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Abstract. This paper addresses the problem of predicting the pronunciation of
Japanese words, especially those that are newly created and therefore not in the
dictionary. This is an important task for many applications including text-to-speech
and text input method, and is also challenging, because Japanese kanji (ideographic)
characters typically have multiple possible pronunciations. We approach this
problem by considering it as a simplified machine translation/transliteration task,
and propose a solution that takes advantage of the recent technologies developed for
machine translation and transliteration research. More specifically, we divide the
problem into two subtasks: (1) Discovering the pronunciation of new words or those
words that are difficult to pronounce by mining unannotated text, much like the
creation of a bilingual dictionary using the web; (2) Building a decoder for the task
of pronunciation prediction, for which we apply the state-of-the-art discriminative
substring-based approach. Our experimental results show that our classifier for
validating the word-pronunciation pairs harvested from unannotated text achieves
over 98% precision and recall. On the pronunciation prediction task of unseen words,
our decoder achieves over 70% accuracy, which significantly improves over the
previously proposed models.

Keywords: Japanese language, pronunciation prediction, substring-based
transliteration, letter-to-phone

1 Introduction

This paper explores the problem of assigning pronunciation to words, especially when
they are new and therefore not in the dictionary. The task is naturally important for the
text-to-speech application [27], and has been researched in that context as letter-to-
phoneme conversion, which converts an orthographic character sequence into phonemes.
In addition to speech applications, the task is also crucial for those languages that require

* This work was conducted during the first author’s internship at Microsoft Research.



pronunciation-to-character conversion to input text, such as Chinese and Japanese, where
users generally type in the pronunciations of words, which are then converted into the
desired character string via the software application called pinyin-to-character or kana-
kanji conversion (e.g. [8] [9]).

Predicting the pronunciation of words is particularly challenging for Japanese.
Japanese orthography employs four sets of characters: hiragana and katakana, which are
syllabary systems thus phonemic; kanji, which is ideographic and represents morphemes,
and Roman alphabet. Kanji characters typically have multiple possible pronunciations,
making the prediction of their pronunciation difficult. In many cases, you need to know
the word to know its pronunciation: after all, the pronunciation is an idiosyncratic
property of the word. Therefore, one goal of this paper is to propose an effective method
for exploring textual resources to learn the pronunciation of words. At the same time, we
are also motivated to find out how predictable the pronunciations of kanji words are.
Native speakers of the language can take an educated guess at predicting a pronunciation
of an unseen word; can a machine replicate such sophisticated performance?

Our approach to the problem of pronunciation prediction therefore consists of two
parts: we first try to model the intuition that a fluent speaker has on how to pronounce
words by a statistical model via the task of pronunciation modeling; we then use the
model to harvest word-pronunciation pairs from the web in the task of pronunciation
acquisition. In this paper, the pronunciation modeling task is considered as a simplified
machine translation (MT) task, i.e., a substring-based monotone translation, inspired by
recent work on string transduction research. Our model, trained discriminatively using the
features that proved useful in related tasks, outperforms a strong baseline as well as an
average human performance, while making the types of errors that are considered
acceptable by human. For the pronunciation acquisition task, we use a classifier to
validate word-pronunciation pairs extracted automatically from text, exploiting the
convention of Japanese text that the pronunciation is often inserted in parentheses
immediately following the word with a difficult or unusual pronunciation. Our classifier
achieves over 98% precision and recall when Wikipedia was used as the source corpus.

There are several contributions of this paper. We believe that this is the first work to
address the problem of word pronunciation prediction for Japanese in a comprehensive
manner. We apply the state-of-the-art technology developed for related problems to solve
this problem, with modifications that are motivated by the specific problem at hand. The
use of unannotated corpus for the extraction of pronunciation in Japanese is also novel
and proved effective.

The rest of the paper is organized as follows. Section 2 gives some background,
including the task description and related work. Section 3 introduces our approach to the
pronunciation modeling task, along with experimental results. Section 4 deals with the
task of pronunciation acquisition from corpora, which takes advantage of the prediction
model described in Section 3. We conclude with comments on future work in Section 5.



2 Background

2.1 Pronunciation Prediction: Task Description

We define the task of pronunciation prediction as converting a string of orthographic
characters representing a word (or a phrase corresponding to an entity) into a sequence of
hiragana, which straightforwardly maps to pronunciation.! The problem is trivial if the
word is spelled entirely in non-kanji characters, so we only target the cases where at least
one character in the word is spelled in kanji. Let us take an example of the name of the
recently appointed prime minister of Japan, Naoto Kan (%& A). Our goal is to convert
this string into 7>A/ 723 &, which is pronounced as [ka-N-na-o-to].> How ambiguous is
this name to pronounce? According to the kanji pronunciation dictionary we have, the
first character has three pronunciations, the second fourteen and the third twelve:?
therefore, there are 3 X 14 X 12 = 504 possible ways to pronounce this word. Naturally,
some pronunciations are more common than others, especially given some contextual
information. For example, E A is a common first name, pronounced as [nao-to] or [nao-
hito] or maybe [tada-hito]; other pronunciations are highly unusual. Given that [E A is
probably a first name, & may be a last name, pronounced as [kan] or [suga], though it is
fairly uncommon as a last name. Kanji characters typically have two types of
pronunciations called on-yomi (literally ‘sound pronuncation’) and kun-yomi (literally
‘meaning pronunciation’), corresponding to their origin (Chinese and Japanese,
respectively), and they tend not to mix within a word, exemplified in E#5F ([uN-teN-
shu] ‘driver’, all on-yomi) vs. F#L ([te-gami] ‘letter’, all kun-yomi). Using these types
of knowledge, one might guess that the name is reasonably pronounced as [kaN-nao-hito],
[kaN-nao-to], [suga-tada-hito] and so forth. Eventually, the correct pronunciation can only
be obtained by knowing the word, i.e., by identifying this string as a dictionary entry. The
problems we try to solve in this paper is therefore twofold: one is to increase the
dictionary coverage by learning word-pronunciation pairs automatically from text through
pronunciation acquisition; secondly, for those words for which a dictionary entry is still
missing, we would like to build a model to predict pronunciation that is not only highly
accurate, but also makes reasonable mistakes when it fails — using the [ A example
above, we hope to generate one of the three reasonable pronunciations. We focus on the

! To be precise, additional operations are required to adjust the hiragana string for speech or text
input applications, but we do not deal with this problem here.

2 A hyphen is used to indicate a character boundary of the preceding string; [N] is used to indicate
the pronunciation of the moraic nasal A.

3 This kanji pronunciation dictionary was available to us prior to the current research. It lists the
pronunciations for about 6,000 kanji characters, with 2.5 pronunciations on average per character.
The possible pronunciations for the three letters here are: & (23,9 F,20A) , B (bx-o, 77
BIIEELLESROLIEED I, LEREB T, Unkil) , A (0E,LALD Y, LT
RE, D ERE S & e



task of predicting word pronunciation in this paper — selecting the right pronunciation for
the words in a sentence is a related but independent task of pronunciation disambiguation,
for which the pronunciation prediction task discussed in this paper will serve as an
essential component.

2.2 Related Work

The task of pronunciation prediction is inspired by previous research on string
transduction. The most directly relevant one is the work on letter-to-phoneme conversion,
where many approaches have been proposed for a variety of languages. The methods
include joint n-gram models (e.g. [1] [2] [4]), discriminatively trained substring-based
models (e.g. [11] [12]) which are themselves influenced by the phrasal statistical MT
(SMT) models [15], and minimum description length-based methods [24]. The joint n-
gram estimation method has also been applied to predicting pronunciation in Japanese
(e.g., [21][22]).

Similar techniques to the letter-to-phoneme task have also been applied to
transliteration, which converts the words in one language into another that uses a different
script, maintaining phonetic similarity. Early works on this task used the source-channel
model based on one-to-one (or more) character alignment (e.g. [14]). Later they were
extended to use many-to-many alignments using substring operations in the style of
phrasal SMT (e.g. [28]), demonstrating improved accuracy over the character-based
models. The components of the model proposed by [28] are themselves generative models,
which can also be used in a SMT-style discriminative framework, where the weights on
the component generative models are discriminatively trained. [5] proposed such a hybrid
model, further improving the accuracy of transliteration. Joint n-gram models have also
been applied to the task of transliteration (e.g. [17]).

In contrast to the wealth of literature in string transduction research, the task of
pronunciation acquisition has attracted much less attention in the past. [10] describes a
method in which they learn English pronunciations from the web using IPA (e.g., ‘beet
/bit/”) and ad-hoc (e.g., ‘bruschetta (pronounced broo-SKET-uh)’) transcriptions by first
extracting candidate pairs using a letter-to-phoneme model, which are then validated
using SVM classifiers. Our approach is similar to theirs, with modifications in the method
of generating candidates, to be explained in Section 4. [29] proposed a method to use the
web for assigning word pronunciation in Japanese, but their focus is on disambiguating
known word pronunciations rather than learning new word-pronunciation pairs. [16] and
[26] discuss the methods of disambiguating new word pronunciation using speech data.

3 Substring-based Pronunciation Prediction

This section describes our substring-based approach to pronunciation modeling. As
mentioned above, the pronunciation of a kanji is dependent on those of the surrounding



characters, which motivates a substring-based alignment and decoding over a character-
based approach. We also assume that the task is basically monotone and without
insertion/deletion, with kanji-hiragana alignments of 1-n (source—target, n>1)
characters.* We adopt a discriminative learning framework that uses component
generative models as real-valued features, which is the standard method for statistical MT
[23], and is reported to work comparably or better on a transliteration task than a
discriminative model that uses sparse indicator features [5].

3.1 Model and Features

We adopt a linear model of pronunciation prediction: given the target character (hiragana)
sequence t and the source (kanji) sequence s, we define features over s and t, f;(s,t)
for i =1,---,n The features are arbitrary functions that map < s,t > to real values, and
the model parameters are a vector of n feature weights, A = (44,+--,1,,). The score of t
with respect to s is given by

n
Score(s,t,A) = A-f(s,t) = Z/L-f,-(s, t).
i=1
For the features, we use those that are motivated by MT and transliteration research:
the translation probabilities in both directions, P(t|s) and P(s|t), the target character
language model probability P(t), the operation count, which corresponds to the number
of phrases in phrasal SMT, and the ratio of the source and target character length.
Crucially, the estimation of the first three of these probabilities requires a set of training
corpus with source and target alignment at the substring level. We take an unsupervised
approach in generating such training data: we used an automatic word aligner developed
for MT for obtaining these alignments, as detailed in Section 3.3 below.

3.2 Training and Decoding

For the training of the parameters of the linear model, we used averaged perceptron
training. Let d stand for a derivation that describes a substring operation sequence
converting s into ¢. Given a training corpus of such derivations D = {d;,*--,d,} obtained
from the substring-aligned text, the perceptron iterates the following two steps for each
training sample d; € D:

4 This is a slight oversimplification — we are aware of the cases where these assumptions do not
hold. The monotonicity assumption breaks in the pronunciation of a kanji sequence that reflects
the Chinese SVO word order, as in A~=5| [yumi-hika-zu] (a place name, which originally
means ‘not draw a bow’, in which the correct alignment is assumed to be A~-zu (not), ~-yumi
(bow) and 5|-hika (draw). Also, hiragana insertions occurs quite commonly as in —B4 [ichi-no-
seki] (a place name, meaning ‘first checkpoint”), where ‘no’ is a genitive marker inserted between
the kanji characters.



Decode: d* = argmax A-f(d)
deD(src(dy))
Update: A « A+ f(d;) — f(d*),

where D(src(d)) are all possible derivations with the same source side as d. For
decoding, we used a monotone phrasal decoder similar to the one employed in phrasal
SMT [31], a stack decoder with the beam size of 20, which was set using a development
data.

3.3 Experiments

Data and settings. As mentioned above, we need a parallel data of kanji words with their
pronunciation in our approach. An obvious source of such data is a dictionary: we used
UniDic [6], a resource available for research purposes, which is updated on the regular
basis and includes 625K word forms as of the version 1.3.12 release (July 2009). Since we
focus on the prediction of new words which are mostly nouns, we used the noun
(including proper noun) portion of the dictionary, containing 195K words in total.

Though UniDic is a lexical resource that is constantly refreshed, we also investigated
into a dictionary-free approach, where we exploit a large body of unannotated text to
collect words’ pronunciation. Specifically, our approach takes advantage of the
convention of Japanese text that the pronunciation of those words that are difficult or
unusual to pronounce’ are often indicated in parentheses immediately following the word
in question, as shown in Figure 1.

FBE (CWRZTA) 1T AN B ARERNCALES S
AEZNOHIE (Z-o&) ERBETIZLLHD,
SETERERHE (5722309 980 <A ¥4 Geminids) (-
ZHEHSIBEIE (2T L) R

— = (O EA)

Figure 1. Examples of parenthetical pronunciation expression from Wikipedia. Strings in boldface
indicate the words corresponding to the pronunciation in parentheses; the regular expression
(described below) extracts the underlined substrings.

We used a simple regular expression-based pattern matching to extract word-
pronunciation candidate pairs from Japanese Wikipedia. It extracts a substring of hiragana
characters in a pair of parentheses, preceded by any character string bounded by a
punctuation character or a beginning of a sentence. Additional heuristics consist of the
constraints based on kana characters (i.e. no kana character is allowed in the word string

5> This contrasts with the dictionary, where the pronunciations of all words are found. As is
explained below, we used Wikipedia, which is a cross between a dictionary and free text:
pronunciations are always given in parentheses for each title word, in addition to the words that
occur in the free text portion of the articles.



unless it also appears in the pronunciation string.) and length ratio (e.g. the pronunciation
string cannot be shorter than the word string.). Note that the extraction method runs the
risk of extracting too much pre-parenthetical material: as seen in the second to last
example of Figure 1, 72CZ L indicates the pronunciation of only the last two characters
(M%), Another more substantial source of noise comes from the cases where the hiragana
characters in parentheses do not indicate the pronunciation at all, as in the last example of
Figure 1: —7)5 [ichi-riki-tei] is a name of a restaurant, followed by the kind of food
they serve (9 £ A [u-do-N] ‘noodle’) which happens to be written in hiragana. Though
the extracted word-pronunciation data is therefore quite noisy, we will demonstrate that
the use of this data greatly enhances the accuracy of the prediction. Note that in spite of
the use of simple heuristics, the annotator found that more than 90% of extracted instances
are valid word-pronunciation pairs (as mentioned in the last paragraph of Section 3.4),
while the heuristics were weak enough to cover most pronunciation candidates in
Wikipedia.

The parallel data extracted from Wikipedia in this manner as well as from the UniDic
entries is then aligned at the substring level. Our method for this follows [5]: we use a
phrase-based word aligner originally developed for MT, similar to the word aligner
described in [32], by considering each character as a word. We also used hard substring
length limits for the same purpose: 1 for the input and 4 for the output strings, reflecting
the fact that word pronunciation is typically composed of the pronunciation of individual
kanji characters.” The aligner generates only monotonic alignments, and does not allow
alignments to a null symbol in either source or target side. The same restriction is applied
during decoding as well.

We extracted a total of 463,507 word-pronunciation pairs from Japanese Wikipedia
articles as of January 24, 2010. After removing duplicates, we reserved 5,000 pairs for
development and testing (of which we used 200 for development and 2,000 for final
evaluation), and used the rest for training, i.e., for generating training derivations upon
which the features of the linear model were computed. The translation probabilities,
P(s|t) and P(t|s), are estimated by maximum likelihood on the operations observed in
the training corpus with one important modification: recall that these operations,
estimated using the character aligner in an unsupervised manner, are minimal non-
decomposable operations, and therefore does not capture any contextual information. In
order to remedy this, we re-align the training data by using composed operations which
are constructed from operation sequences attested in the training data to maximize P(s|t)
and P(t|s), respectively, thereby removing the substring length limit employed in the

This is because a kanji character normally corresponds to one or more hiragana characters. While
we are aware of some exceptional cases in non-compositional pronunciation, as in %A [kera]
‘woodpecker’, they are negligibly rare (<10 cases in 195K nouns in UniDic.).

There are exceptions to this: occasionally, a pronunciation is assigned to a kanji string in a non-
compositional manner (e.g.,5 H [kyou] ‘today’) . This is handled by the use of composed
operations, to be explained below.



character alignment phase.® Figure 2 shows an example of an alignment before and after
the composition. This process offers an additional benefit of noise reduction of the
training data, as we removed the operations that occurred less than C times (C is set using
the development data, C=2 in our case), removing the training examples that are not
reachable from the remaining operations. This reduced our data size for perceptron
training to 427,644 pairs, a reduction of 6.7%. More detail on the relation between the
data size and the accuracy of the prediction task is discussed in the next subsection. For
the target character language model, we used a 4-gram language model with Kneser-Ney
smoothing and the BOS (beginning-of-string) and EOS (end-of-string) symbols, and
trained it with the same training data as described above.

& 7| i B &
[ /1IN
f 7 LS
FLo|E¥B A EDOY

Figure 2. Alignment before (=character level indicated by the lines) and after (=substring level by
the boxes) composition for & 1-ik[F4%% ([mashi-ko-gi-on-matsuri], ‘Mashiko Gion Festival’).

Baseline. We describe two baseline models that we used for comparison in the
experiment. The first is KyTea, a publicly-available Japanese word segmentation and
pronunciation prediction tool,’ which achieves the state-of-the-art performance on the
task of Japanese pronunciation prediction. According to [20] and the KyTea manual, the
program first performs word segmentation, after which the pronunciation of each word is
independently selected using a linear SVM classifier, choosing among the pronunciations
that have appeared in the training data. When they encounter an unknown word, the
output is the combination of the most frequent pronunciations of each kanji character. We
ran KyTea (Version 0.11) with the default settings and with “the high-performance SVM
model” available from the website, which is mainly trained on the Balanced Corpus of
Contemporary Written Japanese (BCCWJ; [19]) and UniDic.

Our second baseline, the joint n-gram model, was proposed by [1], which has also been
used for Japanese [21]. In this model, n-gram statistics are learned over the sequences of
pairs of letters and phonemes, instead of the sequences of phonemes. While [21] used
KyTea to extract word-pronunciation pairs from the annotated BCCWIJ and newswire
corpus to learn bigram statistics, we learned our n-gram statistics from the alignments
obtained from the Wikipedia training set as described above. Note that even though we
describe this approach as a baseline, it crucially relies on the paired substrings extracted in

8 We do however impose a limit on the length of composition (3 in our case). This two-path
alignment approach also follows [5]. Since the phrase length limit for original operations are 1 for
the source and 4 for the target, resulting composed operations can capture up to 3—12 (source—
target) character alignments.

% http://www.phontron.com/kytea/



an unsupervised manner using the proposed approach. In that sense, the effectiveness of
this baseline also incorporates a novel contribution of this work. We implemented the
joint trigram model with Kneser-Ney smoothing, after adding the BOS (beginning-of-
string) and EOS (end-of-string) symbols. The decoder performs the exact inference with
Viterbi search over the probability space.

3.4 Results and Discussion

Table 1. Word-level accuracy (in %) of pronunciation prediction on Wikipedia test data.

Model Accuracy
KyTea 57.8
Joint Bigram 66.4
Joint Trigram 70.0
Proposed 71.7

Table 1 shows the comparison of the proposed method against the baseline models in
terms of the whole word accuracy on the pronunciation prediction task, evaluated on the
2,000 Wikipedia test pairs. All models other than KyTea were trained on the combination
of Wikipedia-derived and UniDic pairs. As is observed from the table, the proposed
method outperforms all the baseline models, with a 1.7% improvement over the joint
trigram model, which is statistically significant with the significance level of p < 0.01 by
the McNemar’s test. Though falling short of the best model, the joint n-gram models are
quite competitive, suggesting that the proposed method of unsupervised training data
generation using word alignment techniques is beneficial for the task. The advantages of
using an MT-inspired framework are therefore twofold: word alignment techniques for
training data generation, and the linear combination of relevant feature functions for the
best accuracy on the prediction task. KyTea performs poorly on this data set, suggesting
that using a unigram model trained on manually created resources does not work well on
the words that appear in Wikipedia.

It is noteworthy that the joint trigram and proposed models both outperformed the
average human performance '° (~65%) on the same data set. Since the current
experimental setting allows only one pronunciation to be correct disregarding the context
in which the word is used, it is possible that many errors are actually not errors but are
acceptable in other contexts. An error analysis on the output of the proposed model
confirms this speculation: about half of the errors were judged acceptable or correct upon
human verification. Considering this fact, the performance of the proposed model is
considered to be approaching the upper bound of this task; hence, the improvement of
1.7% is quite meaningful.

10 The human performance is measured as follows: the source strings are presented to two native
speakers with no context, and they are asked to assign guessed pronunciation. They both had
graduate-level education.



Table 2. Accuracy (in %) of pronunciation prediction models evaluated on the Wikipedia test set
with respect to various training data sets.

Joint Trigram Proposed

UniDic 46.9 47.5
Wikipedia 68.5 70.8
Wikipedia+UniDic 70.0 71.7

Table 2 shows the accuracy of the joint trigram and proposed models as a function of
different training data source. The models trained with UniDic performed poorly, with the
accuracy lower than 50%. This suggests that the alignments learned solely from a static
dictionary resource are insufficient to predict the pronunciation of new words in
Wikipedia. The use of Wikipedia-derived instances as training data improved the
accuracy dramatically, achieving more than 20% improvement over the models trained on
UniDic. Combining the two resources further improved the accuracy. The proposed model
consistently outperforms the joint trigram baseline in all training data settings.
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Figure 3. Accuracy of pronunciation prediction models on the test set w.r.t. training data noise
filtering

We also examined how incorrect alignments in the training data affect the
pronunciation prediction performance. We did this by setting a cutoff threshold of the
alignment scores, and removing those alignments with the scores lower than the threshold
from the training set. The alignment scores are output by the character aligner discussed
above as the log probability of the alignment, and are normalized by the length of the
source (i.e. kanji) sequence to avoid the preference for shorter sequences. Figure 3 shows
the accuracy of the models with respect to the cutoff threshold. The x-axis corresponds to
the percentage of the instances used in model training, while the y-axis indicates the
word-level accuracy. The nodes in the graph correspond to the score threshold of —1, =2,
=3, -4, -6, =8, —10, and —Infinity. The best performance is achieved when 90—95% of the
training data is used, which is consistent with the observation that out of 100 words for



which we manually verified the alignments, 11 instances contained alignments that
appeared improper, and 7 instances were not word-pronunciation pairs though the aligner
forced an alignment, which means that these instances are noise. Comparing the proposed
vs. joint trigram-based methods, the former appears slightly more robust to noise: though
it is rather difficult to see in the graph, the trigram model gained the maximum of 0.45%
improvement by the noise filtering, while the proposed model gained the maximum of
only 0.2% improvement. This may be attributed to the fact that the proposed model
incorporates a noise filtering mechanism by way of minimum operation counts threshold
C, as mentioned above.

4 Word Pronunciation Acquisition Task

This section describes our approach to harvesting word-pronunciation pairs from a large
corpus with minimal supervision. We formulate this problem as a binary classification
task: each candidate pair is determined to be a word-pronunciation pair or not, using a
discriminatively trained classifier. Using the word-pronunciation candidate pairs in Figure
1 as an example, our goal is to classify the first four examples as positive and the last
example as negative. A special treatment is required for the second to last example: recall
that in this example, 4% (7=TZ L) , only the last two characters (AEf%) of
the extracted word string corresponds to the pronunciation in hiragana in parentheses. For
the modeling task in Section 3, we ignored this problem and treated these cases simply as
noise. For the pronunciation acquisition task, we generate additional candidate pairs from
these cases, so that from the string above, we generate the following pairs:
<, =TT LD, <EEME, 7T L, SLEERE, 72TZ Lo, GRSEERE, T L

These expanded candidate pairs share the word strings to the right, their length
bounded maximally by the number of hiragana characters in the pronunciation (assuming
one-to-one or -many mapping between kanji and hiragana), and minimally by the length
of hiragana pronunciation string divided by 3 (assuming that on average, a kanji character
maps to up to 3 hiragana characters at the word level). Each of these candidate pairs are
then submitted to the classifier to be validated as a desired word-pronunciation pair or not.

The task of pronunciation acquisition formulated in this manner, along with the sub-
problem of the boundary detection, can be viewed as a very similar task to bilingual
dictionary creation for Chinese MT (e.g. [3] [18]). The goal of this line of work is to
exploit parenthetical expressions in the web text to extract Chinese-English phrase
translation candidates, which are then validated using a classifier. Because Chinese text is
similar to Japanese in that the word boundaries are not marked explicitly using white
spaces, the same boundary detection problem exists as in ‘FHIRiA (magnet)’, in which
only the underlined part corresponds to the translation of ‘magnet’. Despite these
similarities, the process of aligning the input and output sequences and using the
alignment for the validation task is much more complex in the bilingual dictionary



creation task, as it cannot be reformulated as a monotone substring mapping problem, and
requires additional steps to generate word translation pairs from extracted string pairs.

Coming back to our pronunciation acquisition task, given that the orthography-
pronunciation mapping is basically monotone without insertion or deletion, one can think
of a very simple method for validating word-pronunciation candidate pairs which does not
use a classifier. A finite-state acceptor can be used to search for a path through the
hiragana pronunciation string, from right to left, emitting the corresponding kanji
sequence using a fixed kanji pronunciation dictionary. When a valid path is found at the
end of the pronunciation string, it returns success, with the emitted kanji character
sequence, performing the left boundary detection as the same time. This method is
expected to have near 100% precision, as the pronunciations for each kanji character is
already validated in the dictionary. The recall, however, suffers from an incomplete
coverage of the pronunciation dictionary. The pronunciation of kanji characters in
Japanese reflects the effect of various morpho-phonological processes [30] as exemplified
in Figure 4. These sound changes are reflected in the pronunciation (hiragana)
orthography, but are often missing from the dictionary. We compare the performance of
this baseline against the proposed method below.

[Rendaku (sequential voicing)]

i (IaA) kami ‘god’ + ]l (7z7¢) tana ‘shelf’ — #iffl (2>#47272) kami-dana, ‘altar’
[Renjo (liaison)]

X (I%A) han ‘counter’+ i~ (3 9) ou ‘response’— i (1L A ® 9 ) han-nou, ‘reaction’
[Vowel alteration]

M (H) ame, ‘rain’ + 724 tare, ‘drop’ — W72 (HFE 7)) ama-dare, ‘raindrop’
[Onbin (historical alterations around vowels)]

A (iF2) getsu ‘moon’+ H:(Z 9) kou ‘light” - HJE(F > Z 9) geQkou ‘moonlight’ (Q
indicates germination)

Figure 4. Examples of morpho-phonological alterations in Japanese. Underlined characters indicate
the changes in hiragana pronunciation strings.

4.1 Model and Features

As we saw in Section 3.3, not all pairs extracted from Wikipedia are valid word-
pronunciation pairs. Also, there exists the boundary detection problem from the extracted
instances. Thus, the problem we need to solve is twofold: to determine if a set of instances
generated from a single original string contains a true word-pronunciation pair, and if it
does, to determine which generated instance is the correct pair (i.e. boundary detection).
One approach to this dual problem is to construct a ranker, which ranks each instance
according to the likelihood of being a correct word-pronunciation pair. This is the
approach employed by [3]. However, in our case, our preliminary experiments showed
that the ranker approach is not necessary and a simple binary classifier which treats all



instances separately will do, as the average number of distinct candidate pairs generated
from a single extracted string is not very large (2.3 per extracted instance on average in
our training data).

With this observation and the computational cost taken into consideration, we propose
to use a binary classifier with MART (Multiple Additive Regression Trees; [7]), a widely
used classification framework based on additive trees. The MART classifier was shown to
outperform an averaged perceptron classifier with a substantial margin in our preliminary
experiment on the development set.

Table 3. Features used in the binary classifier

Feature Description

LR Length ratio (hiragana / kanji)

Align Log of alignment score

Dist Minimum value of phonologically-motivated edit distance to 20-best
outputs of the transducer in Section 3

MT Features from the transducer described in Section 3.1: p(s|f), p(¢ls),

p(?), operation count, phrase count, word count

Table 3 shows the list of features we used in the MART classifier. LR is the length ratio
of pronunciation sequence to the kanji sequence. Since a kanji sequence is in principle
never longer than the corresponding pronunciation sequence, '' and one kanji character
usually corresponds to one to three kana characters, this feature is expected to remove the
pairs with obviously non-standard length ratio. Align is the log of the alignment score.
Dist is the smallest edit distance to the 20-best pronunciation prediction results of the
transducer described in Section 3. The process of generating this feature is as follows: first,
the pronunciation candidate and the transducer outputs are transformed into Roman
alphabets (e.g. ‘2*\ &’ = ‘kaigi’), and the Levenshtein distances between the candidate
and transducer outputs are calculated. The model uses the minimum of the edit distance
values as the feature value. Crucially, we define some special zero-cost character
replacement rules to address the Japanese morpho-phonological transformations as
described in Figure 4, trying to capture as many pronunciation variants as possible. The
followings are the rules we used; most of these alterations are described in [30].

Rendaku: [k,t,s,sh] © [g,d, z j]

Vowel change: [e] & [a], [i] & [o],[o] & [a]

On-bin: [mu] = [m, n], [tta] = [ta]

Chinese dialect variation:'? [k,s,t,;n,h,m,r] ei < [k,sh,ch,n,h,m,r] ou/you

1" Again, there are some exceptions to this such as <{Elii3F, %> [ese]‘pseudo’. However, they
are very rare: we only found 14 cases in the 195K entries of UniDic nouns.

12 This reflects the variations in the original Chinese pronunciations. For example, i has two
common on-yomi pronunciations: [sei], which was imported around 7—8c from Tang dynasty, and
[shou], imported earlier around 5—6c¢.



Although these rules are specific to Japanese pronunciations, the framework based on
the extended edit distance with phonologically-motivated rules is generally applicable to
any language with phonological transformations. Finally, MT indicates the features from
the transduction model described in Section 3. They consist of the translation probabilities
P(s|t) and P(t|s), target language model probability P(t), operation count, word count,
and phrase count, as described in Section 3.

4.2 Experiments

Data and settings. We use the same Wikipedia data sets used in Section 3. From the
training portion, we extracted 3,000 instances, and expanded them to generate the
instances differing in the left boundary of the word, based on the heuristics described
above. This resulted in 6,872 instances in total. Roughly 90% of the original instances
before expansion were positive instances; after expansion, the number of negative
instances increases, making the training instances more balanced. We then manually
labeled each instance as positive or negative, indicating whether the pair is the correct
word-pronunciation pair or not.

4.3 Results and Discussion

Table 4. Performance (in %) of yomi classification evaluated on labeled Wikipedia pairs, with five-
fold cross validation.

Prec. Recall F1
Baseline 99.8 80.8 89.3
MART(LR) 56.8 62.9 59.7
MART(LR+Align) 94.3 90.9 92.5
MART(LR+Align+Dist) 97.8 96.2 97.0
MART(LR+Align+Dist+MT) 98.5 98.0 98.2

Table 4 shows the comparison of the models with various feature sets. The baseline is the
finite-state acceptor method with a fixed dictionary, applied to the paired data after
candidate expansion. We used the dictionary mentioned in Footnote 4 for this purpose,
which includes around 15K distinct kanji-pronunciation pairs. As expected, this baseline
achieves a very high precision of 99.8%, but the recall is only around 80%, showing that
the kanji pronunciation dictionary we used, though reasonably large, does not have
satisfactory coverage for this task. The model with the LR feature performed poorly, with
approximately 60% precision and recall, which is to be expected, as this feature by itself
is a weak feature. The LR+Align model performs quite reasonably, with both the
precision and recall over 90%. Adding the linguistically motivated edit distance features
(LR+Align+Dist+MT) achieves a nice performance gain, with the F1 score achieving



97%. Finally, with all the features, we achieve the best performance of both precision and
recall exceeding 98%.

Using this classifier, we were able to obtain ~420K word-pronunciation pairs from
Wikipedia with 98.5% precision. To our knowledge, this is the largest Japanese word-
pronunciation lexicon that is automatically generated.

5 Conclusion and Future Work

We have presented our approach to the task of Japanese pronunciation prediction. We
have shown that the proposed pronunciation prediction model achieves the performance
that is coming close to the level of human performance, and also that the model can be
used effectively to harvest word-pronunciation pairs from unannotated text. We believe
that the accuracy we achieve is sufficiently high to be used in realistic applications, such
as text-to-speech and text input method. Measuring the contribution of this research in
such application scenarios is one direction of future research.

We also plan to apply the proposed pronunciation acquisition technique to a much
larger web-scale corpus. This step will be important for acquiring the pronunciation of the
words other than nouns, as the Wikipedia data we used was dominated by noun-
pronunciation pairs. The pronunciation extraction of the parts-of-speech that inflect (verbs
and adjectives) are expected to be more challenging, as the parenthetical pronunciation
aids are inserted within a word, rather than at the word boundary, as in & (&) ®7- [sa-
me-ta] ‘awake’. Although newly created words tend to be nouns, predicting the
pronunciation of non-nouns will be important when we use the methods proposed in this
paper for the task of predicting pronunciations at the sentence level.
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