by grouping these lists are useful for users to learn
interesting knowledge about the queries.

Categories and Subject Descriptors
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General Terms

Algorithms, Experimentation, Management, Measurement

Keywords
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tion, User Intent, List Extraction

1. INTRODUCTION
We address the problem of finding query dimensions. A

query dimension, which is similar to a dimension in data
warehouses [19, 9], is a set of items which describe and sum-
marize one important aspect of a query. Here a dimension

item is typically a word or a phrase. A query may have mul-

tiple dimensions that summarize the information about the
query from different perspectives. Table 1 shows dimensions
for some example queries. For the query“watches”, its query
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dimensions cover the knowledge about watches in five unique
aspects, including brands, gender categories, supporting fea-
tures, styles, and colors. The query “visit Beijing” has a di-
mension about popular resorts in Beijing (tiananmen square,
forbidden city, summer palace, ...) and a dimension on sev-
eral travel related topics (attractions, shopping, dining, ...).

Query dimensions provide interesting and useful knowl-
edge about a query and thus can be used to improve search
experiences in many ways. First, we can display query di-
mensions together with the original search results in an ap-
propriate way. Thus, users can understand some important
facets of a query without browsing tens of pages. For ex-
ample, a user could learn different brands and categories of
watches. We can also implement a faceted search [4, 14,
13] based on query dimensions. User can clarify their spe-
cific intent by selecting dimension items. Then search results
could be restricted to the documents that are relevant to the
items. A user could drill down to women’s watches if he is
looking for a gift for his wife. These multiple groups of query
dimensions are in particular useful for vague or ambiguous
queries, such as “apple”. We could show the products of
Apple Inc. in one dimension and different types of the fruit
apple in another. Second, query dimensions may provide
direct information or instant answers that users are seeking.
For example, for the query “lost season 5”, all episode ti-
tles are shown in one dimension and main actors are shown
in another. In this case, displaying query dimensions can
save browsing time. Third, query dimensions may also be
used to improve the diversity of the ten blue links. We can
re-rank search results to avoid showing the pages that are
near-duplicated in query dimensions at the top. Query di-
mensions also contain structured knowledge covered by or
related to the input keywords of a query, and thus they can
be used in many other fields besides traditional web search,
such as semantic search or entity search [10, 3, 5, 29, 35,
6]. There has been a lot of recent work on automatically
building knowledge ontology on the Web [6, 29]. Query di-
mensions can become a possible data source for this.

We observe that important pieces of information about
a query are usually presented in list styles and repeated
many times among top retrieved documents. Thus we pro-
pose aggregating frequent lists within the top search results
to mine query dimensions and implement a system called
QDMiner. More specifically, QDMiner extracts lists from
free text, HTML tags, and repeat regions contained in top
search results, and groups them into clusters based on the
items they contain. Compared to previous works on build-
ing facet hierarchies [4, 14, 13, 23, 11, 22, 31], our approach



Table 1: Example query dimensions (automatically
mined by our proposed method in this paper). Items
in each dimension are seperated by commas.

query: watches

1. cartier, breitling, omega, citizen, tag heuer, bulova, casio,
rolex, audemars piguet, seiko, accutron, movado, fossil, gucci, . . .
2. men’s, women’s, kids, unisex
3. analog, digital, chronograph, analog digital, quartz, mechani-
cal, manual, automatic, electric, dive, . . .
4. dress, casual, sport, fashion, luxury, bling, pocket, . . .
5. black, blue, white, green, red, brown, pink, orange, yellow, . . .

query: lost

1. season 1, season 6, season 2, season 3, season 4, season 5
2. matthew fox, naveen andrews, evangeline lilly, josh holloway,
jorge garcia, daniel dae kim, michael emerson, terry o’quinn, . . .
3. jack, kate, locke, sawyer, claire, sayid, hurley, desmond, boone,
charlie, ben, juliet, sun, jin, ana, lucia . . .
4. what they died for, across the sea, what kate does, the candi-
date, the last recruit, everybody loves hugo, the end, . . .

query: lost season 5

1. because you left, the lie, follow the leader, jughead, 316, dead
is dead, some like it hoth, whatever happened happened, the little
prince, this place is death, the variable, . . .
2. jack, kate, hurley, sawyer, sayid, ben, juliet, locke, miles,
desmond, charlotte, various, sun, none, richard, daniel
3. matthew fox, naveen andrews, evangeline lilly, jorge garcia,
henry ian cusick, josh holloway, michael emerson, . . .
4. season 1, season 3, season 2, season 6, season 4

query: flowers

1. birthday, anniversary, thanksgiving, get well, congratulations,
christmas, thank you, new baby, sympathy, fall
2. roses, best sellers, plants, carnations, lilies, sunflowers, tulips,
gerberas, orchids, iris
3. blue, orange, pink, red, purple, white, green, yellow

query: what is the fastest animals in the world

1. cheetah, pronghorn antelope, lion, thomson’s gazelle, wilde-
beest, cape hunting dog, elk, coyote, quarter horse
2. birds, fish, mammals, animals, reptiles
3. science, technology, entertainment, nature, sports, lifestyle,
travele, gaming, world business

query: the presidents of the united states

1. john adams, thomas jefferson, george washington, john tyler,
james madison, abraham lincoln, john quincy adams, william
henry harrison, martin van buren, james monroe, . . .
2. the presidents of the united states of america, the presidents of
the united states ii, love everybody, pure frosting, these are the
good times people, freaked out and small, . . .
3. kitty, lump, peaches, dune buggy, feather pluckn, back porch,
kick out the jams, stranger, boll weevil, ca plane pour moi, . . .
4. federalist, democratic-republican, whig, democratic, republi-
can, no party, national union, . . .

query: visit beijing

1. tiananmen square, forbidden city, summer palace, temple of
heaven, great wall, beihai park, hutong
2. attractions, shopping, dining, nightlife, tours, travel tip, trans-
portation, facts

query: cikm

1. databases, information retrieval, knowledge management, in-
dustry research track
2. submission, important dates, topics, overview, scope, com-
mittee, organization, programme, registration, cfp, publication,
programme committee, organisers, . . .
3. acl, kdd, chi, sigir, www, icml, focs, ijcai, osdi, sigmod, sosp,
stoc, uist, vldb, wsdm, . . .

is unique in two aspects: (1) Open domain: we do not
restrict queries in a specific domain, like products, people,
etc. Our proposed approach is generic and does not rely
on any specific domain knowledge. Thus it can deal with
open-domain queries. (2) Query dependent: instead of a
same pre-defined schema for all queries, we extract dimen-
sions from the top retrieved documents for each query. As a

result, different queries may have different dimensions. For
example, although “lost” and “lost season 5” in Table 1 are
both TV program related queries, their mined dimensions
are different.

As the problem of finding query dimension is new, we
cannot find publicly available evaluation datasets. There-
fore, we create two datasets, namely UserQ, containing 89
queries that are submitted by QDMiner users, and RandQ,
containing 105 randomly sampled queries from logs of a com-
mercial search engine, to evaluate mined dimensions. We use
some existing metrics, such as purity and normalized mutual
information (NMI), to evaluate clustering quality, and use
NDCG to evaluate ranking effectiveness of dimensions. We
further propose two metrics to evaluate the integrated effec-
tiveness of clustering and ranking.

Experimental results show that the purity of query dimen-
sions generated by QDMiner is good. Averagely on UserQ
dataset, it is as high as 91%. The dimensions are also reason-
ably ranked with an average NDCG@5 value 0.69. Among
the top five dimensions, 2.3 dimensions are good, 1.2 ones
are fair, and only 1.5 are bad. We also reveal that the qual-
ity of query dimensions is affected by the quality and the
quantity of search results. Using more of the top results can
generate better query dimensions.

The remainder of this paper is organized as follows. We
briefly introduce related work in Section 2. Following this,
we propose QDminer, our approach to generate query di-
mensions by aggregating frequent lists in top results, in Sec-
tion 3. We discuss evaluation methodology in Section 4 and
report experimental results in Section 5. Finally we conclude
the work in Section 6.

2. RELATED WORK
Finding query dimensions is related to several existing re-

search topics. In this section, we briefly review them and
discuss the difference from our proposed method QDMiner.

2.1 Query Reformulation
Query reformulation is the process of modifying a query

to get search results that can better satisfy a user’s informa-
tion need. It is an important topic in Web search. Several
techniques have been proposed based on relevance feedback,
query log analysis, and distributional similarity [1, 25, 2, 33,
28, 34, 36, 17]. The problem of mining dimensions is differ-
ent from query reformulation, as the main goal of mining
dimensions is to summarize the knowledge and information
contained in the query, rather than to find a list of related
or expanded queries. Some query dimensions include seman-
tically related phrases or terms that can be used as query
reformulations, but some others cannot. For example, for
the query “what is the fastest animals in the world” in Ta-
ble 1, we generate a dimension “cheetah, pronghorn ante-
lope, lion, thomson’s gazelle, wildebeest, ...” which includes
animal names that are direct answers rather than query re-
formulations to the query.

2.2 Query-based Summarization
Query dimensions can be thought as a specific type of

summaries that briefly describe the main topic of given text.
Several approaches [8, 27, 21] have been developed in the
area of text summarization, and they are classified into dif-
ferent categories in terms of their summary construction
methods (abstractive or extractive), the number of sources



for the summary (single document or multiple documents),
types of information in the summary (indicative or infor-
mative), and the relationship between summary and query
(generic or query-based). Brief introductions to them can
be found in [16] and [12]. Similar to existing summarization
systems, QDMiner aims to offer the possibility of finding
the main points of multiple documents and thus save users’
time on reading whole documents. The difference is that
most existing summarization systems dedicate themselves
to generating summaries using sentences extracted from
documents, while we generate summaries based on frequent
lists. In addition, we return multiple groups of semanti-
cally related items, while they return a flat list of sentences.

2.3 Entity Search
The problem of entity search has received much attention

in recent years [10, 3, 5, 29, 15, 20, 32, 26]. Its goal is to
answer information needs that focus on entities. The prob-
lem of mining query dimensions is related to entity search
as for some queries, dimension items are kinds of entities or
attributes. Some existing entity search approaches also ex-
ploited knowledge from structure of webpages [30, 35, 6, 15].
Finding query dimensions differs from entity search in the
following aspects. Firstly, finding query dimensions is appli-
cable for all queries, rather than just entity related queries.
Secondly, they tend to return different types of results. The
result of an entity search is usually a list of entities, their
attributes, and associated homepages, whereas query dimen-
sions are comprised of multiple lists of items, which are not
necessarily entities.

2.4 Faceted Search
Faceted search is a technique for allowing users to digest,

analyze, and navigate through multidimensional data. It is
widely applied in e-commerce and digital libraries. A robust
review of faceted search is beyond the scope of this paper.
Most existing faceted search and facets generation systems
[4, 14, 13, 23, 11, 22, 31] are built on a specific domain (such
as product search) or predefined facet categories. For exam-
ple, Dakka and Ipeirotis [11] introduced an unsupervised
technique for automatic extraction of facets that are useful
for browsing text databases. Facet hierarchies are generated
for a whole collection, instead of for a given query. Li et al.
proposed Facetedpedia [23], a faceted retrieval system for in-
formation discovery and exploration in Wikipedia. Faceted-
pedia extracts and aggregates the rich semantic information
from the specific knowledge database Wikipedia. In this
paper, we explore to automatically find query-dependent di-
mensions for open-domain queries based on a general Web
search engine. Dimensions of a query are automatically
mined from the top web search results of the query with-
out any additional domain knowledge required. As query
dimensions are good summaries of a query and are poten-
tially useful for users to understand the query and help them
explore information, they are possible data sources that en-
able a general open-domain faceted exploratory search.

3. OUR APPROACH
As the first trial of mining query dimensions, we propose

to automatically mine query dimensions from the top re-
trieved documents and develop a system called QDMiner.
QDMiner discovers query dimensions by aggregating frequent

lists within the top results. We propose this method based
on the following observations:

(1) Important information is usually organized in list for-
mats by websites. They may repeatedly occur in a sentence
that is separated by commas, or be placed side by side in
a well-formatted structure (e.g., a table). This is caused by
the conventions of webpage design. Listing is a graceful way
to show parallel knowledge or items and is thus frequently
used by webmasters.

(2) Important lists are commonly supported by relevant
websites and hence repeat in the top search results, whereas
unimportant lists just infrequently appear in results. This
makes it possible to distinguish good lists from bad ones,
and to further rank dimensions in terms of importance.

Experimental results in Section 5 confirm the above obser-
vations and demonstrate that the query dimensions mined
by aggregating them are meaningful.

3.1 System Overview
We illustrate QDMiner in Figure 1. In QDMiner, given a

query q, we retrieve the top K results from a search engine
and fetch all documents to form a set R as input. Then,
query dimensions are mined by the following four steps:

1. List Extraction Several types of lists are extracted
from each document inR. “men’s watches, women’s watches,
luxury watches, ...” is an example list extracted.

2. List Weighting All extracted lists are weighted, and
thus some unimportant or noisy lists, such as the price list
“299.99, 349.99, 423.99, ...” that occasionally occurs in a
page, can be assigned by low weights.

3. List Clustering Similar lists are grouped together
to compose a dimension. For example, different lists about
watch gender types are grouped because they share the same
items “men’s” and “women’s”.

4. Dimension and Item Ranking Dimensions and
their items are evaluated and ranked based on their im-
portance. For example, the dimension on brands is ranked
higher than the dimension on colors based on how frequent
the dimensions occur and how relevant the supporting doc-
uments are. Within the dimension on gender categories,
“men’s” and “women’s” are ranked higher than “unisex” and
“kids” based on how frequent the items appear, and their
order in the original lists.

In the remaining part of this section, we will describe the
four modules in detail.

3.2 List Extraction
From each document d in the search result set R, we ex-

tract a set of lists Ld = {l′} from the HTML content of d
based on three different types of patterns, namely free text
patterns, HTML tag patterns, and repeat region patterns.

3.2.1 Free text patterns
We extract all text within document d and split it into

sentences. We then employ the pattern item{, item}*
(and|or) {other} item, which is similar to that in [35],
to extract all matched items from each sentence. In Exam-
ple 1, the items in italic font are extracted as a list.

Example 1 We shop for gorgeous watches from Seiko, Bulova,
Lucien Piccard, Citizen, Cartier or Invicta.

We further use the pattern {ˆitem (:|-) .+$}+ to ex-
tract lists from some semi-structured paragraphs. It extracts
lists from continuous lines that are comprised of two parts
separated by a dash or a colon. The first parts of these lines



men’s watches, women’s watches, 

luxury watches, …

automatic, bracelet, ceramic, …

breitling, cartier, omega, tag heuer

...

accessories watches, activa watches, …

299.99, 349.99, 423.99, …

...

breitling, cartier, omega, tag heuer 93.7

men’s watches, women’s watches, ... 47.9

299.99, 349.99, 423.99, ... 2.7

...

C1
breitling, cartier, omega, tag heuer

men’s, women’s, kids, accessories

men’s, women’s, luxury, ...

automatic, bracelet, ceramic, …

...

C2

C3

men’s, women’s, unisex

......

...

...

... ...
automatic, bracelet, ceramic, ... 53.1

... ...

... ...

cartier, breitling, omega, citizen, tag 

heuer, bulova, casio, rolex, ...
men’s, women’s, kids, unisex, ...
analog, digital, chronograph, analog 

digital, ...
dress, casual, sport, fashion, luxury, ...

...

1.

2.

3.

4.

...

Search Results

List Clustering List Weighting

List Extraction

Dimension and Item Ranking

d1

d2

...

accessories watches, activa watches, 42.8

... ...

black, blue, white, green, red, brown, ...5.

Figure 1: System overview of QDMiner

Table 2: Example HTML sources that contain lists

SELECT:
<select name=”ProductFinder2” id=”ProductFinder2”>

<option value=”WatchBrands.htm”>Watch Brands</option>
<option value=”Brands-Accutron.htm”>Accutron</option>
<option value=”Brands-Bulova.htm”>Bulova</option>
<option value=”Brands-Caravelle.htm”>Caravelle</option>
<option value=”Brands-Seiko.htm”>Seiko</option></select>

UL:
<ul><li><a href=”/rst.asp?q=dive”>Dive</a></li>
<li><a href=”/rst.asp?q=titanium”>Titanium</a></li>
<li><a href=”/rst.asp?q=automatic”>Automatic</a></li>
<li><a href=”/rst.asp?q=quartz”>Quartz</a></li>
<li><a href=”/rst.asp?q=gold”>Gold</a></li></ul>

TABLE:
<table width=”100%”>
<tr><td width=”10%”></td><td>White</td></tr>
<tr><td></td><td height=”20”>Red</td></tr>
<tr><td></td><td height=”20”>Black</td></tr>
<tr><td></td><td height=”20”>Pink</td></tr>
<tr><td height=”4” colspan=”2”></td></tr></table>

are extracted as a list. For instance, we extract all text in
italic font in Example 2 as a list.

Example 2 ... are highly important for following reasons:
Consistency - every fact table is filtered consistently res...
Integration - queries are able to drill different processes ...
Reduced development time to market - the common dimen-
sions are available without recreating the wheel over again.

3.2.2 HTML tag patterns

We extract lists from several list-style HTML tags, in-
cluding SELECT, UL, OL, and TABLE. Example sources
of these HTML tags can be found in Table 2. Extracted
items are in italic.

SELECT For the SELECT tag, we simply extract all text
from their child tags (OPTION) to create a list. Moreover,

we remove the first item if it starts with some predefined
text, such as “select” or “choose”.

UL/OL For these two tags, we also simply extract text
within their child tags (LI).

TABLE We extract one list from each column or each
row. For a table containing m rows and n columns, we
extract at most m+n lists. For each column, the cells within
THEAD or TFOOT tags are regarded as table headers and
are dropped from the list. We also drop the first cell of each
column when its cascading style1 is different from other cells.

3.2.3 Repeat region patterns

We observe that peer information is sometimes organized
in well-structured visual blocks in webpages. Figure 2 shows
a repeat region of four blocks in repeated style. Each block
contains a restaurant record that is comprised of four at-
tributes: a picture, a restaurant name, a location descrip-
tion, and a rating. We can extract three lists from this
region: a list of restaurant names, a list of location descrip-
tions, and a list of ratings. Note that images are simply
ignored in this paper.

To extract these lists, we first detect repeat regions in
webpages based on vision-based DOM trees [7]. Here a re-
peat region is the region that includes more than one block,
e.g., M blocks, with similar DOM and visual structures.
We then extract all leaf HTML nodes within each block,
and group them by their tag names and display styles. In
the above example, all restaurant names have the same tag
name (<a>) and displaying style (in blue color), and hence
can be grouped together. Each group usually contains M
nodes. Each two of them are from different blocks. At last,
for each group, we extract all text from its nodes as a list.

3.2.4 Post-processing

We further process each extracted list l′ as follows. We
first normalize all items by removing useless symbol charac-

1http://www.w3.org/Style/CSS/



Figure 2: An example repeat region in a webpage

Table 3: Less informative list examples

Items (separated by commas)

1 we recommend, my account, help
2 home, customer service, my account, tracking, faq’s
3 read, edit, view history
4 movado 605635 luno two tone... 547.50 717.00 1 rating 1

review, movado museum strap 0690299... 225.00 395.00 1
rating, citizen calibre 2100 av0031... 299.00 350.99 11 ratings

ters, such as ‘[’ and ‘]’, and converting uppercase letters to
lowercase. We then remove long items which contain more
than 20 terms. At last, we remove all lists that contain less
than two unique items or more than 200 unique items.

3.3 List Weighting
Some of the extracted lists are not informative or even

useless. Some of them are extraction errors. Table 3 shows
some sample lists for the query “watches”. The first three
lists are navigational links which are designed to help users
navigate between webpages. They are not informative to
the query. The fourth list is actually an extraction error:
several types of information are mixed together.

We argue that these types of lists are useless for finding
dimensions. We should punish these lists, and rely more on
better lists to generate good dimensions. We find that a
good list is usually supported by many websites and appear
in many documents, partially or exactly. A good list con-
tains items that are informative to the query. Therefore, we
propose to aggregate all lists of a query, and evaluate the im-
portance of each unique list l by the following components:

(1) Sdoc: document matching weight. Items of a good
list should frequently occur in highly ranked results. We let
Sdoc =

∑

d∈R
(smd ∗ srd), where smd ∗srd is the supporting score

by each result d, and:

• smd is the percentage of items contained in d.
A list l is supported by a document d, if d contains
some or all items of l. The more items d contains, the
stronger it supports l. Suppose |d∩ l| is the number of
shared items in d and l, and |l| is the number of items

contained in list l, we let smd = |d∩l|
|l|

.

• srd measures the importance of document d. It
is derived from ranks of documents in this paper. The
documents ranked higher in the original search results
are usually more relevant to the query, and hence they
are more important. We simply let srd = 1/

√
rankd,

where rankd is the rank of document d. The higher d
is ranked, the larger its score srd is.

(2) Sidf: average invert document frequency (IDF)
of items. A list comprised of common items in a corpus is

not informative to the query. We calculate the average IDF
value of all items, i.e., Sidf = 1

|l|
·
∑

e∈l idfe. Here idfe =

log N−Ne+0.5
Ne+0.5

, where Ne is the total number of documents
that contain item e in the corpus and N is the total number
of documents. We use the ClueWeb09 collection2, which
includes about one billion webpages, as our reference corpus
in counting Ne and N .

We combine these two components, and evaluate the im-
portance of a list l by Equation (1).

Sl = Sdoc ∗ Sidf (1)

Finally, we sort all lists by final weights for the given query.
The first three lists in Table 3 are assigned low weights as
they have low average invert document frequencies. The
weight of the fourth list is also low. Its most items just
appear in one document in top results; hence it has a low
document matching weight.

3.4 List Clustering
We do not use individual weighted lists as query dimen-

sions because: (1) An individual list may inevitably include
noise. For example, the first item of the first list in Table 2,
i.e., “watch brands”, is noise. It is difficult to identify it
without other information provided; (2) An individual list
usually contains a small number of items of a dimension and
thus it is far from complete; (3) Many lists contain dupli-
cated information. They are not exactly same, but share
overlapped items. To conquer the above issues, we group
similar lists together to compose dimensions.

Two lists can be grouped together if they share enough
items. We define the distance dl(l1, l2) between two lists l1
and l2 as dl(l1, l2) = 1 − |l1∩l2|

min{|l1|,|l2|}
. Here |l1 ∩ l2| is the

number of shared items within l1 and l2. We use the com-
plete linkage distance dc(c1, c2) = maxl1∈c1,l2∈c2 dl(l1, l2) to
compute the distance between two clusters of lists. This
means that two groups of lists can only be merged together
when every two lists of them are similar enough.

We use a modified QT (Quality Threshold) clustering al-
gorithm [18] to group similar lists. QT is a clustering algo-
rithm that groups data into high quality clusters. Compared
to other clustering algorithms, QT ensures quality by finding
large clusters whose diameters do not exceed a user-defined
diameter threshold. This method prevents dissimilar data
from being forced under the same cluster and ensures good
quality of clusters. In QT, the number of clusters is not
required to be specified.

The QT algorithm assumes that all data is equally im-
portant, and the cluster that has the most number of points
is selected in each iteration. In our problem, lists are not
equally important. Better lists should be grouped together
first. We modify the original QT algorithm to first group
highly weighted lists. The algorithm, which we refer to as
WQT (Quality Threshold with Weighted data points), is
described as follows.

1. Choose a maximum diameter Diamax and a minimum
weight Wmin for clusters.

2. Build a candidate cluster for the most important point

by iteratively including the point that is closest to the
group, until the diameter of the cluster surpasses the

2http://boston.lti.cs.cmu.edu/Data/clueweb09/



threshold Diamax. Here the most important point is
the list which has the highest weight.

3. Save the candidate cluster if the total weight of its
points wc is not smaller than Wmin, and remove all
points in the cluster from further consideration.

4. Recurse with the reduced set of points.

Recall that the main difference between WQT and QT is
that WQT tries to get more neighbors for important points,
and hence generated clusters are biased towards important
data points. Suppose we have six lists: l1 =(cartier, bre-
itling, omega, citizen), l2 =(breitling, omega, citizen, tag
heuer), l3 =(breitling, omega, citizen, movie, music, book),
l4 =(movie, music, book), l5 =(music, book, radio), and
l6 =(movie, book, radio). Their corresponding weights sat-
isfy: Sl1 > Sl2 > Sl3 > Sl4 > Sl5 > Sl6. QT ignores
their weights and generate a cluster (l3, l4, l5, l6) in the first
iteration with Diamax = 0.6, whereas WQT will generate
a cluster (l1, l2, l3) for list l1. We prefer the second result,
especially when Sl1 is much larger than Sl3 . In addition,
WQT is more efficient than QT, as it just builds one can-
didate cluster while QT builds a candidate cluster for each
remaining point.

In this paper, the weight of a cluster is computed based
on the number of websites from which its lists are extracted.
More specifically, wc = |Sites(c)| where Sites(c) is the set
of websites that contain lists in c. Note we use websites in-
stead of webpages because webpages from the same website
usually share the same page templates and contribute dupli-
cated lists. We empirically set Diamax = 0.6 and Wmin = 3.
Wmin = 3 means that the lists of a qualified cluster are from
at least three unique websites.

After the clustering process, similar lists will be grouped
together to compose a candidate query dimension.

3.5 Dimension and Item Ranking
In this section, we evaluate the importance of dimensions

and items, and rank them based on importance.
Based on our motivation that a good dimension should

frequently appear in the top results, a dimension c is more
important if: (1) The lists in c are extracted from more
unique websites; and (2) the lists in c are more important,
i.e., they have higher weights. We define Sc, the importance
of dimension c, as follows.

Sc =
∑

s∈Sites(c)

max
l∈c,l∈s

Sl (2)

Here Sl is the weight of a list l. We sum up the maximum
list weight from each website as dimension importance.

In a dimension, the importance of an item depends on how
many lists contain the item and its ranks in the lists. As a
better item is usually ranked higher by its creator than a
worse item in the original list, we calculate Se|c, the weight
of an item e within a dimension c, by:

Se|c =
∑

s∈Sites(c)

w(c, e, s) =
∑

s∈Sites(c)

1
√

AvgRankc,e,s
(3)

where w(c, e, s) is the weight contributed by a website s,
and AvgRankc,e,s is the average rank of e within all lists
extracted from website s. Suppose L(c, e, s) is the set of all
lists in c that contain item e and are extracted from web-
site s, we have AvgRankc,e,s = 1

|L(c,e,s)|

∑

l∈L(c,e,s) ranke|l.

Table 4: Statistics about human created dimensions
Item UserQ RandQ

Bad Fair Good Bad Fair Good

#DimemsionsPerQ 4.4 5.3 4.9 2.1 2.1 2.9
#ItemsPerQuery 135 151 219 61 86 98
#ItemsPerDimension 31 29 45 30 40 33

w(c, e, s) gets the highest score 1.0 when the item e is always
the first item of the lists from s.

We sort all items within a dimension by their weights. We
define an item e is a qualified item of dimension c if Se|c > 1

and Se|c > |Sites(c)|
10

. Here Se|c > 1 means that e is qualified
if it is once the first item of lists from one website and also
occurs in lists from at least another website. Se|c > |Sites(c)|

10
means that it should be supported by at least 10% of all
websites in this dimension. We only output qualified items
by default in QDMiner.

4. EVALUATION METHODOLOGY

4.1 Data
We do not find any existing dataset available for evalu-

ating the quality of query dimensions. Therefore, we build
two datasets from scratch. First, we build an online service
for finding dimensions, and invite some human subjects to
issue queries about topics they know well. We collect 89
queries issued by the subjects, and name the set of queries
as “UserQ”. As asking users to produce queries concerning
a topic that they are familiar with might induce a bias to-
wards topics in which lists are more useful than general web
queries, we further randomly sample another set of 105 En-
glish queries from a query log of a commercial search engine,
and name this set of queries as “RandQ”.

For each query, we first ask a subject to manually create
dimensions and add items that are covered by the query,
based on his/her knowledge after a deep survey on any re-
lated resources (such as Wikipedia, Freebase, or official web
sites related to the query). We then aggregate the qualified

items in the top five dimensions returned by all algorithms
we want to evaluate, and ask the subject to assign unlabeled
items into the created dimensions. New dimensions will be
created for the items that are not covered by the existing
dimensions.

For each human created dimension, we ask the subject
who has created the dimension and four additional subjects
to rate its usefulness in the following three levels:
[Good/2] - It is very useful and I like it;
[Fair/1] - It is just so so;
[Bad /0] - It is useless and I don’t like it.

The rating that is most chosen by subjects is regarded as
the final rating of the dimension. The higher one is used if
two ratings are selected by the same number of subjects.

Table 4 shows the statistics about human labeled query
dimensions. There are on average about 4.9 good dimen-
sions and 5.3 fair dimensions for each query in the UserQ
collection, while there are about 2.9 good dimensions and
2.1 fair dimensions for the RandQ collection. There are
more dimensions and items in UserQ than in RandQ. This
is because the queries in RandQ are randomly sampled from
query logs. Some of them are too specific or noisy to have
meaningful dimensions.

We find that the assessment of query dimensions is time-



consuming and costly, even if we only assess the top five
dimensions for each query. Each subject may spend up to
an hour to completely assess a query.

4.2 Evaluation Metrics
The quality of query dimensions can be measured in the

following two aspects:
Quality of clustering - Ideally, each dimension should only

contain items reflecting the same facet of the query, and
the items referring to the same information should not be
separated into multiple dimensions. In this paper, we use
several existing metrics [24], including Purity, NMI (Nor-
malized Mutual Information), RI (Random Index), and F
measure, to evaluate the quality of clusters.

Ranking effectiveness of dimensions - Obviously we aim to
rank good dimensions before bad dimensions when multiple
dimensions are found. As we have multi-level ratings, we
adopt the nDCG measure (Normalized Discounted Cumu-
lative Gain), which is widely used in information retrieval,
to evaluate the ranking of query dimensions. Suppose that
each output dimension ci is assigned to a manually labeled
class c′i which covers the maximum number of items in ci.
The ranking quality of the top p dimensions is calculated by

nDCGp =
DCGp

IDCGp
where DCGp =

∑p

i=1 DGi and IDCGp

is the ideal cumulative gain which is produced by the perfect
ordering. DGi is the discounted gain of the ith dimension.

DGi =
2ri−1

log2 (1+i)
if the rating of c′i is ri. In our problem, a

ground truth class may be divided into multiple dimensions
in automatic results. Hence DCGp may exceed IDCGp and
nDCG may exceed 1 in some cases. To solve this problem,
for each ground truth class c′i, we only credit the first di-
mension that is assigned to it, and skip all later ones.

nDCG does not consider the quality of clustering which
does influence user satisfaction. To evaluate the integrated
effectiveness, we let DCGp =

∑p

i=1 (wi ·DGi) where wi is
a weight for each automatic dimension ci, and propose two
alternative nDCG measurements.

fp-nDCG - purity aware nDCG. fp-nDCG is also calcu-
lated based on the first appearance of each class. Different
from the original nDCG, we further consider the purity of
each dimension ci by multiplying DGi by the percentage of

correctly assigned items, i.e., we let wi =
|c′i∩ci|

|ci|
.

rp-nDCG - recall and purity aware nDCG. rp-nDCG is
calculated based on all output dimensions. We weight each

dimension by wi =
|c′i∩ci|

|ci|

|c′i∩ci|

|c′
i
|

. Here
|c′i∩ci|

|c′
i
|

is the percent-

age of items in c′i matched by the current output dimension
ci. rp-nDCG ranges from 0 to 1, and the best value 1 is
achieved when all items are correctly classified into the right
dimensions.

We calculate the above metrics based on the top five di-
mensions for each query, and then average them over all
queries. We argue that ranking quality is generally more
important than clustering quality for query dimensions. We
prefer to generating useful dimensions that may contain a
little noise rather than pure but useless dimensions.

5. EXPERIMENTAL RESULTS

5.1 Overall Results
We mine query dimensions based on top 100 results from

a commercial search engine. Some samples of query dimen-

Table 5: Statistics about mined query dimensions

Desc. UserQ RandQ

#queries 89 105
#results per query 99.8 99.5
#lists per document 44.1 37.0
#Items per list 9.7 10.1
#dimensions per query 32.1 21.6
#lists per dimension 7.1 6.4
#items/qualified items per dimension 20.8/7.5 23.7/8.7
#good/fair dimensions among top five 2.3/1.2 1.7/1

Table 6: Quality of mined query dimensions

Dataset Purity RI F1 F5

UserQ 0.910 0.891 0.803 0.791
RandQ 0.922 0.849 0.770 0.738

NMI nDCG5 fp-nDCG5 rp-nDCG5

UserQ 0.818 0.691 0.636 0.212
RandQ 0.770 0.679 0.627 0.248

sions have been shown in Table 1. We find that our gener-
ated top dimensions are usually meaningful and useful for
users to understand underlying facets of queries.

Table 5 shows some statistics about the generated query
dimensions. On average for each query in UserQ, there are
about 32.1 dimensions generated. Each dimension contains
about 20.8 unique items, and 7.5 of them are classified as
qualified ones. Among the top five dimensions, about 2.3
dimensions are labeled as good, and 1.2 ones are labeled as
fair. The queries in RandQ have less lists and dimensions
than UserQ. As we mentioned in Section 4, this is because
some randomly sampled queries in RandQ are too specific
or not well-formed.

We evaluate the top five query dimensions for each query,
and show the results in Table 6. We find that:

(1) Clustering quality on the UserQ collection is good,
with a high purity score (0.910) and reasonable scores of
NMI, RI, F1, and F5. RandQ has a higher purity of 0.922
but a lower NMI of 0.770 than UserQ. This indicates that
more small dimensions, which are from the same ground
truth classes, are generated in RandQ than in UserQ. This
may happen when the quality of search results is not good
and there is not enough evidence to group similar lists.

(2) Rankings of query dimensions on both datasets are ef-
fective in terms of nDCG and fp-nDCG. rp-nDCG@5 values
are relatively low on both datasets, which indicates that only
a small percentage of human labeled items are returned in
the output dimensions. This is caused by the following rea-
sons. Firstly, some items do not appear in the top search
results, and some of them are not presented in list styles.
Secondly, we just evaluate qualified items for each dimen-
sion. Table 5 shows that only about 1/3 of items are pre-
dicted to be qualified. This may cause low item recall for
all methods. Thirdly, it is difficult to enumerate all items.
For example, there are hundreds of items within the labeled
dimension “watch brands” for the query “watches”. These
items are collected from a large number of results generated
by different algorithms, and it is not easy for one specific
algorithm to enumerate all of them. Fourthly, some items
in the labeled dimensions are actually variants of the same
meaning. For example, “season one” and “season 1” are ex-
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Figure 3: Effectiveness of different types of lists

actly the same in meanings. These duplicated items may
cause low recall if one algorithm can only return one of them.
To overcome the issue, we plan to identify similar items in
labeling dimensions in the future.

In the remaining parts of this paper, we only report the
results on UserQ due to space limitations. In most experi-
ments, we get the same conclusions on RandQ and UserQ.

5.2 Experiments with Different Types of Lists
As introduced in Section 3.2, we use three different types

of patterns to extract lists from webpages, namely free text
patterns (Text), HTML tag patterns (Tag), and repeat re-
gion patterns (RepeatRegion). In this section, we experi-
ment with different types of lists, and investigate whether
they are useful. Experimental results are shown in Figure 3.
The figure indicates that the sole use of any type of list
yields reasonable results, but a combination of them (se-
ries ALL) performs the best. This is intuitive because more
lists provide more evidence for weighting important lists and
generating better dimensions.

The repeat region based and HTML tag based query di-
mensions have better clustering quality but worse ranking

quality than the free text based ones. By analyzing the
data, we find that many lists appear in the header or the
left region of webpages in well formatted HTML structures.
They are originally designed to help users navigate between
webpages, and hence we call them “navigational lists” in
this paper. These navigational lists are easily extracted by
HTML tag based or repeat region based patterns with high
precision, but they are usually irrelevant to the query. The
first two lists in Table 3 are such kinds of lists. Although
we have punished them in Section 3.3, there are still some
useless dimensions generated by aggregating them. The lists
within free text of webpages, which are extracted based on
simple sentence patterns, are short and sometimes noisy.
However, they are generally more informative, and are more
useful to users.

5.3 Experiments with List Weighting Methods
We integrate two different components, i.e., document

matching weight and average invert document frequency
(IDF), in evaluating the importance of a list in Section 3.3.
In this section, we investigate whether these components are
necessary and effective. We experiment with using only of
them, and show the experimental results in Figure 4. The
results indicate that clustering quality (in terms of NMI and
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Figure 4: Experiments with list weighting methods

RI) does not significantly change if each component is used
or not. This confirms our previous conclusion that our WQT
clustering algorithm performs well in most cases. In terms
of ranking quality, we have the following findings:

(1) The quality of query dimensions significantly drops
when IDF is not used (document matching only), which in-
dicates that the average invert document frequency of items
is an important factor. A list that contains common items
in a corpus usually gets a high document matching score
because most items also occur frequently in the top results
of the query. It would be ranked high and generate a useless
dimension if we did not consider IDF.

(2) Document matching weight is also helpful to improve
the quality of query dimensions. Document matching weight
does not affect the ranking of query dimensions as big as
IDF. This is because in Equation (2) we use the number of
websites (lists) in ranking query dimensions. Thus the func-
tion of document matching weight is partially overlapped.

5.4 Experiments with Clustering Algorithms
As introduced in Section 3.4, we use a modified QT clus-

tering algorithm named WQT to group similar lists. In this
section, we verify whether WQT is able to generate better
query dimensions than QT. We generate query dimensions
using both algorithms with different settings of maximum di-
ameter Diamax, and plot experimental results in Figure 5.
This figure shows that WQT consistently outperforms QT
with four different settings of maximum diameter. As WQT
first generates clusters for important lists, it is proved to
be able to generate better query dimensions than QT. The
figure also indicates that our setting Diamax = 0.6 is good
for the WQT algorithm, as a lower value may generate less
dimensions and a higher value may induce more noisy di-
mensions.

5.5 Experiments with Search Result Quantity
The top 100 search results are used in the above experi-

ments. In this section, we experiment with various numbers
of top results, ranging from 10 to 100, to investigate whether
the quality of query dimensions is affected by the quantity
of search results. Experimental results are shown in Fig-
ure 6. This figure shows that the number of results does
affect the quality of query dimensions. Query dimensions
become better when more search results are used. This
is because more results contain more lists and hence can
generate more dimensions. More results also provide more
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evidence for voting the importance of lists, and hence can
improve the quality of query dimensions. The figure also
shows that the improvement of clustering quality becomes
subtle when the number of results is larger than 50. Addi-
tional results may help discover more dimension items, but
has less impact on the quality of query dimensions. Using
top 50 results is already enough for the WQT algorithm to
group similar lists into correct dimensions, and most valu-
able dimensions have already been found. Furthermore, the
relevance of later search results also decreases, and the doc-
uments may contain less relevant or less useful lists.

In addition, we find that the purity of query dimensions
(the red series in Figure 6) decreases a little bit when more
results are used. This is because when a small number of
results are used, some lists are not merged together but each
of them individually has high purity. When similar lists
are grouped based on more results, a part of purity may
be sacrificed and the generated dimensions may inevitably
include some noise from new lists.

5.6 Experiments with Search Result Quality
QDMiner is based on the assumption that most top re-

sults of a query are relevant. In this section, we investigate
whether our dimension mining algorithms are significantly
affected by the quality of search results. We experiment with
the following configurations: (1) Top - using the original top
K results; (2) TopShuffle - randomly shuffling the top K re-
sults; (3) Random - randomly selecting K results from the
original 100 results and then shuffling them. In general, the
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Random method generates worse ranking than TopShuffle,
and both perform worse than Top in ranking effectiveness.

Figure 7 shows that method Random is the worst among
the three approaches. We find that Random generates much
less dimensions than Top and TopShuffle. Consequently, the
generated dimensions are usually less relevant to the query,
and they also contain less qualified items. Some documents
used by the Random method may have drifted to other irrel-
evant topics. Moreover, Figure 7 shows that shuffling the top
results (TopShuffle) harms the quality of query dimensions.
We assign larger weights for the lists that are extracted from
the top-ranked documents in Equation (1). The TopShuf-
fle method may cause the lists extracted from less relevant
documents to be given higher weights, which finally affects
the quality of query dimensions. All these results indicate
that the quality of search results does affect query dimen-
sions. Note that their clustering quality is comparable, and
we skip them due to space limitations.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we study the problem of finding query di-

mensions. We propose a systematic solution, which we refer
to as QDMiner, to automatically mine query dimensions by
aggregating frequent lists from free text, HTML tags, and
repeat regions within top search results. We create two hu-
man annotated data sets and apply existing metrics and two
new combined metrics to evaluate the purity and the rank-
ing quality of query dimensions. Experimental results show
that a large number of lists exist in the top search results.
Meaningful and useful query dimensions are mined by ag-
gregating these lists using QDMiner.

As the first approach of finding query dimensions, QD-
Miner can be improved in many aspects. For example, some
semi-supervised bootstrapping list extraction algorithms can
be used to iteratively extract more lists from the top results.
Specific website wrappers can also be employed to extract
high-quality lists from authoritative websites. Adding these
lists may improve both accuracy and recall of query dimen-
sions. Part-of-speech information can be used to further
check the homogeneity of lists and hence improve the qual-
ity of query dimensions. We will explore these topics to
refine QDMiner in the future.

We will also investigate some other related topics to find-
ing query dimensions. Good descriptions of query dimen-
sions may be helpful for users to better understand the di-



mensions. How to automatically generate meaningful de-
scriptions is an interesting research topic. We also plan
to utilize query dimensions to improve Web search. Some
candidate directions include using query dimensions to im-
prove search result diversity, using dimensions to provide
structured query suggestions, and building a general faceted
search system based on QDMiner.
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