Microsoft® Research FacultySummit 2011

Cartagena, Colombia | May 18-20 | In partnership with COLCIENCIAS

Microsoft® Research FacultySummit 2011

Cartagena, Colombia | May 18-20 | In partnership with COLCIENCIAS

High-Fidelity Augmented Reality Interactions Hrvoje Benko Researcher, MSR Redmond

AND ADDRESS

New generation of interfaces

Instead of interacting through indirect input devices (mice and keyboard), the user is interacting directly with the content.

Direct un-instrumented interaction

Content is the interface

Surface computing

Kinect

New generation of interfaces

Direct un-instrumented interaction.

Content is the interface.

New generation of interfaces

Bridge the gap between "real" and "virtual" worlds...

... but still confined to the rectangular screen!

An opportunity...

Depth camera

Projector

Enable interactivity on any available surface and between surfaces.

MicroMotoCross

Wilson, 2007

Augmented reality

Spatial

"Deviceless"

High-fidelity

Depth Sensing Cameras

Depth sensing cameras

Color + depth per pixel: RGBZ

Can compute world coordinates of every point in the image directly.

Three basic types

- Stereo
- Time of flight
- Structured light

Correlation-based stereo cameras

Binocular disparity

TZYX <u>http://www.tyzx.com/</u> Point Grey Research <u>http://www.ptgrey.com</u>

Correlation-based stereo

Stereo drawbacks

- Requires good texture to perform matching
- Computationally intensive
- Fine calibration required
- Occlusion boundaries
- Naïve algorithm very noisy

Time of flight cameras

3DV ZSense

Pulsed infrared lasers

3DV, Canesta (no-longer public) PMD Technologies <u>http://www.PMDTec.com</u> Mesa Technologies <u>http://www.mesa-imaging.ch</u>

Time of flight measurement

Structured light depth cameras

KINECTPrimeSensehttp://www.primesense.comfor Interview Section (Section Content of the section of the section

Structured light (infrared)

Depth by binocular disparity

- Expect a certain pattern at a given point
- Find how far this pattern has shifted
- Relate this shift to depth (triangulate)

Kinect depth camera

- Per-pixel depth (mm)
- PrimeSense reference design
- Field of View 58° H, 45° V, 70° D
- Depth image size VGA (640x480)

- Spatial x/y resolution (@ 2m distance from sensor) 3mm
- Depth z resolution (@ 2m distance from sensor) 1cm
- Operation range 0.8m 3.5m
- Best part It is affordable \$150

for XBOX 36

Why sense with depth cameras?

Requires **no instrumentation** of the surface/environment.

Easier understanding of physical objects in space.

Enabling interactivity everywhere

LightSpace

LightSpace

Combining Multiple Depth Cameras and Projectors for Interactions On, Above, and Between Surfaces

Wilson & Benko, 2010

LightSpace Implementation

Projectors

PrimeSense Depth **Cameras**

PrimeSense depth cameras

320x240 @ 30Hz Depth from projected structured light Small overlapping areas Extended space coverage

Unified 3D Space

Camera & projector calibration

Camera & projector calibration

All in real world coordinates.

Irrespective of "which" depth camera.

Irrespective of "which" projector.

Supporting rich analog interactions

Skeleton tracking (Kinect)

Use the full 3D mesh.

Preserve the analog feel through physics-like behaviors.

Reduce the 3D reasoning to 2D projections.

Pseudo-physics behavior

Virtual depth cameras

Space 29Hz

Simulating virtual surfaces

Through-body connections

Physical connectivity

Spatial widgets

User-aware, on-demand spatial menu

What is missing?

LightSpace

• "Touches" are hand blobs

Ideally

Multi-touch

• All objects are 2D

• 3D virtual objects

• Very coarse manipulations

• Full hand manipulations

Touch on every surface

Problem of two thresholds

How to get surface distance?

Analytically

- Problems:
 - Slight variation in surface flatness
 - Slight uncorrected lens distortion effect in depth image
 - Noise in depth image

How to get surface distance?

Empirically

- Take per-pixel statistics of the empty surface
 - Can accommodate different kinds of noise
 - Can model non-flat surfaces
- Observations:
 - Noise is not normal, nor the same at every pixel location
 - Depth resolution drops with distance

Modeling the surface

Build a surface histogram at every pixel.

Setting reasonable finger thickness

Must make some assumption about anthropometry, posture, and noise.

How good can you get?

Camera above surface	0.75m	1.5m
Finger threshold	14mm	30mm
Surface noise	3mm	6mm

KinectTouch

Camera at 1.5m above table

Wilson 2010

But these are all static surfaces

How to allow touch on any (dynamic) surface?

- Dynamic surface calibration
- Tracking high-level constructs such as finger posture, 3D shape
 - Take only the ends of objects with physical extent ("fingertips")
 - Refinement of position

Depth camera touch sensing is almost as good as conventional touch screen technology!

Works on any surface! (curved, flexible, deformable, flat...)

Interacting with 3D objects

Previous approaches were 2D

Micromotocross

LightSpace

Can one hold a virtual 3D object in their hand?

And manipulate it using the **full dexterity** of your hand?

If you know the geometry of the world, you should be able to simulate physical behaviors.

Problems with physics and depth cameras

Dynamic meshes are difficult

• Rarely supported in physics packages

No lateral forces!

• Can't place torque on an object

Penetration is handled badly

• Can't grasp an object with two fingers

Particle proxy representations

Wilson 2007

But can you see 3D in your hand?

3D perception

Many cues:

- Size
- Occlusions
- Shadows
- Motion parallax
- Stereo
- Eye focus and convergence

_ Can correctly simulate if you know:

- The geometry of the scene
- User's view point and gaze

Depth camera is ideal for this!

Can easily capture scene geometry

Can easily track user's head

MirageBlocks

3D Projector (Acer H5360)

Shutter Glasses (Nvidia 3D Vision)

___Depth Camera (Kinect)

Benko, Costa, and Wilson, 2011

A single user experience!

Particle proxies

MirageBlocks

MirageBlocks

Hrvoje Benko, Ricardo Costa, Andy Wilson

Microsoft Research 2011

Next: Grabbing

Very hard problem – Working on it!

- 1. Interactivity everywhere
- 2. Room and body as display surfaces
- 3. Touch and 3D interactions
- 4. Preserve the analog feel of interactions

Come to try it yourself!

MirageBlocks demo

Friday 10am – 1pm

Resources to consider

Resources

Kinect for Windows SDK

 <u>http://research.microsoft.com/en-</u> us/um/redmond/projects/kinectsdk

Research	
Take control.	Spring 2011 Kinect for Windows's DK beta
Kinect for Windows SDK beta	S 🗄 📽 🍡 🖾 🌧
Coming later this spring, the Kineck for Windows SOK is a programming toolkit that will enable researchers and enthusiasts easy access to the capabilities offered by the Microsoft Kinect device connected to computers running Microsoft Windows 7.	Highlights Windows Phone, Kinect Exemplify New Usage Scenarios and Device Capabilities at MIX11
Get release announcements, updates, news, and more.	Academics, Enthusiasts to Get Kinect SDK Kinect Audio: Preparedness Pays Off Virtual Reality Visionary Jaron Lanier on His Microsoft Gig: Kinect Is 'Beautful, Exciting'
With this SDK you'll be able to take advantage of	Related sites
The latest advances in audio processing, which include a four-element microphone array	Microsoft Research
with sophisticated acoustic holes and echo cancellation for crystal clear autoid. Sound source localization for beamforming, which enables the determination of a sound's spatial location, enhancing reliability when integrated with the Microsoft speech recognition	
 Depth data, which provides the distance of an object from the Kinect camera, as well as the raw audio and image data, which together open up opportunities for creating richer natural user interface experiences. 	Microsoft Research Connections on Microsoft.com
 Highly performant and robust skeletal tracking capabilities for determining the body positions of one or two persons moving within the Kinect field of view. 	
Documentation for the APIs and a description of the SDK architecture.	
 Sample code that demonstrates how to use the functionality in the SDK. 	
This SDK is intended for non-commercial use to enable experimentation in the world of natural user interface experiences, with new state-of-the-art features planned for future releases that will continue to provide new wave to experiment	
Resources

NVIDIA PhysX SDK

- http://developer.nvidia.com/physx-downloads
- http://physxdotnet.codeplex.com/ (.NET wrappers)

Newton Physics Game Engine

http://newtondynamics.com/forum/newton.php

NVIDIA 3D Vision

<u>http://www.nvidia.com/object/3d-vision-main.html</u>

DLP Link

- <u>http://www.dlp.com/projector/dlp-innovations/dlp-link.aspx</u>
- <u>http://www.xpand.me/</u> (3D glasses)

My collaborators

Andy Wilson

Chris Harrison

Ricardo Costa Jota

Hrvoje Benko benko@microsoft.com http://research.microsoft.com/~benko

Microsoft[®]

© 2010 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft and Microsoft any information provided after the date of this presentation.

MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.