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Abstract. This paper addresses the problem of predicting the pronunciation of 

Japanese words, especially those that are newly created and therefore not in the 

dictionary. This is an important task for many applications including text-to-speech 

and text input method, and is also challenging, because Japanese kanji (ideographic) 

characters typically have multiple possible pronunciations. We approach this 

problem by considering it as a simplified machine translation/transliteration task, 

and propose a solution that takes advantage of the recent technologies developed for 

machine translation and transliteration research. More specifically, we divide the 

problem into two subtasks: (1) Discovering the pronunciation of new words or those 

words that are difficult to pronounce by mining unannotated text, much like the 

creation of a bilingual dictionary using the web; (2) Building a decoder for the task 

of pronunciation prediction, for which we apply the state-of-the-art discriminative 

substring-based approach. Our experimental results show that our classifier for 

validating the word-pronunciation pairs harvested from unannotated text achieves 

over 98% precision and recall. On the pronunciation prediction task of unseen words, 

our decoder achieves over 70% accuracy, which significantly improves over the 

previously proposed models.  

Keywords: Japanese language, pronunciation prediction, substring-based 

transliteration, letter-to-phone 

1   Introduction 

This paper explores the problem of assigning pronunciation to words, especially when 

they are new and therefore not in the dictionary. The task is naturally important for the 

text-to-speech application [27], and has been researched in that context as letter-to-

phoneme conversion, which converts an orthographic character sequence into phonemes. 

In addition to speech applications, the task is also crucial for those languages that require 
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pronunciation-to-character conversion to input text, such as Chinese and Japanese, where 

users generally type in the pronunciations of words, which are then converted into the 

desired character string via the software application called pinyin-to-character or kana-

kanji conversion (e.g. [8] [9]). 

Predicting the pronunciation of words is particularly challenging for Japanese. 

Japanese orthography employs four sets of characters: hiragana and katakana, which are 

syllabary systems thus phonemic; kanji, which is ideographic and represents morphemes, 

and Roman alphabet. Kanji characters typically have multiple possible pronunciations, 

making the prediction of their pronunciation difficult. In many cases, you need to know 

the word to know its pronunciation: after all, the pronunciation is an idiosyncratic 

property of the word. Therefore, one goal of this paper is to propose an effective method 

for exploring textual resources to learn the pronunciation of words. At the same time, we 

are also motivated to find out how predictable the pronunciations of kanji words are. 

Native speakers of the language can take an educated guess at predicting a pronunciation 

of an unseen word; can a machine replicate such sophisticated performance?  

Our approach to the problem of pronunciation prediction therefore consists of two 

parts: we first try to model the intuition that a fluent speaker has on how to pronounce 

words by a statistical model via the task of pronunciation modeling; we then use the 

model to harvest word-pronunciation pairs from the web in the task of pronunciation 

acquisition. In this paper, the pronunciation modeling task is considered as a simplified 

machine translation (MT) task, i.e., a substring-based monotone translation, inspired by 

recent work on string transduction research. Our model, trained discriminatively using the 

features that proved useful in related tasks, outperforms a strong baseline as well as an 

average human performance, while making the types of errors that are considered 

acceptable by human. For the pronunciation acquisition task, we use a classifier to 

validate word-pronunciation pairs extracted automatically from text, exploiting the 

convention of Japanese text that the pronunciation is often inserted in parentheses 

immediately following the word with a difficult or unusual pronunciation. Our classifier 

achieves over 98% precision and recall when Wikipedia was used as the source corpus.  

There are several contributions of this paper. We believe that this is the first work to 

address the problem of word pronunciation prediction for Japanese in a comprehensive 

manner. We apply the state-of-the-art technology developed for related problems to solve 

this problem, with modifications that are motivated by the specific problem at hand. The 

use of unannotated corpus for the extraction of pronunciation in Japanese is also novel 

and proved effective.  

The rest of the paper is organized as follows. Section 2 gives some background, 

including the task description and related work. Section 3 introduces our approach to the 

pronunciation modeling task, along with experimental results. Section 4 deals with the 

task of pronunciation acquisition from corpora, which takes advantage of the prediction 

model described in Section 3. We conclude with comments on future work in Section 5. 



2   Background 

2.1 Pronunciation Prediction: Task Description 

We define the task of pronunciation prediction as converting a string of orthographic 

characters representing a word (or a phrase corresponding to an entity) into a sequence of 

hiragana, which straightforwardly maps to pronunciation.1 The problem is trivial if the 

word is spelled entirely in non-kanji characters, so we only target the cases where at least 

one character in the word is spelled in kanji. Let us take an example of the name of the 

recently appointed prime minister of Japan, Naoto Kan (菅直人). Our goal is to convert 

this string into かんなおと, which is pronounced as [ka-N-na-o-to].2 How ambiguous is 

this name to pronounce? According to the kanji pronunciation dictionary we have, the 

first character has three pronunciations, the second fourteen and the third twelve: 3 

therefore, there are             possible ways to pronounce this word. Naturally, 

some pronunciations are more common than others, especially given some contextual 

information. For example, 直人 is a common first name, pronounced as [nao-to] or [nao-

hito] or maybe [tada-hito]; other pronunciations are highly unusual. Given that 直人 is 

probably a first name, 菅 may be a last name, pronounced as [kan] or [suga], though it is 

fairly uncommon as a last name. Kanji characters typically have two types of 

pronunciations called on-yomi (literally „sound pronuncation‟) and kun-yomi (literally 

„meaning pronunciation‟), corresponding to their origin (Chinese and Japanese, 

respectively), and they tend not to mix within a word, exemplified in 運転手 ([uN-teN-

shu] „driver‟, all on-yomi) vs. 手紙 ([te-gami] „letter‟, all kun-yomi). Using these types 

of knowledge, one might guess that the name is reasonably pronounced as [kaN-nao-hito], 

[kaN-nao-to], [suga-tada-hito] and so forth. Eventually, the correct pronunciation can only 

be obtained by knowing the word, i.e., by identifying this string as a dictionary entry. The 

problems we try to solve in this paper is therefore twofold: one is to increase the 

dictionary coverage by learning word-pronunciation pairs automatically from text through 

pronunciation acquisition; secondly, for those words for which a dictionary entry is still 

missing, we would like to build a model to predict pronunciation that is not only highly 

accurate, but also makes reasonable mistakes when it fails – using the 直人 example 

above, we hope to generate one of the three reasonable pronunciations. We focus on the 
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input applications, but we do not deal with this problem here.   
2 A hyphen is used to indicate a character boundary of the preceding string; [N] is used to indicate 

the pronunciation of the moraic nasal ん.  
3 This kanji pronunciation dictionary was available to us prior to the current research. It lists the 

pronunciations for about 6,000 kanji characters, with 2.5 pronunciations on average per character. 

The possible pronunciations for the three letters here are: 菅（すが,すげ,かん）, 直 （ちょっ,すな

お,す,ただし,ちょく,ね,ひた,ただ,のう,じき,なお,すぐ,じか,なおし）, 人（ひと,じん,と,り,たり,ど,に

ん,びと,うど,ぴと,うと,とな）. 



task of predicting word pronunciation in this paper – selecting the right pronunciation for 

the words in a sentence is a related but independent task of pronunciation disambiguation, 

for which the pronunciation prediction task discussed in this paper will serve as an 

essential component.  

2.2 Related Work  

The task of pronunciation prediction is inspired by previous research on string 

transduction. The most directly relevant one is the work on letter-to-phoneme conversion, 

where many approaches have been proposed for a variety of languages. The methods 

include joint n-gram models (e.g. [1] [2] [4]), discriminatively trained substring-based 

models (e.g. [11] [12]) which are themselves influenced by the phrasal statistical MT 

(SMT) models [15], and minimum description length-based methods [24]. The joint n-

gram estimation method has also been applied to predicting pronunciation in Japanese 

(e.g., [21] [22]).  

Similar techniques to the letter-to-phoneme task have also been applied to 

transliteration, which converts the words in one language into another that uses a different 

script, maintaining phonetic similarity. Early works on this task used the source-channel 

model based on one-to-one (or more) character alignment (e.g. [14]). Later they were 

extended to use many-to-many alignments using substring operations in the style of 

phrasal SMT (e.g. [28]), demonstrating improved accuracy over the character-based 

models. The components of the model proposed by [28] are themselves generative models, 

which can also be used in a SMT-style discriminative framework, where the weights on 

the component generative models are discriminatively trained. [5] proposed such a hybrid 

model, further improving the accuracy of transliteration. Joint n-gram models have also 

been applied to the task of transliteration (e.g. [17]).  

In contrast to the wealth of literature in string transduction research, the task of 

pronunciation acquisition has attracted much less attention in the past. [10] describes a 

method in which they learn English pronunciations from the web using IPA (e.g., „beet 

/bit/‟) and ad-hoc (e.g., „bruschetta (pronounced broo-SKET-uh)‟) transcriptions by first 

extracting candidate pairs using a letter-to-phoneme model, which are then validated 

using SVM classifiers. Our approach is similar to theirs, with modifications in the method 

of generating candidates, to be explained in Section 4. [29] proposed a method to use the 

web for assigning word pronunciation in Japanese, but their focus is on disambiguating 

known word pronunciations rather than learning new word-pronunciation pairs. [16] and 

[26] discuss the methods of disambiguating new word pronunciation using speech data.  

3 Substring-based Pronunciation Prediction  

This section describes our substring-based approach to pronunciation modeling. As 

mentioned above, the pronunciation of a kanji is dependent on those of the surrounding 



characters, which motivates a substring-based alignment and decoding over a character-

based approach. We also assume that the task is basically monotone and without 

insertion/deletion, with kanji–hiragana alignments of 1–n (source–target,    ) 

characters. 4  We adopt a discriminative learning framework that uses component 

generative models as real-valued features, which is the standard method for statistical MT 

[23], and is reported to work comparably or better on a transliteration task than a 

discriminative model that uses sparse indicator features [5].  

3.1 Model and Features 

We adopt a linear model of pronunciation prediction: given the target character (hiragana) 

sequence   and the source (kanji) sequence  , we define features over   and  ,         

for         The features are arbitrary functions that map       to real values, and 

the model parameters are a vector of n feature weights,            . The score of   

with respect to   is given by  

                      ∑          

 

   

 

 

For the features, we use those that are motivated by MT and transliteration research: 

the translation probabilities in both directions,        and       , the target character 

language model probability     , the operation count, which corresponds to the number 

of phrases in phrasal SMT, and the ratio of the source and target character length. 

Crucially, the estimation of the first three of these probabilities requires a set of training 

corpus with source and target alignment at the substring level. We take an unsupervised 

approach in generating such training data: we used an automatic word aligner developed 

for MT for obtaining these alignments, as detailed in Section 3.3 below.   

3.2 Training and Decoding 

For the training of the parameters of the linear model, we used averaged perceptron 

training. Let d stand for a derivation that describes a substring operation sequence 

converting s into t. Given a training corpus of such derivations             obtained 

from the substring-aligned text, the perceptron iterates the following two steps for each 

training sample     : 
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hold. The monotonicity assumption breaks in the pronunciation of a kanji sequence that reflects 

the Chinese SVO word order, as in 不弓引 [yumi-hika-zu] (a place name, which originally 

means „not draw a bow‟, in which the correct alignment is assumed to be 不-zu (not), 弓-yumi 

(bow) and 引-hika (draw). Also, hiragana insertions occurs quite commonly as in 一関 [ichi-no-

seki] (a place name, meaning „first checkpoint‟), where „no‟ is a genitive marker inserted between 

the kanji characters.  



                   
   (       )

       

                             
 

where           are all possible derivations with the same source side as  . For 

decoding, we used a monotone phrasal decoder similar to the one employed in phrasal 

SMT [31], a stack decoder with the beam size of 20, which was set using a development 

data.  

3.3 Experiments 

Data and settings. As mentioned above, we need a parallel data of kanji words with their 

pronunciation in our approach. An obvious source of such data is a dictionary: we used 

UniDic [6], a resource available for research purposes, which is updated on the regular 

basis and includes 625K word forms as of the version 1.3.12 release (July 2009). Since we 

focus on the prediction of new words which are mostly nouns, we used the noun 

(including proper noun) portion of the dictionary, containing 195K words in total.  

Though UniDic is a lexical resource that is constantly refreshed, we also investigated 

into a dictionary-free approach, where we exploit a large body of unannotated text to 

collect words‟ pronunciation. Specifically, our approach takes advantage of the 

convention of Japanese text that the pronunciation of those words that are difficult or 

unusual to pronounce5 are often indicated in parentheses immediately following the word 

in question, as shown in Figure 1. 
 

新潟県（にいがたけん）は、本州日本海側に位置する 

旧国名から越佐（えっさ）と表現することもある。 

ふたご座流星群（ふたござりゅうせいぐん、学名 Geminids）は… 

名取市立館腰（たてこし）小学校 

一力亭（うどん） 

Figure 1. Examples of parenthetical pronunciation expression from Wikipedia. Strings in boldface 

indicate the words corresponding to the pronunciation in parentheses; the regular expression 

(described below) extracts the underlined substrings. 

We used a simple regular expression-based pattern matching to extract word-

pronunciation candidate pairs from Japanese Wikipedia. It extracts a substring of hiragana 

characters in a pair of parentheses, preceded by any character string bounded by a 

punctuation character or a beginning of a sentence. Additional heuristics consist of the 

constraints based on kana characters (i.e. no kana character is allowed in the word string 
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occur in the free text portion of the articles. 



unless it also appears in the pronunciation string.) and length ratio (e.g. the pronunciation 

string cannot be shorter than the word string.6). Note that the extraction method runs the 

risk of extracting too much pre-parenthetical material: as seen in the second to last 

example of Figure 1, たてこし indicates the pronunciation of only the last two characters 

(館腰). Another more substantial source of noise comes from the cases where the hiragana 

characters in parentheses do not indicate the pronunciation at all, as in the last example of 

Figure 1: 一力亭 [ichi-riki-tei] is a name of a restaurant, followed by the kind of food 

they serve (うどん [u-do-N] „noodle‟) which happens to be written in hiragana. Though 

the extracted word-pronunciation data is therefore quite noisy, we will demonstrate that 

the use of this data greatly enhances the accuracy of the prediction. Note that in spite of 

the use of simple heuristics, the annotator found that more than 90% of extracted instances 

are valid word-pronunciation pairs (as mentioned in the last paragraph of Section 3.4), 

while the heuristics were weak enough to cover most pronunciation candidates in 

Wikipedia. 

The parallel data extracted from Wikipedia in this manner as well as from the UniDic 

entries is then aligned at the substring level. Our method for this follows [5]: we use a 

phrase-based word aligner originally developed for MT, similar to the word aligner 

described in [32], by considering each character as a word. We also used hard substring 

length limits for the same purpose: 1 for the input and 4 for the output strings, reflecting 

the fact that word pronunciation is typically composed of the pronunciation of individual 

kanji characters.7 The aligner generates only monotonic alignments, and does not allow 

alignments to a null symbol in either source or target side. The same restriction is applied 

during decoding as well.  

We extracted a total of 463,507 word-pronunciation pairs from Japanese Wikipedia 

articles as of January 24, 2010. After removing duplicates, we reserved 5,000 pairs for 

development and testing (of which we used 200 for development and 2,000 for final 

evaluation), and used the rest for training, i.e., for generating training derivations upon 

which the features of the linear model were computed. The translation probabilities, 

       and       , are estimated by maximum likelihood on the operations observed in 

the training corpus with one important modification: recall that these operations, 

estimated using the character aligner in an unsupervised manner, are minimal non-

decomposable operations, and therefore does not capture any contextual information. In 

order to remedy this, we re-align the training data by using composed operations which 

are constructed from operation sequences attested in the training data to maximize        

and       , respectively, thereby removing the substring length limit employed in the 

                                                           
6 This is because a kanji character normally corresponds to one or more hiragana characters. While 

we are aware of some exceptional cases in non-compositional pronunciation, as in 啄木鳥 [kera] 

„woodpecker‟, they are negligibly rare (<10 cases in 195K nouns in UniDic.). 
7 There are exceptions to this: occasionally, a pronunciation is assigned to a kanji string in a non-

compositional manner (e.g.,今日 [kyou] „today‟) . This is handled by the use of composed 

operations, to be explained below.  



character alignment phase.8 Figure 2 shows an example of an alignment before and after 

the composition. This process offers an additional benefit of noise reduction of the 

training data, as we removed the operations that occurred less than C times (C is set using 

the development data, C=2 in our case), removing the training examples that are not 

reachable from the remaining operations. This reduced our data size for perceptron 

training to 427,644 pairs, a reduction of 6.7%. More detail on the relation between the 

data size and the accuracy of the prediction task is discussed in the next subsection. For 

the target character language model, we used a 4-gram language model with Kneser-Ney 

smoothing and the BOS (beginning-of-string) and EOS (end-of-string) symbols, and 

trained it with the same training data as described above. 
 

 

Figure 2. Alignment before (=character level indicated by the lines) and after (=substring level by 

the boxes) composition for 益子祇園祭 ([mashi-ko-gi-on-matsuri], „Mashiko Gion Festival‟). 

Baseline. We describe two baseline models that we used for comparison in the 

experiment. The first is KyTea, a publicly-available Japanese word segmentation and 

pronunciation prediction tool,9 which achieves the state-of-the-art performance on the 

task of Japanese pronunciation prediction. According to [20] and the KyTea manual, the 

program first performs word segmentation, after which the pronunciation of each word is 

independently selected using a linear SVM classifier, choosing among the pronunciations 

that have appeared in the training data. When they encounter an unknown word, the 

output is the combination of the most frequent pronunciations of each kanji character. We 

ran KyTea (Version 0.11) with the default settings and with “the high-performance SVM 

model” available from the website, which is mainly trained on the Balanced Corpus of 

Contemporary Written Japanese (BCCWJ; [19]) and UniDic. 

Our second baseline, the joint n-gram model, was proposed by [1], which has also been 

used for Japanese [21]. In this model, n-gram statistics are learned over the sequences of 

pairs of letters and phonemes, instead of the sequences of phonemes. While [21] used 

KyTea to extract word-pronunciation pairs from the annotated BCCWJ and newswire 

corpus to learn bigram statistics, we learned our n-gram statistics from the alignments 

obtained from the Wikipedia training set as described above. Note that even though we 

describe this approach as a baseline, it crucially relies on the paired substrings extracted in 
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target) character alignments. 
9 http://www.phontron.com/kytea/ 



an unsupervised manner using the proposed approach. In that sense, the effectiveness of 

this baseline also incorporates a novel contribution of this work. We implemented the 

joint trigram model with Kneser-Ney smoothing, after adding the BOS (beginning-of-

string) and EOS (end-of-string) symbols. The decoder performs the exact inference with 

Viterbi search over the probability space. 

3.4 Results and Discussion  

Table 1. Word-level accuracy (in %) of pronunciation prediction on Wikipedia test data. 

Model Accuracy 

KyTea 57.8 

Joint Bigram 66.4 

Joint Trigram 70.0 

Proposed 71.7 
 

Table 1 shows the comparison of the proposed method against the baseline models in 

terms of the whole word accuracy on the pronunciation prediction task, evaluated on the 

2,000 Wikipedia test pairs. All models other than KyTea were trained on the combination 

of Wikipedia-derived and UniDic pairs. As is observed from the table, the proposed 

method outperforms all the baseline models, with a 1.7% improvement over the joint 

trigram model, which is statistically significant with the significance level of p < 0.01 by 

the McNemar‟s test. Though falling short of the best model, the joint n-gram models are 

quite competitive, suggesting that the proposed method of unsupervised training data 

generation using word alignment techniques is beneficial for the task. The advantages of 

using an MT-inspired framework are therefore twofold: word alignment techniques for 

training data generation, and the linear combination of relevant feature functions for the 

best accuracy on the prediction task. KyTea performs poorly on this data set, suggesting 

that using a unigram model trained on manually created resources does not work well on 

the words that appear in Wikipedia. 

It is noteworthy that the joint trigram and proposed models both outperformed the 

average human performance 10  (~65%) on the same data set. Since the current 

experimental setting allows only one pronunciation to be correct disregarding the context 

in which the word is used, it is possible that many errors are actually not errors but are 

acceptable in other contexts. An error analysis on the output of the proposed model 

confirms this speculation: about half of the errors were judged acceptable or correct upon 

human verification. Considering this fact, the performance of the proposed model is 

considered to be approaching the upper bound of this task; hence, the improvement of 

1.7% is quite meaningful. 

                                                           
10 The human performance is measured as follows: the source strings are presented to two native 

speakers with no context, and they are asked to assign guessed pronunciation. They both had 

graduate-level education. 



Table 2. Accuracy (in %) of pronunciation prediction models evaluated on the Wikipedia test set 

with respect to various training data sets. 

 Joint Trigram Proposed 

UniDic 46.9 47.5 

Wikipedia 68.5 70.8 

Wikipedia+UniDic 70.0 71.7 
 

Table 2 shows the accuracy of the joint trigram and proposed models as a function of 

different training data source. The models trained with UniDic performed poorly, with the 

accuracy lower than 50%. This suggests that the alignments learned solely from a static 

dictionary resource are insufficient to predict the pronunciation of new words in 

Wikipedia. The use of Wikipedia-derived instances as training data improved the 

accuracy dramatically, achieving more than 20% improvement over the models trained on 

UniDic. Combining the two resources further improved the accuracy. The proposed model 

consistently outperforms the joint trigram baseline in all training data settings. 
 

 

Figure 3. Accuracy of pronunciation prediction models on the test set w.r.t. training data noise 

filtering 

We also examined how incorrect alignments in the training data affect the 

pronunciation prediction performance. We did this by setting a cutoff threshold of the 

alignment scores, and removing those alignments with the scores lower than the threshold 

from the training set. The alignment scores are output by the character aligner discussed 

above as the log probability of the alignment, and are normalized by the length of the 

source (i.e. kanji) sequence to avoid the preference for shorter sequences. Figure 3 shows 

the accuracy of the models with respect to the cutoff threshold. The x-axis corresponds to 

the percentage of the instances used in model training, while the y-axis indicates the 

word-level accuracy. The nodes in the graph correspond to the score threshold of −1, −2, 

−3, −4, −6, −8, −10, and −Infinity. The best performance is achieved when 90−95% of the 

training data is used, which is consistent with the observation that out of 100 words for 



which we manually verified the alignments, 11 instances contained alignments that 

appeared improper, and 7 instances were not word-pronunciation pairs though the aligner 

forced an alignment, which means that these instances are noise. Comparing the proposed 

vs. joint trigram-based methods, the former appears slightly more robust to noise: though 

it is rather difficult to see in the graph, the trigram model gained the maximum of 0.45% 

improvement by the noise filtering, while the proposed model gained the maximum of 

only 0.2% improvement. This may be attributed to the fact that the proposed model 

incorporates a noise filtering mechanism by way of minimum operation counts threshold 

 , as mentioned above. 

4 Word Pronunciation Acquisition Task 

This section describes our approach to harvesting word-pronunciation pairs from a large 

corpus with minimal supervision. We formulate this problem as a binary classification 

task: each candidate pair is determined to be a word-pronunciation pair or not, using a 

discriminatively trained classifier. Using the word-pronunciation candidate pairs in Figure 

1 as an example, our goal is to classify the first four examples as positive and the last 

example as negative. A special treatment is required for the second to last example: recall 

that in this example, 名取市立館腰（たてこし）, only the last two characters (館腰) of 

the extracted word string corresponds to the pronunciation in hiragana in parentheses. For 

the modeling task in Section 3, we ignored this problem and treated these cases simply as 

noise. For the pronunciation acquisition task, we generate additional candidate pairs from 

these cases, so that from the string above, we generate the following pairs: 

<腰, たてこし>, <館腰, たてこし>, <立館腰, たてこし>, <市立館腰, たてこし> 

These expanded candidate pairs share the word strings to the right, their length 

bounded maximally by the number of hiragana characters in the pronunciation (assuming 

one-to-one or -many mapping between kanji and hiragana), and minimally by the length 

of hiragana pronunciation string divided by 3 (assuming that on average, a kanji character 

maps to up to 3 hiragana characters at the word level). Each of these candidate pairs are 

then submitted to the classifier to be validated as a desired word-pronunciation pair or not. 

The task of pronunciation acquisition formulated in this manner, along with the sub-

problem of the boundary detection, can be viewed as a very similar task to bilingual 

dictionary creation for Chinese MT (e.g. [3] [18]). The goal of this line of work is to 

exploit parenthetical expressions in the web text to extract Chinese-English phrase 

translation candidates, which are then validated using a classifier. Because Chinese text is 

similar to Japanese in that the word boundaries are not marked explicitly using white 

spaces, the same boundary detection problem exists as in „我的磁石(magnet)‟, in which 

only the underlined part corresponds to the translation of „magnet‟. Despite these 

similarities, the process of aligning the input and output sequences and using the 

alignment for the validation task is much more complex in the bilingual dictionary 



creation task, as it cannot be reformulated as a monotone substring mapping problem, and 

requires additional steps to generate word translation pairs from extracted string pairs.  

Coming back to our pronunciation acquisition task, given that the orthography-

pronunciation mapping is basically monotone without insertion or deletion, one can think 

of a very simple method for validating word-pronunciation candidate pairs which does not 

use a classifier. A finite-state acceptor can be used to search for a path through the 

hiragana pronunciation string, from right to left, emitting the corresponding kanji 

sequence using a fixed kanji pronunciation dictionary. When a valid path is found at the 

end of the pronunciation string, it returns success, with the emitted kanji character 

sequence, performing the left boundary detection as the same time. This method is 

expected to have near 100% precision, as the pronunciations for each kanji character is 

already validated in the dictionary. The recall, however, suffers from an incomplete 

coverage of the pronunciation dictionary. The pronunciation of kanji characters in 

Japanese reflects the effect of various morpho-phonological processes [30] as exemplified 

in Figure 4. These sound changes are reflected in the pronunciation (hiragana) 

orthography, but are often missing from the dictionary. We compare the performance of 

this baseline against the proposed method below.  
 

[Rendaku (sequential voicing)] 

神(かみ) kami „god‟ + 棚(たな) tana „shelf‟ → 神棚(かみだな) kami-dana, „altar‟ 

[Renjo (liaison)] 

反(はん)han „counter‟+ 応(おう)ou „response‟→ 反応(はんのう)han-nou, „reaction‟ 

[Vowel alteration] 

雨(あめ) ame, „rain‟ + たれ tare, „drop‟ → 雨だれ(あまだれ) ama-dare, „raindrop‟ 

[Onbin (historical alterations around vowels)] 

月(げつ)getsu „moon‟+ 光(こう) kou „light‟ → 月光(げっこう)geQkou „moonlight‟ (Q 

indicates germination) 

Figure 4. Examples of morpho-phonological alterations in Japanese. Underlined characters indicate 

the changes in hiragana pronunciation strings. 

4.1 Model and Features  

As we saw in Section 3.3, not all pairs extracted from Wikipedia are valid word-

pronunciation pairs. Also, there exists the boundary detection problem from the extracted 

instances. Thus, the problem we need to solve is twofold: to determine if a set of instances 

generated from a single original string contains a true word-pronunciation pair, and if it 

does, to determine which generated instance is the correct pair (i.e. boundary detection). 

One approach to this dual problem is to construct a ranker, which ranks each instance 

according to the likelihood of being a correct word-pronunciation pair. This is the 

approach employed by [3]. However, in our case, our preliminary experiments showed 

that the ranker approach is not necessary and a simple binary classifier which treats all 



instances separately will do, as the average number of distinct candidate pairs generated 

from a single extracted string is not very large (2.3 per extracted instance on average in 

our training data).  

With this observation and the computational cost taken into consideration, we propose 

to use a binary classifier with MART (Multiple Additive Regression Trees; [7]), a widely 

used classification framework based on additive trees. The MART classifier was shown to 

outperform an averaged perceptron classifier with a substantial margin in our preliminary 

experiment on the development set. 

Table 3. Features used in the binary classifier 

Feature Description 

LR Length ratio (hiragana / kanji) 

Align Log of alignment score 

Dist Minimum value of phonologically-motivated edit distance to 20-best 

outputs of the transducer in Section 3 

MT Features from the transducer described in Section 3.1: p(s|t), p(t|s), 

p(t), operation count, phrase count, word count  
 

Table 3 shows the list of features we used in the MART classifier. LR is the length ratio 

of pronunciation sequence to the kanji sequence. Since a kanji sequence is in principle 

never longer than the corresponding pronunciation sequence, 11 and one kanji character 

usually corresponds to one to three kana characters, this feature is expected to remove the 

pairs with obviously non-standard length ratio. Align is the log of the alignment score. 

Dist is the smallest edit distance to the 20-best pronunciation prediction results of the 

transducer described in Section 3. The process of generating this feature is as follows: first, 

the pronunciation candidate and the transducer outputs are transformed into Roman 

alphabets (e.g. „かいぎ‟ ⇒ „kaigi‟), and the Levenshtein distances between the candidate 

and transducer outputs are calculated. The model uses the minimum of the edit distance 

values as the feature value. Crucially, we define some special zero-cost character 

replacement rules to address the Japanese morpho-phonological transformations as 

described in Figure 4, trying to capture as many pronunciation variants as possible. The 

followings are the rules we used; most of these alterations are described in [30]. 

 Rendaku: [k,t,s,sh] ⇔ [g, d, z, j] 

 Vowel change: [e] ⇔ [a], [i] ⇔ [o], [o] ⇔ [a] 

 On-bin: [mu] ⇒ [m, n], [tta] ⇒ [ta] 

 Chinese dialect variation:12 [k,s,t,n,h,m,r] ei ⇔ [k,sh,ch,n,h,m,r] ou/you 

                                                           
11 Again, there are some exceptions to this such as <似而非, えせ> [ese]„pseudo‟. However, they 

are very rare: we only found 14 cases in the 195K entries of UniDic nouns. 
12 This reflects the variations in the original Chinese pronunciations. For example, 清 has two 

common on-yomi pronunciations: [sei], which was imported around 7–8c from Tang dynasty, and 

[shou], imported earlier around 5–6c. 



Although these rules are specific to Japanese pronunciations, the framework based on 

the extended edit distance with phonologically-motivated rules is generally applicable to 

any language with phonological transformations. Finally, MT indicates the features from 

the transduction model described in Section 3. They consist of the translation probabilities 

       and       , target language model probability     , operation count, word count, 

and phrase count, as described in Section 3. 

4.2 Experiments  

Data and settings. We use the same Wikipedia data sets used in Section 3. From the 

training portion, we extracted 3,000 instances, and expanded them to generate the 

instances differing in the left boundary of the word, based on the heuristics described 

above. This resulted in 6,872 instances in total. Roughly 90% of the original instances 

before expansion were positive instances; after expansion, the number of negative 

instances increases, making the training instances more balanced. We then manually 

labeled each instance as positive or negative, indicating whether the pair is the correct 

word-pronunciation pair or not.  

4.3 Results and Discussion  

Table 4. Performance (in %) of yomi classification evaluated on labeled Wikipedia pairs, with five-

fold cross validation. 

 Prec. Recall F1 

Baseline 99.8 80.8 89.3 

MART(LR) 56.8 62.9 59.7 

MART(LR+Align) 94.3 90.9 92.5 

MART(LR+Align+Dist) 97.8 96.2 97.0 

MART(LR+Align+Dist+MT) 98.5 98.0 98.2 

Table 4 shows the comparison of the models with various feature sets. The baseline is the 

finite-state acceptor method with a fixed dictionary, applied to the paired data after 

candidate expansion. We used the dictionary mentioned in Footnote 4 for this purpose, 

which includes around 15K distinct kanji-pronunciation pairs. As expected, this baseline 

achieves a very high precision of 99.8%, but the recall is only around 80%, showing that 

the kanji pronunciation dictionary we used, though reasonably large, does not have 

satisfactory coverage for this task. The model with the LR feature performed poorly, with 

approximately 60% precision and recall, which is to be expected, as this feature by itself 

is a weak feature. The LR+Align model performs quite reasonably, with both the 

precision and recall over 90%. Adding the linguistically motivated edit distance features 

(LR+Align+Dist+MT) achieves a nice performance gain, with the F1 score achieving 



97%. Finally, with all the features, we achieve the best performance of both precision and 

recall exceeding 98%. 

Using this classifier, we were able to obtain ~420K word-pronunciation pairs from 

Wikipedia with 98.5% precision. To our knowledge, this is the largest Japanese word-

pronunciation lexicon that is automatically generated. 

5   Conclusion and Future Work 

We have presented our approach to the task of Japanese pronunciation prediction. We 

have shown that the proposed pronunciation prediction model achieves the performance 

that is coming close to the level of human performance, and also that the model can be 

used effectively to harvest word-pronunciation pairs from unannotated text. We believe 

that the accuracy we achieve is sufficiently high to be used in realistic applications, such 

as text-to-speech and text input method. Measuring the contribution of this research in 

such application scenarios is one direction of future research.  

We also plan to apply the proposed pronunciation acquisition technique to a much 

larger web-scale corpus. This step will be important for acquiring the pronunciation of the 

words other than nouns, as the Wikipedia data we used was dominated by noun-

pronunciation pairs. The pronunciation extraction of the parts-of-speech that inflect (verbs 

and adjectives) are expected to be more challenging, as the parenthetical pronunciation 

aids are inserted within a word, rather than at the word boundary, as in 醒（さ）めた [sa-

me-ta] „awake‟. Although newly created words tend to be nouns, predicting the 

pronunciation of non-nouns will be important when we use the methods proposed in this 

paper for the task of predicting pronunciations at the sentence level.  
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