
“These Aren’t the Droids You’re Looking For”
Retrofitting Android to Protect Data from Imperious Applications

Peter Hornyack∗
pjh@cs.washington.edu

Seungyeop Han∗
syhan@cs.washington.edu

Jaeyeon Jung∗
jyjung@gmail.com

Stuart Schechter†
stuart.schechter@microsoft.com

David Wetherall∗
djw@cs.washington.edu

University of Washington∗ Microsoft Research†

ABSTRACT
In order to install an Android application, users are commonly re-
quired to grant these application both the permission to access in-
formation on the device, some of which users may consider private,
as well as access the network, which could be used to leak this in-
formation. We present two privacy controls to empower users to
protect their data from exfiltration by permission-hungry applica-
tions:

(1) covertly substituting shadow data in place of data that the
user wants to keep private, and

(2) blocking network transmissions that contain data the user
made available to the application for on-device use only.

We retrofit the Android operating system to implement these two
controls for use with unmodified applications. A key challenge of
imposing shadowing and exfiltration blocking on existing applica-
tions is that these controls could cause side effects that interfere
with user-desired functionality. To measure the impact of side ef-
fects we develop an automated testing methodology that records the
visual output of application executions both with and without pri-
vacy controls, then automatically highlights the visual differences
between the different executions. We evaluate our privacy con-
trols on 50 applications from the Android marketplace, selected
from those that were both popular and permission-hungry. We find
that our privacy controls can successfully reduce the effective per-
missions of the application without causing side effects for 66%
of the tested applications. The remaining 34% of applications im-
plemented user-desired functionality that required violating the pri-
vacy requirements our controls were designed to enforce; there was
an unavoidable choice between privacy and user-desired function-
ality.

1. INTRODUCTION
When a user prepares to install an application on the

increasingly-popular Android platform, she will be presented with
an ultimatum: either grant the application every permission de-
manded in its manifest or abandon the installation entirely. Even
when a user agrees that an application should have access to sensi-

tive data to provide functionality she desires, once the application
has access to these data it may misappropriate them and exfiltrate
them off the device. Despite the permission disclosures provided
by the Android platform, the power of permission ultimatums and
the inevitability that data will be misappropriated for exfiltration
have created an application ecosystem in which privacy-invasive
applications are commonplace [6]. U.S. federal prosecutors have
even taken notice, initiating a criminal investigation into the mis-
appropriation of users’ data by mobile applications [1].

We have developed a system, called AppFence, that retrofits the
Android runtime environment to impose privacy controls on exist-
ing (unmodified) Android applications. AppFence lets users with-
hold data from imperious applications that demand information that
is unnecessary to perform their advertised functionality and, for
data that are required for user-desired functions, block communi-
cations by the application that would exfiltrate these data off the
device.

When an application demands access to sensitive data a user
doesn’t want it to have, AppFence substitutes innocuous shadow
data in its place. For example, an application that demands a user’s
contacts may receive shadow data that contains no contact entries,
contains only those genuine entries not considered sensitive by the
user, or that contains shadow entries that are entirely fictional. Sim-
ilarly, an application that demands the unique device ID (IMEI
number), which is frequently used to profile users across applica-
tions, may instead receive the hash of the device ID salted with a
device secret and the application name. This shadow data provides
the illusion of a consistent device ID within the application, but is
different from the ID given to other applications on the same de-
vice. Presenting a different device ID to each application thwarts
the use of this ID for cross-application profiling. In other words,
when an application demands the device ID for the purpose of link-
ing the user to a cross-application profile, shadowing the device ID
empowers users to reply that their device is “not the droid you’re
looking for.”

Shadowing prevents the ingress of sensitive data into applica-
tions, breaking applications that truly require the correct data to
provide functionality the user wants. For example, a user cannot
examine or search her contacts if the application only has access
to an empty shadow contact list. For data that is allowed to en-
ter the application, we introduce a complementary data-egress con-
trol to prevent information from being misappropriated and sent
off the device: exfiltration blocking. We extend the TaintDroid
information-flow tracking system to track data derived from infor-
mation the user considers private, then block unwanted transmis-
sions derived from these data. For each sensitive data type in the

1

system, AppFence can be configured to block messages containing
data of that particular type.

In this paper, we first measure how 110 popular permission-
hungry applications use the private information that they have ac-
cess to. We expose the prevalence of third-party analytics libraries
packaged within applications and reveal that applications now send
sensitive data over encrypted channels (Section 2). This investi-
gation of existing applications’ behavior guided us to design two
privacy controls, shadowing and exfiltration blocking, that protect
against undesired uses of the user’s sensitive data by applications
(Section 3). We then study the potential side effects of these two
privacy controls on the user experience of 50 applications. We de-
velop a novel testing methodology for efficiently and reliably re-
peating experiments to investigate the user-discernable side effects
that result when privacy controls are imposed on applications. The
testing process records applications’ screenshots and highlights the
differences between executions so that they can be easily analyzed
visually (Section 4). The evaluation that we performed using this
methodology shows that, by combining shadowing and exfiltration
blocking, it is possible to eliminate all side effects in the applica-
tions we studied except for those that represent a direct conflict be-
tween user-desired functionality and the privacy policy our controls
enforce—that private data must not leave the device (Section 5).
We discuss future and related work in Sections 6 and 7, and we
conclude in Section 8.

We make the following three contributions. First, we provide the
deepest study to date (to our knowledge) of information exposure
by Android applications in terms of types of information investi-
gated, forms of exposure including encryption, and exposure pat-
terns to advertising and analytics servers. Second, we present two
privacy controls for reducing exposure and show experimentally
that the controls are promising: the privacy controls reduced the
effective permissions of 66% of the 50 applications in our testbed
without side effects. Last, we develop a novel testing methodol-
ogy to detect side effects by combining automated GUI testing and
by visually highlighting differences between application screen-
shots. This methodology allows us to characterize the side effects
of tested applications, revealing some common functionalities of
Android applications that require the exposure of the user’s sen-
sitive data and are thus unavoidably in conflict with the goal of
privacy controls.

2. PRIVACY RISKS ON ANDROID
To inform the design of our privacy controls, we performed sev-

eral initial measurements and analyses of today’s Android applica-
tions. As an application cannot misappropriate data it does not have
access to, we first measured the prevalence with which applications
request access to each type of potentially sensitive data. We then
determined the prevalence with which applications exfiltrate data
of each type and where they send the data to.

2.1 Sources of sensitive information
We examined 1100 popular free Android applications, sampling

the 50 most popular applications from each of 22 categories listed
by the Android marketplace as of November 2010. We identified
11 permissions that could result in the disclosure of 12 types of
sensitive information: location, phone_state (granting ac-
cess to phone number & unique device ID information types as well
as call state), contacts, user account information, camera,
microphone, browser history & bookmarks, logs, SMS
messages, calendar, and subscribed_feeds. We mea-
sured the prevalence with which applications demanded each per-
mission by parsing the applications’ manifests using the publicly

available Android aapt tool [11]. We find that 605 applications
(55%) require access to at least one of these resources and access
to the Internet, resulting in the potential for unwanted disclosure.
We present these results broken down by resource type in Table 1.

Resource type Applications

phone_state 374 (34.0%)
location 368 (33.5%)
contacts 105 (9.5%)
camera 84 (7.6%)
account 43 (3.9%)
logs 38 (3.5%)
microphone 32 (2.9%)
SMS messages 24 (2.2%)
history & bookmarks 19 (1.7%)
calendar 9 (0.8%)
subscribed_feeds 2 (0.2%)

Table 1: Of the 1100 popular Android applications we exam-
ined, those that required both access to a resource containing
sensitive data and access to the Internet (through which data
might be exfiltrated).

2.2 Misappropriation
Prior work has revealed that some Android applications do ex-

ploit user data for purposes that may not be expected or desired by
users. Enck et al., who developed the TaintDroid information-flow
tracking system extended in our work, used this system to analyze
30 Android applications that required access to the Internet and ei-
ther users’ location, camera, or microphone [6]. They found that
half of these applications shared users’ locations with advertise-
ment servers. The problem is not unique to Android. Egele et al.
used static analysis to track information flow in popular iPhone ap-
plications and discovered that many contained code to send out the
unique device ID [5]. Smith captured network traffic to observe
iPhone applications transmitting device IDs [17]. The Wall Street
Journal commissioned its own study of 50 iPhone applications
and 50 Android applications, also using a network-observation ap-
proach [22, 21]. The article suspects that these unique IDs are so
commonly transmitted because they can be used to profile users’
behaviors across applications.

2.3 A profile of the profilers
Given the existing concerns over cross-application profiling of

user behavior, we examined our sample of 1100 applications to
identify third-party analytics & advertising (A&A) libraries that
might build such profiles. We used the Android apktool [23] to
disassemble and inspect application modules to identify the most
commonly used libraries. We found eight A&A packages, listed in
Table 2. AdMob was the most popular A&A package, employed
by a third of our sample applications, followed by Google Ads.
Google acquired AdMob in 2010; the combined application mar-
ket share of AdMob and existing Google Ads and Analytics pack-
ages was 535 of our 1100 applications (49%). We also found that
591 applications (54%) have one or more A&A packages included
in their code. Moreover, 361 of these applications (33%) demand
access to the Internet and at least one of the resource types iden-
tified in Table 1, enabling the potential for disclosure of sensitive
information to these third party servers.

2

Applications
all sensitive

A&A Module 1100 605
admob.android.ads 360 (33%) 225 (37%)
google.ads 242 (22%) 140 (23%)
flurry.android 110 (10%) 88 (15%)
google.android.apps.analytics 91 (8%) 66 (11%)
adwhirl 79 (7%) 67 (11%)
mobclix.android.sdk 58 (5%) 46 (8%)
millennialmedia.android 48 (4%) 47 (8%)
qwapi.adclient.android 39 (3%) 37 (6%)

Table 2: The prevalence of third-party analytics and advertise-
ment modules in our sample of 1100 Android applications, and
a subset of 605 applications that demand access to at least one
resource containing potentially sensitive information.

A&A destination Any IMEI Loc

*.admob.com 57 0 11
*.doubleclick.net 36 0 0
data.flurry.com 27 2 15
*.googlesyndication.com 24 0 0
*.mydas.mobi 23 0 0
*.adwhirl.com 21 0 0
*.mobclix.com 17 10 6
*.google-analytics.com 17 0 0
tapad.jumptap.com 6 0 0
droidvertising.appspot.com 5 0 0
*.mojiva.com 4 0 0
ad.qwapi.com 2 0 0
*.greystripe.com 2 2 0
*.inmobi.com 1 0 1

Table 3: The number of applications (from our 110 application
sample) that sent any communication to the A&A server, num-
ber that sent the unique device ID (IMEI), and number that
sent the user’s location.

2.4 Where sensitive information goes
Not all applications that request permission to access sensitive

information will exfiltrate it. We ran an experiment to identify the
prevalence with which applications transmit each type of sensitive
information off the user’s device and where they send it to. Per-
forming this preliminary study required us to enhance TaintDroid,
as it had previously only tracked five of the 12 data types exam-
ined in our study, and it did not track traffic sent through SSL. We
also added instrumentation to record the identity of communicating
parties and the traffic going to, and coming from, these parties.

Given our resource constraints, we limited our remaining anal-
ysis to a 110-application subsample of the 1100 applications we
had started with. For each permission, we included in the sub-
sample at least 10 applications that used this permission, drawing
first from those applications that contained an A&A package and,
if more applications were needed to reach our goal, next drawing
from the set of applications without A&A packages but that still
required Internet access.1 Our sample is intentionally biased in fa-
vor of permission-hungry applications: those that require the most
permissions. This bias toward permission-hungry applications only
increases the likelihood that we will identify side effects when im-

1Fewer than 10 applications requested access to the sub-
scribed_feeds and calendar permissions.

posing privacy controls.
To perform this analysis, we manually executed each of the 110

applications for about five minutes, exercising the application’s
main features and any features we thought might require the use or
exfiltration of sensitive data (the same methodology is used in [21,
22]).

We augmenting the list of A&A domain names previously ob-
tained through static analysis by observing traffic from these 110
and manually inspecting the sites they contacted to verify which
third-parties were A&A servers. The resulting list of domain
names of A&A servers can be found in Table 3.

For each sensitive resource, Table 4 shows the number of ap-
plications in our 110-application subsample that demanded ac-
cess to it, and the fraction that we observed transmitting messages
tainted by data from this resource out to the Internet. The only
data types we see transmitted are device ID (IMEI), phone num-
ber, location, contacts, camera, account, and microphone. Some
applications may send more information than we observed as we
could not guarantee that all code paths were executed. Table 3
shows the breakdown of A&A destinations that collected tainted
data from applications. We observed that location was sent to
Admob, Flurry, Mobclix, and Inmobi, and IMEI was sent
to Flurry, Mobclix, and Greystripe.

Sent to
Resource Demanded Anywhere A&A

phone_state
IMEI 83 31 37% 14 17%

Phone# 83 5 6% 0 0%
location 73 45 62% 30 41%
contacts 29 7 24% 0 0%
camera 12 1 8% 0 0%
account 11 4 36% 0 0%
logs 10 0 0% 0 0%
microphone 10 1 10% 0 0%
SMS/MMS messages 10 0 0% 0 0%
history&bookmarks 10 0 0% 0 0%
calendar 8 0 0% 0 0%
subscribed_feeds 1 0 0% 0 0%

Table 4: The prevalence of permissions demanded by applica-
tions in the sample used for our initial information flow exper-
iments. Note that the sum of the application counts is greater
than 110 as many applications require access to multiple data
types. For each data type, we tracked applications that de-
manded access to that data type and measured the fraction that
transmitted messages tainted by that data type.

Phone number. Five applications transmitted phone numbers.
Two applications required users to register a phone number, so
they filled in the device’s phone number by default when the user
completed the registration form (but the user could then mod-
ify the phone number if desired). The third application used the
phone number to create a custom unique device identifier, so the
phone number was not disclosed directly in the payload. How-
ever, two applications–Dilbert comic viewer and Mabilo ringtones
downloader–sent the device’s phone number with no discernable
legitimate purpose!
Contacts. Seven applications transmitted contacts. Two did so
to perform contact-specific searches, and three sent contacts as re-
quested by the user. One, a reverse phone number lookup appli-
cation (Mr. Number), sent contact entries to its own servers; it
asks the user to opt in, but only after it has already sent the data to

3

its servers. An instant messaging application (KakaoTalk) sent
the phone numbers collected from the user’s entire address book to
its servers to automatically add other users of the application. The
transmission took place without any notice and this feature is turned
on by default. Additionally, six of the seven applications sent the
IMEI along with the contacts, making it easy for applications to
link contacts with other information that is commonly collected as
described below.
IMEI. 31 applications transmitted the IMEI(device ID). As re-
ported by previous studies, the use of the device ID by applica-
tions is prevalent. 11 applications employed SSL secure connec-
tions when they transmitted the device ID to application servers.
We find that these encrypted transmissions of the device ID some-
times accompany other sensitive data such as contacts and phone
number. We find seven game applications that send the device ID
over SSL along with a score to store high scores using a third-party
company.
Location. 45 applications transmitted location data. Third-party
servers are the most common destinations for location data; 30 ap-
plications shared location data with A&A servers. All but two of
these 30 shared location data with A&A servers exclusively. Half
(15) employ the Flurry analytics package, which uses a binary
(non-human readable) data format when sending out location data
to the Flurry server. Prior investigations that observed network traf-
fic alone would not have detected the transmission of this informa-
tion.
Camera & Microphone data. We observed that one application
sent a photo and another application sent a voice memo. Both cases
are triggered by explicit user requests.
Account. The account resource is used to store profile and authen-
tication information for online accounts that the user has access
to. Four applications transmitted data tainted by the account re-
source; all uses appear legitimate. One security application used
account data to send email to the user’s Gmail account. One mul-
timedia application used account data to allow the user to register
her Facebook account for creating personal profiles. One music
sharing application used account data to authenticate the user with
its server. One application used account data to access the Android
market for providing enhanced services.

2.5 Informing privacy controls
Our preliminary analysis can guide the selection of privacy con-

trol mechanisms for protecting sensitive data. One simple approach
would be to block all access to the Internet by the application.
While this obviously would impede user-desired functionality in
some cases, we wondered if it might be sufficient in others. Hav-
ing intercepted and observed all Internet communications to and
from these applications, we show the fraction of each application’s
Internet traffic that is used for advertising and anlytics (A&A) in
Figure 1. Of the 97 applications in our 110 application sample that
accessed A&A servers, 23 (24%) communicated exclusively with
A&A servers during our observations. While these could presum-
ably provide the same functionality if one simply denied all access
to the network, the rest would likely exhibit side effects.

Given the variation in the types of sensitive data, ways of using
this data for user-desired features, and ways to misuse this data, it
may simply not be possible to apply a single, one-size-fits-all policy
that can protect data while minimizing side effects. Thus, we set
out to explore a choice of privacy controls that could be customized
to balance the needs of applications with the privacy requirements
of their users.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 11 21 31 41 51 61 71 81 91

Fr
ac

tio
na

l s
ha

re
 o

f n
et

w
or

k
tr

af
fic

Rank

Other Servers

A&A Servers

Figure 1: The fraction of network traffic (bytes inbound + bytes
outbound) sent to A&A servers.

3. PRIVACY CONTROLS
AppFence implements data shadowing, to prevent applications

from accessing sensitive information that is not required to provide
user-desired functionality, and exfiltration blocking, to block outgo-
ing communications tainted by sensitive data. Either (or even both)
of these controls may be applied to limit an application’s access to
a sensitive data type.

3.1 Data shadowing
Since today’s applications do not suspect the use of shadowing,

we opt for simple shadow data rather than developing more elabo-
rate ruses to fool applications that might attempt to detect shadow-
ing. However, our implementation can be easily extended to sup-
port more sophisticated shadow data than what is presented below
if it becomes necessary to do so.

Android applications use the file system to access the camera,
microphone, and logs. When applications try to open these re-
sources, we provide the illusion of opening an empty file. Sim-
ilarly, we shadowed browser metadata (history and bookmarks),
SMS/MMS messages, subscribed feeds, contacts, accounts, and
calendar entries by returning an empty set of data.

When applications request the device’s location, we return the
coordinates 37.421265, -122.084026.

When applications request the device’s phone state, we construct
phone state with a fixed phone number (1 650 623 4000) and an
application-specific device ID. The shadow device ID (IMEI) is
generated by hashing a three-tuple containing the device ID, appli-
cation name, and a secret salt randomly generated for the device.
The salt ensures that an application that is granted access to the
device ID cannot be linked to an application that is granted access
to the shadow ID. The result of the hash is a string containing 15
decimal digits—the proper format for a GSM IMEI number.

The Android phone state permission also grants access the soft-
ware version number (IMEI/SV), SIM serial number, voice mail
number, and subscriber ID (IMSI). We did not observe any applica-
tions use these data, and thus did not test any shadowing strategies
for them.

Implementation
The Android architecture isolates each application within its own
runtime consisting of a Dalvik virtual machine and the Android
core libraries. Each runtime is isolated within its own process. Be-
cause Android sandboxes applications from each other, the only
way to impose privacy controls on unmodified applications is to
modify the operating system itself, which includes the core libraries

4

as well as the Android framework, a set of services and managers
that reside outside of the application VMs. Figure 2 shows the
components of the Android architecture that we modified for shad-
owing.

AppFence	
daemon	

Dalvik	 VM	

OSNetworkSystem,	
SSLOutputStream	

app_1	

connec@on	
blocking	

sendStream()	
write()	 content	 manager	

OSFileSystem	

log,	 camera,	 	
microphone	
shadowing	

account	 manager	

process	 manager	

loca@on	 manager	

telephony	 manager	

open()	

taint	 tracking	

AppFence	 seFng	 content://calendar	

Figure 2: AppFence system architecture: the Dalvik VM con-
tains the application and the Android core libraries, while re-
source managers reside in the Android framework. Exist-
ing resource manager and file system components are modi-
fied for shadowing, while exfiltration blocking introduces new
components for connection blocking and taint tracking. The
AppFence daemon runs as a native library, and is controlled by
the AppFence settings application.

For simple resources such as the IMEI, phone number, and lo-
cation, we return shadow values directly from the managers in the
Android framework code. More complex resources, such as the
user’s calendar and contact list, are accessed through Android’s
content provider framework [9]. Applications identify the
resource they wish to access via a URI. For example, the cal-
endar may be queried with the string content://calendar.
For these content provider resources, we replace the cursor that
would normally be returned by the content manager with a shadow
database cursor. For our experiments we return an empty database
cursor, though one could instead create a shadow database and re-
turn a cursor to it.

3.2 Exfiltration blocking
To block exfiltration of data, we intercept calls to the network

stack to (1) associate domain names with open sockets and (2) de-
tect when tainted data is written to a socket. When an output buffer
contains tainted data, we drop the buffer and choose one of two ac-
tions: we may drop the offending message covertly, misleading the
application by indicating that the buffer has been sent, or overtly,
emulating the OS behavior an application would encounter if the
buffer were dropped as a result of the device entering airplane mode
(all wireless connections disabled).

Implementation
To monitor and block network traffic, we modify both the Java code
and native code in the Android networking stack. We rely on the
Dalvik virtual machine to protect the integrity of our code running
within the VM. Android’s core native libraries are loaded on de-
mand as applications require them. We prevent applications from
directly loading their own native libraries as this could compromise
the integrity of our taint tracking and privacy controls. At the time
of testing, the use of native libraries was exceptionally rare; none

of the 110 applications in our test set relied upon their own native
libraries to run. Figure 2 shows key modules that we instrumented
or created for exfiltration blocking.

When an application writes to a socket’s output stream,
the buffer is sent to the sendStream() method within the
OSNetworkSystem core library. We modified sendStream
so that if the buffer is tainted by data that should not be sent to its
intended destination, we drop the buffer. When SSL sockets are
used, we capture write calls to the SSLOutputStream class.

To emulate airplane mode, we first return error code
SOCKERR_TIMEOUT, then block the next send with er-
ror code SOCKERR_EPIPE. If the application tries to
open a new socket (via a socket.connect() call),
we finally return a SocketException with error code
SOCKERR_ENETUNREACH. Subsequent attempts to open sockets
or send data will be allowed until we next encounter tainted data
bound for a forbidden destination.

In order to facilitate user configuration and testing, we separate
the policy specification mechanism into a service (daemon) that
can be configured automatically or by users. Our privacy controls
obtain their policies from this daemon. The privacy controls can be
enabled globally or on a per-application basis.

AppFence relies on the open-source TaintDroid platform which,
at the time of our testing, did not yet fully support just-in-time (JIT)
compilation.2 We have thus initially implemented AppFence for
Android version 2.1, which does not use JIT compilation. Android
2.1 represented 24% of the Android installations accessing the An-
droid Marketplace as of May, 2011 [12]. We did not encounter any
compatibility issues running applications on Android 2.1.

Our combined implementation of shadowing and exfiltration
blocking required introducing or modifying roughly 5, 000 lines
of the Android platform code.

3.3 Limitations
One of the known limitations of our implementation is that the

TaintDroid information flow tracking system, on which we built
AppFence’s exfiltration blocking feature, does not track informa-
tion leaked through control flow operations. Applications intent on
circumventing exfiltration blocking could move data using control
flow operations. Tracking control flow may have reasonable over-
head, especially if the code to do so is only activated when a tainted
variable is loaded into the register space, but could raise the rate of
false positives.

Still, actively circumventing AppFence would not be without
consequences for software developers. Static analysis could be
used to identify sections of code that appear to be designed to
transfer data using control flow, exposing applications that actively
attempt to subvert users’ desired privacy policies. If application
developers are found to be actively targeting and circumventing
AppFence’s exfiltration blocking controls, they may undermine
their ability to employ the traditional excuse used to defend de-
velopers of privacy-invasive applications—that they operate openly
with the implicit consent of a user base that is happy to reveal in-
formation.

An application that is aware of AppFence can detect the presence
of exfiltration blocking. For example, an application could open
two independent sockets, transmit tainted data over only one of
those sockets and untainted data over the other socket, and have the
server report back what it received. Similarly, shadow data may
also not be convincing enough to fool an application. Applications
that detect the presence of privacy controls could inform users that
2Collaborators at Duke University are adding JIT support to Taint-
Droid.

5

they refuse to provide user-desired functionality until these controls
have been deactivated.

4. TEST METHODOLOGY
The primary cost of imposing privacy controls on applications

is the introduction of side effects that negatively impact the user’s
experience. To enable the evaluation of our AppFence system, we
developed a novel test methodology that allows us to automate the
execution of applications and easily measure and characterize side
effects introduced by the privacy controls. Our methodology over-
comes the two main obstacles to systematic testing of the inter-
action between AppFence’s privacy controls and applications: the
ability to reproduce program executions (reproducibility), and the
ability to detect side effects (detection). We describe how we use
automated GUI testing and screenshot comparisons to tackle these
issues in the next subsections.

We focus on user-visible side effects as the metric for evaluating
AppFence because shadowing and exfiltration blocking have equiv-
alent benefits when applied to the applications in our test bed; given
that AppFence-unaware applications do not (at least to our knowl-
edge) deliberately circumvent the information flow tracking used
to block exfiltration, both privacy controls are equally effective on
today’s applications. We do not measure the performance impact of
our privacy controls; the underlying information flow tracking pro-
vided by TaintDroid is fast enough to run applications in real-time
with modest slowdown (worst case increase in CPU utilization of
14%), and beyond this we witnessed no discernable impact as ap-
plications with and without our privacy controls enabled ran side
by side.

4.1 Automated application runs
Reproducibility is difficult because different runs of the same

application may exercise different code paths. Furthermore, vari-
ations in user inputs, their timing, system state, and other factors
may cause results to change. To minimize these variations, we built
a test infrastructure that automates human usage patterns to remove
variations in users’ choices of actions and their timing. To this end
we used the Android GUI testing system provided by the TEMA
project [14, 19], which leverages the Android monkey event gen-
erator. The test system supports a scripting language in which user
actions are expressed via high-level commands such as TapObject,
PressKey and SelectFromMenu. Commands were sent from our PC
running the GUI testing system to our Nexus One devices via a
USB cable.

Given the labor-intensive nature of generating test scripts, we
were able to script 50 of the 110 applications we examined in Sec-
tion 2 (for a full list of these applications, see Appendix B). We
scripted each application to perform its main tasks as we expected
users to perform them. Our scripts are not guaranteed to cover
all code paths, and so our results may not detect all uses of sensi-
tive data by an application or all of the side effects of our privacy
controls. The average time to execute each test script – excluding
installation, uninstallation and cleanup – was 3.5 minutes, with an
average of 24 script commands. We created a master test script
that configures an Android device, enables the AppFence privacy
controls for experimental configurations or disables them for the
baseline configuration, and then tests all applications. For each ap-
plication, the script installs and launches the application, executes
the GUI test adapter to provide inputs, uninstalls the application,
and then removes any changes to the device state caused by the
application; we refer to these steps as an application execution.

4.2 Detecting changes in behavior
Detecting whether side effects impact user-desired functionality

is a determination that eventually requires consultation of a user.
However, placing a human in the loop can introduce bias and slow
the process down, running counter to our goal of systematic, auto-
mated testing. To reduce the scalability constraints and bias caused
by human evaluation, we leverage the insight that side effects are
likely easy to detect and confirm if the visual outputs of the baseline
and experimental executions can be compared side by side. We em-
ployed a feature of the GUI testing system to capture a screenshot
from the Android device after every command in the test script.
We first ran each test script with our baseline configuration—no re-
sources were replaced with shadow resources and no attempts to
exfiltrate data were blocked. We then ran each test script with our
experimental configurations, in which either data shadowing or ex-
filtration blocking was activated. For each experimental execution,
we automatically generated a web page with side-by-side screen-
shots from the baseline execution and the experimental execution,
along with a visual diff of the two images. We found that these
outputs could be scanned quickly and reliably, with little ambiguity
as to whether a side effect had been captured in the image logs, as
shown in Figure 3.

(a) Baseline execution (b) With exfiltration
blocking

(c) Visual diff between
(a) and (b)

Figure 3: Detecting side effects using visual diff: The red
shaded region in (c) highlights the advertising banner missing
from (b).

We also monitored the tainted data exposure across test runs and
found that it is not deterministic: it is possible for applications to
transmit tainted data in some test runs but not others. We took
steps to mitigate the underlying sources of variation during our test-
ing. For example, we discovered that many applications request the
most recent calculated location, without asking for the phone to ac-
cess the GPS; they may do this to avoid the latency required to ob-
tain updated location data, or to avoid the battery drain of activating
the GPS unit. If a null location is returned, or if the last known lo-
cation is stale (e.g. more than 60 minutes old), applications will of-
ten proceed without location data. To avoid inconsistencies during
our testing, we modified the Android framework to always return a
fixed default location, rather than null, when no last known location
is available. To account for remaining variations in our testing, we
examined the results of at least two test executions for every exper-
imental configuration, and used additional executions and manual
log inspection to resolve inconsistent application behavior.

5. EXPERIMENTS
This section shows the experimental results of testing

AppFence’s privacy controls on the 50 applications for which we

6

generated test scripts (see Appendix B). We discuss the side effects
resulting from the privacy controls and evaluate their impact on the
user experience.

5.1 Experimental configurations
We executed applications over eight different experimental con-

figurations. The control configuration, which did not have any pri-
vacy controls activated, represents how users run applications on
Android today. In the shadowing configuration, sensitive data was
replaced by shadow data, as described in Section 3.1. The remain-
ing six configurations implemented some form of message block-
ing, three of which used overt blocking (simulating airplane mode)
and three of which used covert blocking (pretending that blocked
messages were actually sent). One pair of exfiltration blocking
configurations (one covert, one overt) blocked messages tainted by
sensitive data regardless of the server to which they were destined.
Like data shadowing, these configurations are destination-agnostic.
A pair of destination-specific exfiltration blocking configurations
only blocked tainted messages if they were destined to known ad-
vertising & analytics (A&A) servers. Finally, to examine the ben-
efits of exfiltration blocking over more naïve approaches, a desti-
nation blacklisting pair blocked all traffic to known A&A servers,
regardless of whether it was tainted by sensitive data or not. (The
list of known A&A servers can be found in Table 3.)

We divided the possible side effects impacting the user experi-
ence into four categories based on severity: the privacy controls had
no side effect (none); advertisements no longer appeared (ads ab-
sent); the application still performed its primary purpose but failed
to perform a less-important secondary function, or was otherwise
less functional; or the application no longer fulfilled its primary
purpose or crashed (broken). We then classified each application
into one of these categories, based on the most severe side effect
we observed in the entire execution of the application under our
test script.

The definition of less functional (as opposed to broken) is some-
what subjective, and will vary according to the individual user.
When classifying applications, we carefully considered the primary
purposes for which a user would run a particular application, and
when judgment calls were necessary, we made them in favor of
more severe impacts. A detailed explanation of when we con-
sidered each application to be less functional is presented in Ap-
pendix A. Because we are concerned with evaluating the potential
negative impact of our privacy controls on the user’s experience,
we do not consider the absence of advertisements to be a side ef-
fect, nor do we study the impact on application developers or their
advertising and analytics partners.

5.2 Coarse-grained controls
Our first experiment examines the side effects of imposing pri-

vacy controls on all 12 data types simultaneously. We begin with
such a coarse-grained analysis because it allows us to identify the
best applications for further examination; those that are not im-
pacted by coarse-grained privacy controls will not require more
detailed analysis. Our results are summarized in Table 5. Ad-
vertising & analytics (A&A) servers don’t generally provide user-
desired functionality, so it is not surprising that the naïve approach
of blocking tainted messages sent to known A&A servers has fewer
side effects than approaches that block messages to other servers
as well. However, even blocking just tainted messages to known
A&A servers can cause disruption to the user experience if appli-
cations fail to handle blocking gracefully. For example, after a con-
nection to an A&A server failed, one application assumed that the
network was unavailable and abandoned all network access. Block-

ing all messages sent to A&A servers, rather than just those mes-
sages tainted by sensitive data, caused slightly more applications to
break. Closer inspection revealed that these applications send un-
tainted communications to A&A servers upon launch, which may
cause them to wait indefinitely for a response (covert mode) or re-
ceive a socket exception that is interpreted as network unavailabil-
ity (overt mode). For all exfiltration blocking configurations, we
found negligible differences in the occurence of side effects caused
by overt blocking versus covert blocking.

Alas, blocking only A&A servers only defends against behav-
ioral advertising which, despite its popularity, is likely the least per-
nicious threat to sensitive data. More nefarious applications can cir-
cumvent such blacklist approaches, for example by proxying com-
munications to A&A servers through their own (first party) servers.
Preventing exfiltration of data through non-A&A servers requires
one of our destination-agnostic approaches, i.e. using shadowing or
using exfiltration blocking of tainted messages to all destinations.
Table 5 shows that overall, shadowing causes fewer and less severe
side effects than exfiltration blocking; a more detailed analysis is
presented in the following section.

5.3 Fine-grained controls
We ran a second experiment to determine which resources were

causing side effects when destination-agnostic privacy controls
were applied. This required us to re-run our tests, applying privacy
controls individually to each type of sensitive information. How-
ever, we only had to do so for those applications that were less func-
tional or were broken when privacy controls had been applied to all
types of information. For each resource (row) and privacy control
(column) in Table 6, the corresponding entry shows the number of
applications that experienced side effects as a result of imposing
the privacy control on that resource.

Our results reflect that data types that are rarely directly pre-
sented to the user – device ID (IMEI), location, and phone number
– are best protected by shadowing. Shadowing did not break any
applications that attempted to send the device ID or phone number
to their servers. Six applications did become slightly less functional
when the device ID was shadowed—all were games that could still
track their high scores, but not build cross-application high-score
profiles. In contrast, eight applications that access the device ID
broke when overt exfiltration blocking controls were imposed, and
another seven were less functional. Many of these applications send
data upon launch, waiting for confirmation before continuing, and
thus break when exfiltration blocking is imposed. Others included
the device ID in login information sent over an encrypted (SSL)
socket, which we blocked. Because applications use the device ID
in a way that is not directly visible to the user, shadowing the de-
vice ID is usually less disruptive to the user experience than actively
blocking the communication.

When controlling access to the user’s location, shadowing also
had slightly fewer side effects than exfiltration blocking. Like the
device ID, location coordinates are rarely presented to the user di-
rectly; rather, they are usually used to download information about
a given location. Thus, exfiltration blocking will prevent any in-
formation from being retrieved, whereas shadowing will result in
data being retrieved for the shadow location instead of the actual
location. For some applications, data for the shadow location was
not better than no data at all (as with exfiltration blocking), so these
applications (14%) were classified as broken. However, the differ-
ence between the number of applications that were broken or less
useful with location shadowing (28%) versus those broken or less
useful with exfiltration blocking (39%) shows that some applica-
tions exfiltrated location data for purposes (such as analytics) that

7

Exfiltration blocking of tainted messages to. . . Blocking all messages
all destinations only A&A servers to A&A servers

Shadowing Covert Overt Covert Overt Covert Overt
None 28 (56%) 16 (32%) 16 (32%) 45 (90%) 45 (90%) 19 (38%) 18 (36%)
Ads absent 0 (0%) 11 (22%) 11 (22%) 4 (8%) 4 (8%) 29 (58%) 26 (52%)
Less functional 14 (28%) 10 (20%) 10 (20%) 0 (0%) 0 (0%) 0 (0%) 1 (2%)
Broken 8 (16%) 13 (26%) 13 (26%) 1 (2%) 1 (2%) 2 (4%) 5 (10%)

Table 5: The side effects of imposing privacy controls on all 12 categories of sensitive data for 50 test applications.

Breaks or less functional Breaks (only)

Exfiltration blocking Exfiltration blocking
Shadowing Covert Overt Shadowing Covert Overt

device ID 6/43 (14%) 16/43 (37%) 15/43 (35%) 0/43 (0%) 9/43 (21%) 8/43 (19%)
location 10/36 (28%) 14/36 (39%) 14/36 (39%) 5/36 (14%) 8/36 (22%) 8/36 (22%)
contacts 4/14 (29%) 2/14 (14%) 2/14 (14%) 2/14 (14%) 1/14 (7%) 1/14 (7%)
history&bookmarks 1/3 (33%) 0/3 (0%) 0/3 (0%) 0/3 (0%) 0/3 (0%) 0/3 (0%)
phone number 0/43 (0%) 3/43 (7%) 3/43 (7%) 0/43 (0%) 3/43 (7%) 3/43 (7%)
SMS 1/2 (50%) 0/2 (0%) 0/2 (0%) 1/2 (50%) 0/2 (0%) 0/2 (0%)
calendar 1/4 (25%) 0/4 (0%) 0/4 (0%) 0/4 (0%) 0/4 (0%) 0/4 (0%)

Table 6: For each type of sensitive information, the fraction of applications that require this information that either break or are
less functional as a result of imposing a destination-agnostic privacy control (first three data columns), followed by the subset of only
those applications that break – rather than just become less functional – as a result of these controls (the last three data columns).
Data types not represented by rows in this table did not cause our privacy controls to induce side effects.

did not cause user-visible side effects when the location was shad-
owed. For these applications that use location data in a way that
is not visible to the user, shadowing is a more appropriate privacy
control than exfiltration blocking.

The results demonstrate that exfiltration blocking is best used
for data that applications display to the user or allow the user to
navigate. For example, whereas data shadowing causes four appli-
cations that use contacts to break or become less functional, only
one of these applications is impacted by exfiltration blocking. Sim-
ilar results are seen in Table 6 for bookmarks, SMS messages, and
calendar entries.

Shadowing and exfiltration blocking are complementary, and
when used together can produce fewer side effects than either can
alone. While 28 of the 50 applications in our sample (56%) run side
effect-free with just shadowing and merely 16 applications (32%)
are side effect-free with exfiltration blocking, 33 (66%) could run
side effect-free if the most appropriate privacy control (i.e. as de-
termined by an oracle) could be applied to each application. Sec-
tion 6.1 describes how we might determine appropriate privacy set-
tings in the future.

The benefits of having two privacy controls to choose from are
also apparent from Table 7, which presents another view of the
data from our fine-grained analysis. This table characterizes the
types of application functionality that were impacted by our pri-
vacy controls, and shows which data types led to side effects for
shadowing, exfiltration blocking, or both. Many of the rows in this
table show that for particular functionalities and data types, one
control exhibits the side effect but the other does not, indicating
that AppFence can avoid impacting this type of functionality if the
appropriate privacy control is used.

Table 7 also offers further insight into the behavior of the tested
applications. For example, returning to the previous discussion of
applications that use location data in ways that are not visible to
users, these applications are precisely those listed in the rows of
the table for which exfiltration blocking of the location data type

made applications broken or less functional while shadowing had
no side effects.

Finally, Table 7 provides insight into the third of applications that
were not side effect-free. For some types of functionality in the
table (GameProfile, GeoSearch, GeoBroadcast, and FindOthers),
applications experienced side effects when either privacy control
was imposed. Revealingly, these functionalities are in direct con-
flict with the goal of the privacy control—to keep information from
leaving the device. Cross-application game high-score profiles are
in direct conflict with privacy controls designed for the very pur-
pose of preventing cross-application profiles. Geographic database
searches are implemented such that they cannot work unless the
user reveals her location and allows the application to exfiltrate it.
If the mocospace application is to identify which of your con-
tacts are also using mocospace, it will need to send your contacts
to its servers. In these cases, the user cannot have her functionality
and privacy too. Fortunately, most applications in our evaluation
ran without any side effects, even though the sample was heavily
biased towards permission-intensive applications.

In summary, our in-depth analysis of side effects shows that
AppFence’s two privacy controls can block unwanted exposure of
sensitive data by 66% of the applications that we tested without
compromising any functionality. The remaining applications, how-
ever, do require transmission of sensitive data off the device for
certain functionality, leaving a choice to the user between privacy
and functionality. We have characterized the types of functionality
that require the exposure of sensitive data, and the side effects that
result if the data is shadowed or this exposure is blocked, to provide
users with some guidance for making an informed decision.

6. FUTURE WORK
This section discusses promising avenues to explore in order to

further strengthen AppFence. In particular, we discuss how to ad-
dress the problems of determining which privacy controls to apply
to which applications and data types, and preventing applications

8

Impacted functionality Sh EB Data type Applications impacted

Launch: Application can’t launch because required network transaction contains sensitive data
- ⊗ Phone # dilbert, yearbook
- ⊗ Device ID dex, docstogo, kayak, moron, yearbook
- ⊗ Location dex, docstogo, moron

Login: User can’t login because login request contains sensitive data
- ⊗ Device ID assistant, tunewiki

Query: User can’t receive response to a query because query contains sensitive data
- ⊗ Device ID wnypages, yellowpages
- ⊗ Location manga
- ⊗ Phone # callerid
- ⊗ Contacts callerid
- � Device ID iheartradio

GameProfile: Can’t access cross-application high-score profile associated with device ID
� � Device ID droidjump, mario, papertoss, simon, smiley_pops, trism
- � Location papertoss

GeoSearch: Can’t perform geographic search
⊗ ⊗ Location compass, dex, starbucks, wnypages, yellowpages
� � Location apartments, iheartradio, npr, yearbook

GeoBroadcast: Can’t broadcast geographic location to others
� � Location heytell

FindOthers: Can’t learn which contacts are also using this application
� � Contacts mocospace

SelectRecipient: Can’t select contacts with whom to call, message, or share
⊗ - Contacts callerid, heytell
� - Contacts quickmark

DeviceData: Can’t access bookmarks, SMS messages, calendar reminders, or other device data
� - Bookmarks skyfire
⊗ - SMS sqd
� - Calendar tvguide

‘-’: no side effect, ‘�’: application less functional, ‘⊗’: primary application functionality breaks.

Table 7: The types of application functionality that were impacted by AppFence’s privacy controls. The symbols in the shadowing
(Sh) and exfiltration blocking (EB) columns indicate the severity of the side effects observed when privacy controls were applied
to the given data types. Applications may be listed multiple times if they exhibited side effects for multiple functionalities or for
different data types.

from circumventing exfiltration blocking.

6.1 Determining privacy settings
While a user’s privacy goals can be met by choosing the right

privacy controls, the responsibility for making the correct choice
must fall somewhere. To allow for more informed choices, we en-
vision that AppFence instances could report application behaviors
to a server and that users could report side effects. This data would
reveal how applications use data and whether they will exhibit side
effects if privacy controls are applied. Open problems to achieve
this goal include finding ways to crowdsource the construction of
application profiles while respecting users’ privacy, detecting at-
tempts by application developers to compromise the integrity of
this system to the advantage of their applications, and finding the
right set of choices to present to users based on the data available.

6.2 Hampering evasion
As we discussed in Section 3.3, applications may be able to ex-

ploit limitations of AppFence’s information flow tracking, which
only monitors data flow operations, to circumvent exfiltration
blocking.

Tracking information flow through control dependencies may

broaden the set of data that is marked as tainted and result in false
positives, which would in turn result in the unwarranted blocking
of messages from an application. One promising option is to con-
tinue information flow tracking that is less likely to overtaint, and
simultaneously use a more aggressive tracking that may overtaint.
When AppFence detects a message that is tainted only by the more
aggressive flow tracking it would allow the message. However, it
would also report the event and the conditions that led up to it, to
our servers for further analysis. We would then perform more com-
prehensive offline analysis (e.g. influence analysis [15]) to detect
the cause of the difference between more and less aggressive taint-
ing.

Alas, we cannot prevent applications from exploiting side chan-
nels (e.g., cache latency) to cleanse data of taint and circumvent
exfiltration blocking. As shadowing prevents applications from
ever accessing private data, it may always be the safest way to
protect data from truly malicious applications. Data shadowing
can be extended to offer finer-granularity controls such as shad-
owing location with a nearby but less private place, e.g. the city
center. However, this kind of context-dependent control would re-
quire more configuration, warranting more research to make such
controls practical and useful.

9

7. RELATED WORK
The use of shadow resources dates back at least as far as 1979,

when the chroot operation was introduced to run UNIX pro-
cesses with a virtualized view of the file system hierarchy. Shadow
password files allow system components that once accessed the real
password files to get some of the information in that file without
exposing the password hashes. Honeypots and Honeynets [20, 18,
16] have popularized the use of shadow resources to run malware
while studying its behavior and limiting its potential to do damage.
The prefix honey is frequently used for shadow resources created
for the purpose of attracting an adversary and/or monitoring the
adversary’s behavior.

Felt and Evans propose a data shadowing scheme, called privacy-
by-proxy [8]. Their mechanism is similar to our data shadowing as
it provides a fake placeholder to third-party Facebook applications
rather than the user’s real information but the privacy-by-proxy is
only effective to applications that access the user’s information for
the sole purpose of displaying the exact information back to the
user. A recent paper by Beresford et al. also argues for replacing
sensitive user data with “mock” (shadow) information. They apply
data shadowing for a limited number of data types to 23 applica-
tions selected from those that were previously examined by Enck et
al. using TaintDroid. However, they only tested to determine if
shadowing could be applied to applications without causing them
to crash–they did not measure user-discernable side effects [3].

There is also a wealth of prior work on the use of information-
flow tracking to protect data confidentiality and integrity. Yin et
al.’s Panorama uses dynamic information-flow tracking (DIFT)
to perform offline analysis of data exfiltration by malware [27].
Chow et al.’s TaintBochs [4] uses DIFT to analyze the lifetime of
security-critical data in memory, finding vulnerabilities when appli-
cations free memory containing encryption keys without first delet-
ing them. Wang et al.’s PRECIP [25] tracks sensitive data (e.g.,
clipboard and user keystrokes) in Windows at the system-call level
– tainting system objects – to prevent malicious processes from
gaining access to them. However, it does not track taint propaga-
tion within applications and so the taint is lost when data is copied
between objects. Perhaps most relevant is Vachharajani et al.’s RI-
FLE [24], which enforces security policies at runtime by translat-
ing programs into a custom instruction set architecture enhanced to
track information flow.

Others have have worked to detect potential abuses of permis-
sions and data by Android applications. Enck et al. [7] have de-
veloped a lightweight security checker, called Kirin, that analyzes
manifest files to identify permissions that are dangerous when com-
bined.

Android applications obtain user consent for all the permissions
they will require at the time they are installed [10]. An alterna-
tive approach, to obtain consent for access to a resource at the time
it is requested, is used for certain resources on Apple’s iOS plat-
form (e.g. location [2]). Requiring consent at time of access gives
users more granular control over the time at which applications can
access sensitive resources, and likely reduces the success rate of
ultimatums. It does so at a cost of more frequent user interruptions.
The Android team argues that the usability cost of time-of-access
consents work “to the detriment of security” [10]. Regardless of
when permissions are granted, neither the time-of-install nor the
time-of-access consent model can prevent applications from mis-
appropriating them.

We have argued that structuring time-of-installation consents as
ultimatums, requiring users to either accept all permissions or aban-
don installation, gives developers strong and unfair power over
users, especially when compared to our model which allows users

to effectively opt out of granting access to sensitive data. To under-
stand why these ultimatums are so powerful, it is useful to consider
the classic ultimatum game [13, 26] from the field of economics.
Like the ultimatum game, installation consent ultimatums leave no
opportunity for negotiation. Moreover, only the most optimistic
user would believe that her individual behavior would change the
permissions offered by a developer in the future.

8. CONCLUSION
AppFence offers two different approaches for protecting sen-

sitive data from today’s Android applications: shadowing sensi-
tive data and blocking sensitive data from being exfiltrated off
the device. We find that these privacy controls are complemen-
tary: when both privacy controls are available and the appropriate
control can be chosen for each application and data type, all of
the potentially-avoidable side effects in the applications we stud-
ied could be avoided. The only side effects that remain are those
that represent a direct conflict between user-desired functionality
and the privacy requirement that these controls are designed to en-
force: that sensitive data not be allowed to leave the user’s device.
The testing methodology that we have developed for assessing side
effects proves valuable for characterizing the types of application
functionality that may be impacted by privacy controls.

Acknowledgments
We would like to thank Intel Labs for supporting this work, William
Enck for sharing Android application binaries and Byung-Gon
Chun, Peter Gilbert, Daniel Halperin, Patrick Gage Kelley, Robert
Reeder, and Anmol Sheth for providing valuable feedback. This
work was supported by National Science Foundation award CNS-
0917341.

9. REFERENCES
[1] S. T. Amir Efrati and D. Searcey. Mobile-app makers face

U.S. privacy investigation.
http://online.wsj.com/article/
SB10001424052748703806304576242923804770968.
html, Apr. 5, 2011.

[2] Apple Inc. iPhone and iPod touch: Understanding location
services. http://support.apple.com/kb/HT1975,
Oct. 22, 2010.

[3] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan.
MockDroid: Trading privacy for application functionality on
smartphones. In Proceedings of the 12th Workshop on Mobile
Computing Systems and Applications (HotMobile), 2011.

[4] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding data lifetime via whole
system simulation. In USENIX Security Symposium, 2004.

[5] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS:
Detecting privacy leaks in iOS applications. In NDSS, 2011.

[6] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In OSDI, 2010.

[7] W. Enck, M. Ongtang, and P. McDaniel. On Lightweight
Mobile Phone Application Certification. In CCS, 2009.

[8] A. Felt and D. Evans. Privacy protection for social
networking apis. In Proceedings of Web 2.0 Security And
Privacy (W2SP), 2008.

[9] Google Inc. Android developers: Content providers.
http://developer.android.com/guide/
topics/providers/content-providers.html.

10

http://online.wsj.com/article/SB10001424052748703806304576242923804770968.html
http://online.wsj.com/article/SB10001424052748703806304576242923804770968.html
http://online.wsj.com/article/SB10001424052748703806304576242923804770968.html
http://support.apple.com/kb/HT1975
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/topics/providers/content-providers.html

[10] Google Inc. Android developers: Security and permissions.
http://developer.android.com/guide/
topics/security/security.html.

[11] Google Inc. Android developers: Using aapt.
http://developer.android.com/guide/
developing/tools/aapt.html.

[12] Google Inc. Android developers: Platform versions.
http://developer.android.com/resources/
dashboard/platform-versions.html, May 2011.

[13] W. Güth, R. Schmittberger, and B. Schwarz. An
experimental analysis of ultimatum bargaining. Journal of
Economic Behavior & Organization, 3, Dec. 1982.

[14] A. Jääskeläinen. Design, Implementation and Use of a Test
Model Library for GUI Testing of Smartphone Applications.
Doctoral dissertation, Tampere University of Technology,
Tampere, Finland, Jan. 2011.

[15] J. Newsome, S. McCamant, and D. Song. Measuring channel
capacity to distinguish undue influence. In Proceedings of
the ACM SIGPLAN Fourth Workshop on Programming
Languages and Analysis for Security, June 15, 2009.

[16] N. Provos. A virtual honeypot framework. In USENIX
Security Symposium, 2004.

[17] E. Smith. iPhone applications & privacy issues: An analysis
of application transmission of iPhone unique device
identifiers (UDIDs). In Technical Report, 2010.

[18] L. Spitzner. Honeypots: Tracking Hackers. Addison-Wesley,
Boston, MA, Sept. 10, 2002.

[19] Tampere University of Technology. Introduction:
Model-based testing and glossary.
http://tema.cs.tut.fi/intro.html.

[20] The Honeynet Project. Know Your Enemy: Revealing the
Security Tools, Tactics, and Motives of the Blackhat
Community. Addison-Wesley, 2001.

[21] S. Thurm and Y. I. Kane. The Journal’s cellphone testing
methodology. The Wall Street Journal. Dec. 18, 2010.
http://online.wsj.com/article/
SB10001424052748704034804576025951767626460.
html.

[22] S. Thurm and Y. I. Kane. Your apps are watching you. The
Wall Street Journal. Dec. 18, 2010.
online.wsj.com/article/
SB10001424052748704694004576020083703574602.
html.

[23] Unknown. android-apktool: Tool for reengineering android
apk files. http:
//code.google.com/p/android-apktool/.

[24] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan,
G. Ottoni, J. A. Blome, G. A. Reis, M. Vachharajani, and
D. I. August. RIFLE: An architectural framework for
user-centric information-flow security. In MICRO, 2004.

[25] X. Wang, Z. Li, N. Li, and J. Y. Choi. PRECIP: Practical and
Retrofittable Confidential Information Protection. In NDSS,
Feb. 2008.

[26] Wikipedia. Ultimatum game. http:
//en.wikipedia.org/wiki/Ultimatum_game.

[27] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: capturing system-wide information flow for
malware detection and analysis. In CCS, 2007.

APPENDIX
A. WHEN APPLICATIONS ARE “LESS FUNC-

TIONAL”
When evaluating the impact of privacy controls on user experi-

ence, we consider certain side effects to render an application “less
functional” when the application is able to perform its primary pur-
pose but cannot perform some secondary function. In this appendix
we explain the precise circumstances that led us to classify appli-
cations as less functional.

device ID (IMEI): We classified as less functional games that
could not load a cross-application high-score profile because
the profile is associated with the true device ID. Additionally,
we classified the iheartradio application as less func-
tional because its searches for nearby radio stations failed due
to the inclusion of the device ID with the search request.

location: We included those applications where location proxim-
ity would have provided enhanced, but not core, functionality.
For example, the npr radio application enhances its primary
service by identifying the user’s local stations, yearbook
offers local chat in addition to its other chat options, and
heytell allows users to optionally include their current lo-
cation along with sent messages. We also included some
applications that could no longer automatically capture the
user’s location, but offered users the option of manually enter-
ing their location (e.g. the apartments apartment-hunting
application). Finally, the papertoss application became
less functional when its high-score profile failed to load be-
cause it sends the user’s location along with the request.

contacts: We included one chat application, mocospace, that
could no longer add users’ local contacts to the server-side
chat contacts database. We also classified as less functional
a barcode scanning application, quickmark, that offers the
ability to send a bar code image to someone in the contacts
book, but was not be able to do so if contacts were protected
by our privacy controls.

bookmarks: We included a browser, skyfire, that could still
browse the web but was not be able to read or save bookmarks
if they were protected.

calendar: We classified as less functional the tvguide appli-
cation that cannot add reminders to the user’s calendar if the
calendar has been replaced by a shadow calendar.

11

http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/developing/tools/aapt.html
http://developer.android.com/guide/developing/tools/aapt.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://tema.cs.tut.fi/intro.html
http://online.wsj.com/article/SB10001424052748704034804576025951767626460.html
http://online.wsj.com/article/SB10001424052748704034804576025951767626460.html
http://online.wsj.com/article/SB10001424052748704034804576025951767626460.html
online.wsj.com/article/SB10001424052748704694004576020083703574602.html
online.wsj.com/article/SB10001424052748704694004576020083703574602.html
online.wsj.com/article/SB10001424052748704694004576020083703574602.html
http://code.google.com/p/android-apktool/
http://code.google.com/p/android-apktool/
http://en.wikipedia.org/wiki/Ultimatum_game
http://en.wikipedia.org/wiki/Ultimatum_game

B. APPLICATIONS SCRIPTED FOR AUTOMATED TESTING
application package name
1 antivirus com.antivirus

2 apartments com.cellit.forrent

3 assistant com.netgate

4 astrid com.timsu.astrid

5 autorun com.rs.autorun

6 avril com.ringtone.avrillavigne

7 basketball com.droidhen.basketball

8 bible com.faithcomesbyhearing.android.bibleis

9 callerid net.bsdtelecom.calleridfaker

10 christmas com.maxdroid.christmas

11 chuck_norris com.bakes.chucknorrisfacts

12 compass com.a0soft.gphone.aCompass

13 dex com.mportal.dexknows.ui

14 dilbert com.tarsin.android.dilbert

15 docstogo com.dataviz.docstogo

16 droidjump com.electricsheep.edj

17 espn com.espnsport

18 flightview com.flightview.flightview_free

19 fmlife fmlife.activities

20 heytell com.heytell

21 howtotie com.artelplus.howtotie

22 iheartradio com.clearchannel.iheartradio.controller2

23 kayak com.kayak.android

24 manga com.ceen.mangaviewer

25 mario de.joergjahnke.mario.android.free

26 minesweeper artfulbits.aiMinesweeper

27 mocospace com.jnj.mocospace.android

28 moron com.distinctdev.tmtlite

29 mp3_ringtone net.lucky.star.mrtm

30 musicbox com.dreamstep.musicbox

31 npr org.npr.android.news

32 papertoss com.bfs.papertoss

33 princesses com.socialin.android.puzzle.princess

34 quickmark tw.com.quickmark

35 simon com.neilneil.android.games.simonclassic

36 simpsons us.sourcio.android.puzzle.simpson

37 skyfire com.skyfire.browser

38 slotmachine com.slot.slotmachine

39 smarttactoe com.dynamix.mobile.SmartTacToe

40 smiley_pops com.boolbalabs.smileypops

41 sqd com.superdroid.sqd

42 starbucks com.brennasoft.findastarbucks

43 taskos com.taskos

44 trism com.feasy.tris2.colorblocks

45 tunewiki com.tunewiki.lyricplayer.android

46 tvguide com.roundbox.android.tvguide.presentation.activity

47 videopoker com.infimosoft.videopoker

48 wnypages com.avantar.wny

49 yearbook com.myyearbook.m

50 yellowpages com.avantar.yp

12

