
 

Abstract 

Studying the energy efficiency of large-scale 

computer systems requires models of the relationship 

between resource utilization and power consumption.  

Prior work on power modeling assumes that models 

built for a single node will scale to larger groups of 

machines.  However, we find that inter-node variability 

in homogeneous clusters leads to substantially different 

single-node models. Furthermore, these models have 

much higher error when scaled to the cluster level than 

models built using multiple nodes. We report on inter-

node variation for model feature selection and model 

training for four homogeneous five-node clusters using 

embedded, laptop, desktop, and server processors. 

These results demonstrate the need to sample multiple 

machines in order to produce accurate cluster models. 

Furthermore, we determine the necessary sample size 

for the machines and applications in this study by 

applying a theoretical worst-case error bound based 

on the mean power interval across the cluster. 

1 Introduction 
Power consumption is a major concern in the design 

and operation of large-scale computing facilities [2].  It 

also presents a modeling and instrumentation challenge 

to researchers and infrastructure providers. 

Physical instrumentation alone is not sufficient for 

challenges such as attributing power consumption to 

virtual machines, predicting how power consumption 

scales with the number of machines, and predicting 

how changes in utilization affect power consumption. 

These tasks require accurate models of the relationship 

between resource usage and power consumption. 

Therefore, a substantial body of literature models 

system-level power consumption by sampling various 

metrics available in software (CPU utilization, memory 

bandwidth, disk utilization, etc.) and fitting them to the 

measured power consumption [3,4,6,8,10,12,14-18,20-

23,25].  However, most of this previous work has built 

and validated models for individual nodes, with the 

implicit or explicit assumption that these models would 

extrapolate to the cluster level and beyond. Throughout 

this paper, we use node and machine interchangeably. 

In this paper, we test that assumption by building 

node-level and cluster-level power models for four 

homogeneous clusters running MapReduce-style 

applications.  The clusters include components from 

the embedded, mobile (laptop), desktop, and server 

processor spaces, reflecting energy-efficient server 

recommendations from recent research [1,9,13,24] as 

well as traditional servers prevalent today. 

Our results clearly demonstrate that single-node 

power models do not scale to the cluster level:  

 We show that the parameters chosen for single-

node models by a standard feature selection 

process vary across individual nodes in a 

homogeneous cluster. 

 We further show that, for a given set of features, 

the coefficients of a fitted single-node model are 

highly sensitive to the particular node. 

 We apply a formal error bound to real cluster data 

to compute the number of nodes that must be 

sampled to accurately represent the cluster.  

 We observe that node-to-node variation is distinct 

from, and an order of magnitude higher than, run-

to-run variation on these four clusters. 

The rest of this paper is organized as follows. 

Section 2 discusses the explicit and implicit 

assumptions of scaling power models in related work. 

Section 3 describes our hardware and software 

experimental infrastructure. Section 4 presents the 

model variability both in feature selection and cluster 

power model prediction. We conclude with Section 5. 

2 Related Work 
Previous studies model the power consumption of 

single nodes using different predictors and modeling 

techniques [3,4,6,12,14,16-18,20-23].  Some studies 

predict power consumption based on CPU utilization 

alone [6,18], while others use board-level 

measurements [16].  The modeling techniques also 

vary in complexity, from simple lookup-based models 

[20] to chaotic attraction predictors [16].  However, all 

of these studies build and validate models on a single 

node, assuming that these models can then be applied 

to other identically configured nodes without requiring 

refitting.  We challenge that assumption in this work. 

Other studies use different validation techniques.  Li 

and John validate their routine-specific models on a 

full-system simulator [17], which again assumes no 

inter-node variability.  Vasan et al. present power 

measurements from a medium-scale datacenter but 

only build single-node models [25].  Heath et al. model 

the total power of a four-node cluster; however, the 

cluster has little dynamic power variation, and they do 
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not try to scale their model to additional nodes [10].  

Lang and Patel model the energy, rather than the 

instantaneous power, of a 24-node cluster [15]; it is 

unclear whether they do so by scaling the measured 

power consumption of a single node. 

Finally, Fan et al. scale a single-node, CPU 

utilization-based power model to a few hundred servers 

[8].  However, they must add a large constant offset to 

the predicted power, which compensates for the 

constant power consumption of networking equipment 

as well as inter-node variations in idle power.  They do 

not separate these two components of the added offset. 

3 System Overview 
We build models for four homogeneous five-node 

clusters running data-intensive, MapReduce-style 

applications.  In this section, we describe the hardware 

platforms, the software infrastructure, and the 

workloads we use to build large-scale power models. 

3.1 Hardware Infrastructure 

Our systems have different CPU dynamic voltage 

and frequency scaling (DVFS) capabilities, which 

affects the resulting power models. Table 1 lists the 

features of these systems. Starting at the low end, the 

Atom N330 does not provide DVFS at all. This cluster 

also has the smallest dynamic power range, on the 

order of 15W over the entire cluster. On the other hand, 

the mobile- and desktop processor-based systems both 

use DVFS. For these two systems, the two cores on a 

single node report the same operating frequency 99.8% 

of the time for our workloads. Finally, the server-class 

system has the ability to have the cores operate in 

different p-states (frequency), and can transition the 

system into the C1 idle state when all processors are 

idle. For our workloads, the frequencies of the cores on 

a single server node differed up to 12% of the time.  

Each machine reads its own power measurements 

over a USB port. The power meters have an error of 

1.5%. We verified the meter calibration, but we leave 

the explicit extraction of meter error for future work. 

3.2 Software Infrastructure   

Each system runs Windows Server 2008 R2, which 

provides a standardized OS-level performance counter 

interface. We measure a wide range of Event Tracing 

for Windows (ETW) performance counters provided 

by the OS. For each machine, we collect metrics, at 1 

Hz, relating to the processor, memory, physical disk, 

process, job object, file system cache, and network 

interfaces [19]. Overall, we collect approximately 250 

counters per node. Statistically redundant counters are 

removed through a systematic feature selection 

process, described in Section 4.1. We also verified that 

the data collection process does not interfere with 

program behavior or power consumption. Table 2 lists 

the final subset of performance counters used by the 

various cluster models (6-8 counters per model). 

We ran an assortment of distributed workloads using 

the Dryad and DryadLINQ application framework [11]. 

These workloads are diverse; some are CPU-intensive, 

while others are dominated by disk and network. We 

run a single instance of each application at a time. One 

machine acts as the job manager, and the other four 

machines compute the tasks from the task graph. All 

workloads are run five times per cluster to allow each 

node to act as the job scheduler, which provides 

diversity in the work done even for the same 

application. The workloads used are described below: 

 Sort: sorts 4GB of data with 100-byte records. 

The data is separated into 20 partitions, distributed 

randomly across the cluster. All of the data must 

first be read from disk and ultimately transferred 

back to disk on a single machine, so this workload 

has high disk and network utilization. 

 Staticrank: runs a graph-based page ranking 

algorithm over the billion-page ClueWeb09 

dataset [5], spread over 80 partitions on a cluster. 

It is a 3-step job in which output partitions from 

one step are fed as inputs to the next step. Thus, 

Staticrank has high network utilization. 

 Prime: checks primeness of approximately 

Table 1. We develop full-system power models for the platforms below. *System maximum memory capacity. 

System Class CPU Memory Disk(s) OS, FS 

Embedded Intel Atom, dual-core, 1.6 GHz, 8W TDP [24] 4 GB DDR2-800* 1 Micron SSD 
Windows 

Server 2008 

R2, NTFS 

Mobile Intel Core 2 Duo, dual-core, 2.26 GHz, 25W TDP [13] 4 GB DDR3-1066* 1 Micron SSD 

Desktop AMD Athlon, dual-core, 2.8 GHz, 65W TDP [9] 

 

8 GB DDR2-800 

 
1 Micron SSD 

Server AMD Opteron, quad-core, 2.0 GHz, 50W TDP 

 

32 GB DDR2-800 

 
2 10K RPM SATA 

 

Table 2. The set of significant ETW performance counters used across 

all the cluster models. 

Category Performance counter Ctr. ID 

Memory (Mem) 

Page Faults/sec 18 

Cache Faults/sec 24 

Pages/sec 26 

Pool Nonpaged Allocs 34 

Physical Disk (PD) 
Disk Total Disk Time % 54 

Disk Total Disk Bytes/sec 66 

Process (Proc) Total IO Data Bytes/sec 99 

Processor (uP) Total Processor Time % 102 

File System Cache (FSC) 

Data Map Pins/sec 121 

Pin Reads/sec 122 

Copy Reads/sec 126 

Fast Reads Not Possible/sec 139 

Lazy Write Flushes/sec 140 

Job Object Details (JOD) Total Page File Bytes Peak 167 

Proc. Performance (MHz) Processor_0 Frequency 209 

 



 

1,000,000 numbers over 5 partitions in a cluster. It 

has high CPU usage but little network traffic. 

 WordCount: reads through 50 MB text files on 5 

partitions in a cluster and tallies the occurrences of 

each word. It has little network traffic. 

4 Model Variability 
We evaluated four classes of power models: linear, 

piecewise linear, interactive, and switching. For 

brevity’s sake, we present only the best linear models 

for each cluster. The overall predicted cluster power is 

the sum of the single-machine models built using the 

metrics from each machine, as shown in Equation 1.  

              ∑               
 
            (1) 

The challenge was to produce a single-node model 

that provides the lowest root-mean-squared error across 

all workloads on the cluster. We report this error as a 

percentage of the cluster’s dynamic power range; we 

refer to this metric as dynamic range error (DRE).  

Equation 2 gives the formula for DRE. 

              
√                 

                                 
                  

The linear power models for each machine in each 

cluster are as follows, with the subscripts referring to 

the counter IDs in Table 2: 

Server (Opteron): 

 ̂                                   
                                     (3) 

Desktop (Athlon): 

 ̂                                   
                                                       (4) 

Mobile (Intel Core2Duo): 

 ̂                                   
                                                    

Embedded (Atom): 

 ̂                                   
                                    
                                                                              

In these equations,    is the value of counter i, and    is 

the regression coefficient for that counter;    is the 

static power consumption. The next subsection 

describes how we selected these particular counters. 

4.1 Feature Selection 

We initially collected about 250 performance 

counters per machine and then reduced this set using a 

pairwise correlation matrix. Features with a correlation 

of |0.95| or greater to another feature were removed; 

reducing this threshold produced diminishing returns. 

We also used performance counter definitions to 

remove obviously co-dependent features. These two 

steps reduced the number of counters to about 45. 

Finally, we used linear regression to select the final set 

of performance counters on a per-node basis. Since we 

seek to understand the relationship between resource 

utilization and power, we chose a modeling process 

that preserves the initial feature set. Principal 

component analysis (PCA) is an alternative approach, 

but it sacrifices the ability to attribute changes in power 

directly to changes in resource utilization. 

Figure 1 shows which performance counters are 

significant for each individual machine and each 

workload. The x-axis entries correspond to the 

performance counters or categories listed in Table 2. A 

counter is assigned a weight of 1 if it is identified as 

significant at the end of the stepwise regression on a 

particular workload and node. If it does not survive the 

stepwise regression, it is assigned a weight of 0.1.  

As Figure 1 demonstrates, some features, like CPU 

utilization (102), are significant across all workloads 

and all machines, while others are not. Unfortunately, 

even for the same workload, this process selected 

different features for different machines, as the 

different bar heights in Figure 1 show. In order to 

select the best features for an overall cluster power 

model (Equations 3-6), we selected a deliberately low 

threshold, which started at 5, (the horizontal line in 

Figure 1) for the feature’s significance in the individual 

datasets. We performed another stepwise regression on 

this superset of features to reduce it to a core set of 

significant features. For all clusters except the Athlon, 

this final stepwise regression eliminated features from 

the superset, features at or above the threshold line in 

Figure 1. 

This process provided a set of cluster-specific 

features for each cluster power model. Defining a 

unified set of features that can be used across all 

clusters without degrading fidelity is future work. 

4.2 Machine Variability 

With the model features selected, we built single-

node power models for each cluster and used two 

different methods to scale these models to predict 

cluster power. We estimate the cluster-level power 

models’ error using five-fold cross validation.  

The first method we used to predict cluster power 

was to build a model to predict the power of a single 

node, and then simply multiply this predicted power by 

the number of nodes in the cluster. Unsurprisingly, this 

method was highly inaccurate; yielding worst-case 

dynamic range errors of up to 150%. 

The second method collects performance counter 

data from all nodes and applies the single-node model 

to each node in turn, summing the predictions. Figure 2 

shows the results of this method. For each cluster, 

columns n1 through n5 show the dynamic range error 

when the cluster models are trained using data from 

only one node, each of nodes 1-5 and then applied to 

all nodes. The remaining columns show models trained 



 

using data from subsets of the five nodes (i.e. n12 is a 

model trained on nodes 1 and 2 and applied to the 

entire cluster). Using data from multiple machines is 

far superior to simply scaling a single node’s power, 

decreasing the worst-case error to only ~50% for the 

Atom cluster compared to ~150% when multiplying a 

single nodes predicted power by N. 

As Figure 2 shows, the machine power model 

trained using a particular node was sometimes a good 

proxy for cluster power model coefficients, while in 

other cases it was not. In general, as we added more 

machine data from different nodes of the cluster to 

train the model and determine the feature coefficients, 

the accuracy of the model improved, reducing worst-

case error from ~50% down to less than 20% for the 

Atom cluster and 10% for the other clusters.  However, 

for large-scale data centers, it is impractical to train the 

model with all the machines in the data center; Section 

4.3 examines the question of the number of machines 

that must be sampled to meet a given error bound. 

Net Mem PD Proc uP FSC JOD MHz

Net Mem PD Proc uP FSC JOD MHz

Net Mem PD Proc uP FSC JOD MHz

Net Mem PD Proc uP FSC JOD
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Figure 1. Feature significance across all the clusters and all the workloads. ETW categories appear under the range of counter IDs. Network 

(Net) is the only group not used in the models. Refer to Table 2 for the other categories. We use a heuristic to assign weights to significant 

features identified for each machine and for each workload and then select a common set of features across all workloads and machines in the 

cluster, signified by the threshold line. We then remove redundant features from this set. 



 

 

4.2.1 Application inter-run variation 

We also compared the run-to-run variation in idle 

power on the individual nodes to the machine-to-

machine variation in idle power in the cluster. The 

inter-run idle power range for a single node was as 

much as an order of magnitude smaller than, and never 

larger than, the results presented in Table 3 for the 

cluster idle power range. These results demonstrate that 

multiple application run measurements on the same 

node are not sufficient to capture the inter-node 

variability that we have observed on the server cluster. 

4.2.2 Meter error vs. measured power ranges 

The Watts-Up Pro meter error is reported as 1.5%. 

When looking at the idle, average, and maximum 

power ranges across all the clusters and benchmarks, 

only the measured ranges for the Opteron cluster is less 

than ±1.5% of the possible meter error. All other 

clusters report measured power ranges greater than the 

meter error for at least one application on the cluster, as 

reported in Table 3. The error ranges have been 

omitted for brevity. Simply using measurement error 

does not capture machine variability for all the clusters. 

4.3 Sampling bound 

As Figure 2 shows, the prediction error decreases as 

we add more machines to the cluster model’s training 

set. To determine the number of machines we must 

sample to achieve a given level of accuracy, we can use 

a classic Chernoff-Hoeffding bound [7]. This bound 

can be stated as   
 

    

  
 
  . The variables in this 

equation are: 

  : the allowable per-node difference between 

the sample nodes’ average power consumption 

and the true cluster average 

 P: the probability that the actual per-node error 

is greater than or equal to the desired value   

 I: the inter-node difference in mean power 

 q: the number of machines that must be sampled 

to obtain the desired values of   and P, given I 

We thus choose values for   and P and solve for q, 

Figure 2. Sensitivity to the machine(s) used to train cluster models. Column labels identify the node(s) used in training. 
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Table 3. The first column group is the inter-node difference in idle power and average power for different workloads. The next two show the number 

of machines that must be sampled to obtain a sampling error ( ) no higher than the meter error with 99% and 90% probability, respectively.  

* For these cases, the inter-node difference (I) is less than  , which makes it unnecessary to sample multiple machines. 

Clusters

@idle (I) primes (P) staticrank (SR) sort (S) wordcount (WC) I P SR S WC I P SR S WC

Opteron 3.0 3.1 0.2 0.8 2.6 6.0 6.4 1* 1* 4.5 2.5 2.7 1* 1* 1.9

Athlon 2.9 7.7 6.5 3.8 2.2 89.1 628.3 443.6 154.6 51.3 3.1 22.2 15.7 5.5 1.8

Intel Core2 Duo 3.1 3.8 0.8 0.9 0.5 101.8 153.0 6.8 8.6 2.6 14.4 21.6 1.0 1.2 1*

Atom 2.0 0.1 0.2 0.2 0.2 42.4 1* 1* 1* 1* 6.0 1* 1* 1* 1*

Average power range Sampled machines (@99%) Sampled machines (@90%) 

 



 

the number of machines to sample.  An advantage of 

this technique is that q is independent of the total 

number of machines in the cluster. We choose values 

of   corresponding to the meter error for each system 

type.  Note that   is a sampling error due to inter-node 

variation; it is a separate topic from the prediction 

errors of the models in the previous sections. 

Table 3 provides the range of the average power for 

each workload and cluster as well as the number of 

machines required to sample to build the model for P = 

0.01 and 0.1. For the very tight bound of 0.01 (99% 

probability that the error is less than  ), Table 3 shows 

that the number of machines that must be sampled 

generally exceeds our cluster size of 5 nodes. Relaxing 

P to 0.1 (90%) yields more tractable sample sizes: less 

than a 40-node rack in all cases. 

We can reduce the requirement on the sample size q, 

by making more benign assumptions on the variability 

of the power consumption of the nodes.  The Chernoff-

Hoeffding bound provides guarantees under the worst 

case scenario that there is significant likelihood that 

node power consumption will fall on the extremes of 

the interval I.  If we have evidence that the variability 

of power consumption is concentrated on the variance 

(which can be verified empirically), we can then rely 

on tighter bounds. 

We could also relax the value of   depending on our 

application needs. Finally, we should note that the 

workloads on these clusters are not homogeneous, even 

when considering five runs, and this affects the interval 

I used to calculate the sample size q. 

5 Conclusions 
Previous work on power modeling assumes that it is 

sufficient to build and then scale a single-node power 

model for each system class of interest.  For high-

fidelity cluster power models, our results show that the 

choice of model predictors will vary from node to 

node. Furthermore, even for a given set of predictors, 

inter-node variability will result in different model 

coefficients when models are fit using data from a 

different single node. These variations in single-node 

models result in larger errors than using multiple nodes 

to train the models for predicting cluster-level power 

consumption. 

We also observed greater inter-node measured 

power variation than run-to-run variation on a single 

node. Instead of using a single node, it is often 

necessary to build models based on a sample from the 

population of machines. We also examined the 

required number of sampled machines to achieve a 

given Chernoff-Hoeffding error bound for the data in 

this study. The number of machines to sample is 

independent of the machine population size and given 

reasonable parameters is on the order of a single rack 

of machines or less. We believe this to be a reasonable 

number in the context of planning and provisioning at 

the data center scale.  

Finally, the combination of the portable (across 

different machine types) ETW framework, feature 

selection heuristic, sampling bounds, and standard 

statistical methods provides a methodology that can be 

applied to new clusters composed of different systems 

and/or new workloads to generate high-fidelity full 

system cluster power models.    
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