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Abstract

We consider the multi-period pricing problem of a service firm facing time-varying
capacity levels. Customers are assumed to be fully strategic with respect to their
purchasing decisions, and heterogeneous with respect to their valuations, and arrival-
departure periods. The firm’s objective is to set a sequence of prices that maximizes its
revenue while guaranteeing service to all paying customers. Although the correspond-
ing optimization problem is non-convex, we provide a polynomial-time algorithm that
computes the optimal sequence of prices. We show that due to the presence of strategic
customers, available service capacity at a time period may bind the price offered at
another time period. Consequently, when customers are more patient for service, the
firm offers higher prices. This leads to the underutilization of capacity, lower revenues,
and reduced customer welfare. Variants of the pricing algorithm we propose can be
used in more general settings, such as a robust optimization formulation of the pricing
problem.

1 Introduction

Dynamic pricing is one of the key tools available to a service firm trying to match time-
varying supply with time-varying demand. It is, however, a delicate tool to use in the
presence of customers who strategically time their purchases. As customers change timing
of their purchases, not only the firm might lose revenue, but also its service capacity might
be strained in periods where a low price is offered.

We consider the multi-period pricing problem of a service firm that wishes to provide
service guarantees to its customers. That is, the firm wants to set its prices in order to
maximize the revenue it obtains, while ensuring that any customer willing to pay the price
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at a given time period will be able to obtain service. Service guarantees are an important
contract feature that are often used when the customers themselves are businesses that rely
on the service they purchase for their own operations.

An example of a market of growing importance where firms set prices over multiple
periods in order to maximize profits while providing service guarantees is the business of
offering online services, such as cloud computing, where a firm sells computation-on-demand
to its customers. The firm’s service capacity varies over time depending on the availability of
its servers and network. The demand for service also changes over time and customers differ
in their willingness-to-wait. Some of the customers are impatient and demand real-time
service: they might use, for example, the cloud to run their website. Other customers use
the cloud to solve large-scale optimization problems such as the ones that arise in financial
analysis or weather forecasting, so they are willing to tolerate delays in obtaining service in
exchange for a lower price.

In the market for online business services, customers typically demand reliable service and
do not tolerate rationing. That is, customers expect to be able to buy service whenever they
need it and it is the firm’s responsibility to set prices which ensure that all service requests
can be accommodated with the limited service capacity. Note the contrast to settings such
as traditional retailing, where customers are exposed to rationing risk. In a traditional
retail setting, strategic customers consider the risk of stock-out, and this incentivizes them
to purchase the good earlier. This rationing risk mitigates the effect of strategic customer
behavior on the firm’s ability to set its own prices. In our setting, the firm’s need to offer
service guarantees places the entire burden of matching supply and demand over time on
the firm.

1.1 Our Framework

We consider a monopolist that offers service to customers over a finite horizon. The firm
faces a (possibly time-varying) capacity constraint at each time period. The firm’s objective
is to implement a posted pricing scheme in order to maximize its revenue. At time zero, the
monopolist declares (and commits to) a sequence of prices for its service, one for each time
period. Given those pre-announced prices, customers decide whether and when to purchase
service. The firm needs to solve the constrained optimization problem of determining the
prices that maximize revenue while still fulfilling all customer purchase requests.

Each customer is assumed to be infinitesimal and demand a (also infinitesimal) single
unit of service. The valuation of a given customer for a unit of service is drawn from a
known distribution. She is also associated with an arrival and a departure time. The arrival
time corresponds to the time she enters the system and the departure time represents her
deadline for obtaining service. All customers are fully strategic about whether and when
they purchase service from the firm. That is, each customer either refuses to buy service (if
her valuation is below any of the prices offered while she is present) or buys service at the
period when it is offered at the lowest price among all the periods in which she is present –
if two periods have the same low price, she prefers the earlier one.

We first consider a setting where the monopolist knows the total number of customers
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that arrive at each given time period, as well as their departure periods. This is a justified
assumption when the number of customers is large and fairly predictable, such as in the
market for cloud computing. The monopolist uses this information to determine the sequence
of prices for the entire time horizon. Note that this modeling choice allows us to study
the impact of strategic customers, and time-varying demand and capacity on the optimal
sequence of prices but it deliberately removes the element of uncertainty from the model.
Interestingly, even the solution of this baseline model is far from trivial. For instance, the
set of feasible solutions is not closed; hence, the optimal solution may not exist. Moreover,
this feasible set is non-convex. This means no off-the-shelf software can be used to solve this
problem efficiently. These challenges reveal the difficult problem faced by a firm who serves
strategic customers and offers service guarantees.

We then consider a robust optimization framework (cf. Ben-Tal and Nemirovski (2002),
Bertsimas and Thiele (2006)), where there is uncertainty about the firm’s capacity and the
size of the customer population at any given period, but it is known that these parameters
belong to given sets. In this setting, the firm tries to maximize revenues, while ensuring
that the capacity constraints are not violated, for any realization of demand and capacities.
Finally, we extend the model to a stochastic setting where the seller knows the distribution
of the uncertain parameters. We investigate, the pricing rule the firm should use for expected
revenue maximization. Both in the robust optimization setting and the stochastic setting,
the optimal pricing rule turns out to be closely related to the one obtained for our baseline
model.

1.2 Contributions

We offer a few different sets of results. We first characterize the structure of the optimal
prices used by the firm. Then, we use this characterization to construct a polynomial-time
algorithm to determine those prices. We also extend the model and algorithm to situations
where there is uncertainty about the problem parameters, and the firm is interested in
maximizing the worst-case revenue or the expected revenue. Finally, we use our algorithm
to find optimal prices for randomly generated problem instances and use the numerical results
we obtain to derive insights about the impact of customer patience on revenue and customer
welfare.

We start with the setting where capacity levels and the mass of customers arriving and
leaving at each period are known to the firm. We first observe that due to the presence of
strategic customers, the set of feasible price vectors is non-convex. We consider the problem
of maximizing revenue subject to feasibility constraints on prices. The set of feasible prices
need not be closed, and the optimal solution to this problem may not even exist. We
circumvent this issue by reformulating the original optimization problem. In particular, we
consider a formulation, where the firm maximizes its revenue by jointly choosing prices and a
ranking of prices, and show that this problem is guaranteed to have an optimal solution. We
then characterize several structural properties of the optimal sequence of prices. We establish
that, under a standard assumption on the distribution of the customer valuations, the firm
should only consider prices that are equal to or above the monopoly price (which is the price
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that maximizes the revenue in the absence of capacity constraints). The rationale is that
the firm, as a monopolist, would prefer to set all prices at the monopoly price, but is unable
to do so because of the capacity constraints. In order to satisfy the capacity constraints, the
firm offers prices above the monopoly price thus decreasing demand.

We also show that at any optimal solution, all prices that are not equal to the monopoly
price are determined by the capacity constraints. However, the price at a given time period
may be constrained by the capacity constraint at another period, since customers can con-
sider different periods in search for a better price. This implies that if the price in a given
period is constrained by the capacity in a different period, then the prices offered in these
two periods are identical.

We construct a set of prices, of polynomial size in time horizon, exploiting the above
observation. This set contains all the prices that might be used in an optimal sequence of
prices. Using this set of prices, we convert the problem of finding optimal prices to a dynamic
program, which can be solved in time polynomial in the length of the horizon.

We then relax the assumption that we have full information regarding the capacity levels
and the arrivals and departures of customers. We study the model from a robust optimization
perspective and show that the results from our baseline model carry over, and a polynomial
time algorithm for finding optimal prices can be provided, when the mass of customers and
the capacity levels are only known to belong to given sets. We also quantify the revenue loss
due to the uncertainty in the problem parameters, and show that if the uncertainty sets are
small in size, then our approach still yields a near optimal solution to the underlying revenue
maximization problem.

We also extend the model to incorporate soft capacity constraints (i.e., penalties for
exceeding available capacity) and stochastic arrivals and departures. In the extended model,
our earlier characterization of the set of optimal prices no longer holds, but following a
similar approach, we provide a fully polynomial-time approximation scheme to find the
optimal sequence of prices.

Finally, we conduct numerical studies using our algorithm, and obtain further insights on
the effect of strategic customers and service guarantees on both the firm and its customers.
We consider a setting where all the capacity levels and mass of customers arriving and
departing at each period are generated randomly. We show that despite the high volatility
in the available capacity, the number of price levels that optimal pricing policy employs is
small. For instance, in a 24-period model, the optimal price sequence includes 4 different
price levels on average. This shows that even in complex multi-period settings, the customers’
strategic behavior severely constrains the firms choice of price sequence. We also observe
that if patient customers can wait longer for service, both the revenue of the firm and the
aggregate customer welfare may decrease. This occurs because the firm is forced to use
higher prices to maintain its service guarantees, and consequently the service capacity is
underutilized. Thus we conclude that, in a phenomenon similar to Braess’s paradox (Başar
and Olsder (1999)), when customers have additional freedom in choosing the time period
they purchase service, the overall performance of the system may decrease.
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1.3 Related Work

In this section, we present a brief overview of the literature on pricing mechanisms in the
presence of customers who strategically time their purchases and discuss how the results in
the literature relate to ours. There is also an extensive literature on dynamic pricing with
myopic customers (see, for example, Lazear (1986), Wang (1993), Gallego and Ryzin (1994),
Feng and Gallego (1995), Bitran and Mondschein (1997), Federgruen and Heching (1999)).
We do not provide a summary of this line of literature here, but refer the reader to excellent
surveys by Talluri and Ryzin (2004), Bitran and Caldentey (2003), Chan et al. (2004), Shen
and Su (2007), and Aviv et al. (2009).

The study of monopoly pricing in the presence of strategic customers was pioneered by
Coase (1972). Coase conjectured that in a setting in which a monopolist sells a durable
good to patient customers, if the monopolist cannot commit to a sequence of posted prices,
then the prices would converge to the production cost. Later, Stokey (1979, 1981), Gul
et al. (1986) and Besanko and Winston (1990) showed that a decreasing sequence of prices
is optimal for selling durable goods when customers face the trade-off of consuming right
away versus the possibility of purchasing at the lower prices in the future. They observe
that customers with high valuations buy in earlier periods and pay higher prices compared
to the low valuation customers.

In the context of revenue management, Aviv and Pazgal (2008) study a model where
a monopolist sells k items over a finite time horizon, to customers arriving according to a
Poisson process. At a specific time, the seller can reduce the price and sell the items with
a discount. The goal of the seller is to optimally choose the discount price. The authors
consider two classes of strategies: contingent posted-pricing where the discount may depend
on the remaining inventory (before the discounting period begins) and pre-announced posted
pricing (in which the seller commits to the amount of discount at the beginning). They
observe that commitment (pre-announced discount) can benefit the seller when customers
are strategic. Also, ignoring the strategic customer behavior can lead to significant loss of
revenue. Mersereau and Zhang (2010) propose a technique that counteract this phenomenon
by taking a robust approach to strategic customer behavior.

Elmaghraby et al. (2008) and Dasu and Tong (2010) extend the analysis of Aviv and
Pazgal (2008) to a setting where the seller can reduce the prices multiple times. After each
price reduction, the buyers bid for the quantity of units given the current price. The seller
will randomly allocate the units if there is more supply than demand. The authors show
that although the seller can use multiple price reductions, a markdown mechanism with two
price steps is optimal when the valuations of the buyers are known in advance. Dasu and
Tong (2010) provide numerical examples showing that neither contingent nor posted pricing
is dominant, when the vlauations are uncertain. Nevertheless, the difference in the revenues
obtained under these schemes is small; see also Arnold and Lippman (2001) and Cachon and
Feldman (2010).

The aforementioned works on strategic customer behavior consider only markdown pric-
ing. Su (2007) shows that if the customers are heterogenous regarding their time sensitivity,
then the optimal sequence of posted prices might be increasing. In his model, each customer
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has either high or low valuations and is either patient (strategic) or impatient (myopic).
The inventory is fixed at the beginning of the time horizon and customers arrive according
to a deterministic flow over time. The author shows that when high-value customers are
proportionately patient, then increasing prices are optimal. In addition, the author shows
that the revenue of the seller may increase due to the strategic behavior of the customers
compared to the revenue of a setting when all customers are impatient (myopic).

Levin et al. (2010) study a dynamic pricing model for a monopolist selling an initial
inventory over a finite horizon. They model the “degree of strategic behavior” of each
customer by associated different discount factors (e.g., when the discount factor is 0, the
customer becomes myopic). The authors look at the subgame perfect equilibrium of the
stochastic game defined by the strategic response of the customers to the prices posted
dynamically by the seller. The authors show the existence and uniqueness of the equilibria
and provide monotonicity properties and analytical solutions under certain assumptions
(such as bounded rationality).

Two interesting papers that deal with product availability and pricing with strategic
customers are Su and Zhang (2009) and van Ryzin and Liu (2008). Su and Zhang (2009)
finds that sellers have an incentive to over-insure consumers against the risk of stockouts,
showing that providing service guarantees are possibly in the firm’s interest. van Ryzin
and Liu (2008) show that, in the absence of commitment power, the firm might want to
strategically reduce its available capacity in order to create rationing risk for its customers.

An altogether different approach to this problem is the one taken by the dynamic mech-
anism design literature. There, the firm offers a direct mechanism that allocates its service
as a function of customers reports of their private valuations, entry and departure periods.
See Bergemann and Said (2011) for a survey. Solving for optimal mechanisms is generally
a challenging problem that often leads to complex mechanisms that are difficult to imple-
ment. The paper closest to this one within this literature is Pai and Vohra (2009), where
strategic customers arrive and depart over time. The allocation problem studied in that
paper is quite dissimilar to the one presented here and the assumptions they introduce to
find optimal mechanisms do not apply to our problem.

The model we consider here differs from most papers in the literature in at least four key
aspects: in our model, the firm guarantees service to all paying customers and, therefore,
the customers do not face rationing risk. Second, the firm is able commit to a sequence of
prices upfront and, thus, is not subject to the challenges first pointed out by Coase (1972).
Third, instead of having a fixed inventory at time 0, in our model, the firm has a time-varying
service capacity, which is non-storable; namely, if the firm doesn’t use the capacity in a given
period then it is wasted. Hence, strategic behavior of the customers has the potential to
increase the utilization of the firm’s capacity. Finally, in the previous work, the customers
are either present from the beginning of the time horizon, or arrive over time but remain till
the end (or after they make a purchase). In our model, buyers arrive over time and they
leave the system at different times.
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1.4 Organization

We formalize the model in Section 2. In Section 3, we show that the optimal solution of the
aforementioned model may not exist and present a reformulation of the original optimization
problem to address this. The structural properties of the optimal prices are discussed in
Section 4 followed by a polynomial time algorithm for computing to optimal sequence of
prices in Section 5. In Section 6, we study our model from a robust optimization perspective.
Further generalization of our model, including stochastic arrival and capacity processes, are
presented in Section 7. We discuss insights obtained from numerical analysis of the model
in Section 8.

2 Model

In this section, we formulate the revenue maximization problem of a monopolist providing
guaranteed service. The firm sets a vector of prices over a finite horizon t = 1, .., T . The
prices, denoted by p = (p1, ..., pT ), are announced upfront, one price for each period t.
Customers arrive and depart over time and are infinitesimal. We denote the population
of customers that arrive at period i and depart at period j by ai,j. With slight abuse of
notation, we also represent the mass of the population that arrives at period i and departs
at period j by ai,j.

Each customer wants one unit of service from which she obtains a (non-negative) value,
and customers are strategic with respect to timing of their purchases. Given the vector of
prices p, a customer from population ai,j, with value v for the service, purchases the service
at a time period with the lowest price between times i and j, if her value is larger than the
lowest price, i.e., if v ≥ min`:i≤`≤j{p`}. If there is more than one period with the lowest price
in {i, · · · , j}, the customer chooses the earliest period (with the minimum price) to obtain
the service.1

Given a price vector p, we can assign to each population ai,j, a service period, denoted
by πi,j(p). This period has the lowest price among periods in {i, · · · , j} and is the earliest
one (in {i, · · · , j}) with this price. Each member of population ai,j considers purchasing
service at time πi,j and will purchase service if her value exceeds the price at that period.
We call the mass of customers that, given prices p, consider obtaining service at period t as
the potential demand at time t, and denote it by ρ̄t(p). Formally, the potential demand is
given by

ρ̄t(p) =
∑

i,j:1≤i≤t≤j≤T

ai,j1{t = πi,j(p)}, (1)

where 1 is an indicator function.
Each customer assigns a non-negative value for obtaining service. The fraction of cus-

tomers with value below v is given by F (v). For simplicity of presentation, we assume that
F is a continuous function and v ∈ [0, 1] for all customers. We also assume that customer
valuations are independent of their arrival and departure periods, an assumption that we

1 Our results hold for any other deterministic tie-breaking rule.
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relax in Section 7. Hence, given price vector p, the demand at time t, denoted by D̄t(p), is
equal to

D̄t(p) = (1− F (pt))ρ̄t(p).

The firm’s objective is to maximize its revenue, which is given by
∑T

t=1 ptD̄t(p). However,
the firm is constrained by a service capacity level of ct, for each t ∈ {1, ..., T}. The firm
provides service guarantees to its customers, so it must set prices that ensure that the demand
D̄t(p) does not violate the capacity ct at any period t. Thus, the firm’s decision problem is
given by:

sup
p≥0

T∑
t=1

ptD̄t(p)

s.t. D̄t(p) ≤ ct, for all t ∈ {1, ..., T},
(OPT-1)

where p ≥ 0 is a short-hand notation for pt ≥ 0 for all t ∈ {1, ..., T}. The above problem
searches for the supremum of the objective function instead of the maximum, since the
maximum of OPT-1 does not always exist. We demonstrate non-existence of an optimal
solution in Section 3, where we also present our technique for handling this issue.

If there were no capacity constraints, the firm could use a single price p at all periods
to maximize its revenue2, and this would result in a revenue equal to p(1− F (p))

∑
i≤j ai,j.

Since
∑

i≤j ai,j is a constant, we call p(1 − F (p)) the uncapacitated revenue function. We
make the following regularity assumption to simplify our analysis.

Assumption 1 The uncapacitated revenue function p(1 − F (p)) is unimodal. That is,
there exists some monopoly price pM such that p(1−F (p)) is increasing for all p < pM and
decreasing for all p > pM .

Note that this assumption implies that pM maximizes p(1− F (p)), and it is satisfied for
a wide range of distributions, including the uniform, normal, log-normal, and exponential
distributions.

We now show, by the means of an example, that the set of feasible prices of OPT-1 is
non-convex.

Example 1 Let the time horizon be T = 3 and assume that a single unit-mass of customers
with uniform valuations in [0, 1], arrive at period 1 and depart at period 3. Assume that
c2 = 0, and c1, c3 = 1. Then the price vectors (0, 0.1, 1) and (1, 0.1, 0) are both feasible.
However, the average of these two price vectors, (0.5, 0.1, 0.5), is infeasible since all customers
with valuation above 0.1 seek service at period 2, violating the service capacity c2 = 0.
Therefore, the set of feasible prices of OPT-1 is non-convex.

The above example illustrates that OPT-1 is a non-convex optimization problem, and
we cannot hope to solve it using off-the-shelf optimization tools. We show in Section 5
that despite being non-convex, there exists a polynomial-time algorithm that solves this
optimization problem. The construction of this algorithm relies on the structural properties
of this pricing problem that are explored in Sections 3 and 4.

2Since customer valuations are independent of arrival and departure periods, it can be seen from OPT-1
that if there are no capacity constraints, setting pt = arg maxp p(1− F (p)) for all t maximizes revenue.
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3 Optimizing over Prices and Rankings

In this section, we show that there does not always exist a feasible solution achieving the
supremum in the firm’s optimization problem. To address this issue, we construct a closely
related optimization problem where the firm tries to maximize not only over prices, but
also over rankings of the prices. We show that this optimization problem always admits
an optimal solution which can be used to obtain feasible solutions arbitrarily close to the
supremum of the original problem.

We start with an example that shows that the supremum of OPT-1 may not be achieved
by a feasible price vector. The main idea is that since the customers always seek the lowest
price available, the potential demand function ρ̄t is a discontinuous function of p; thus, the
feasible set of OPT-1 is open.

Example 2 Consider a two-period model with customer valuations drawn uniformly from
[0, 1], capacity levels c1 = 1

2
and c2 = ∞, and customer populations a1,1 = a1,2 = 1 (and

a2,2 = 0). Observe that solutions of the form (p1, p2) = (1
2
, 1
2
− ε) are feasible for any ε > 0:

the members of population a1,1 with value above 1
2

obtain service at time 1 and the members
of population a1,2 with value above 1

2
− ε are served at time 2. Hence, (p1, p2) = (1

2
, 1
2
− ε)

yields the revenue of 1
2
× 1

2
+(1

2
−ε)×(1

2
+ε) = 1

2
−ε2. The revenue is decreasing in ε and as ε

tends to 0 the revenue approaches 1
2
. The uncapacitated problem provides an upper bound on

the revenue obtained, which is 1
2
. Therefore, the supremum of OPT-1 is equal to 1

2
. However,

(p1, p2) = (1
2
, 1
2
) is not a feasible solution, because under this price vector, both populations

will choose the first period for service, and this violates the capacity constraints. Therefore,
the feasible set of price vectors is open and the supremum of OPT-1 is not achieved by a
feasible price vector.

The non-existence of an optimal solution can be addressed by finding (feasible) solutions
that are arbitrarily close to the (infeasible) supremum. In the remainder of this section, we
introduce the notion of rankings and an alternative optimization formulation which allow
us to obtain such solutions for OPT-1 (or the optimal solution itself in instances where the
optimum is feasible).

We refer to permutations of {1, · · · , T} as rankings. We use the notation Rt to denote
the rank of time period t under ranking R. We say that a ranking R is consistent with a
price vector p if periods with lower rank have lower prices. More precisely, R is consistent
with p if for all t and t′, Rt < Rt′ implies that pt ≤ pt′ .

We define the customer-preferred ranking, denoted by RC(p), as a ranking consistent
with p, such that when there are multiple periods with the same price, the earlier periods
are ranked lower. Namely, if pt = p′t and t < t′ then Rt < Rt′ . It can be seen from the
definition of service period πi,j(p) (introduced in Section 2) that in OPT-1 for a given price
vector p, each population ai,j chooses the time period between i and j, with the lowest
customer-preferred ranking to (potentially) receive service. Hence potential demand ρ̄t can
be expressed as a function of this ranking.
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More formally, for any period t and ranking of prices R we define the R-induced potential
demand, denoted by ρt(R), as:

ρt(R) =
∑
i≤j

ai,j1

{
Rt = min

k:i≤k≤j
{Rk}

}
. (2)

Similarly, the R-induced demand, denoted by Dt(pt, R), is defined as

Dt(pt, R) = (1− F (pt))ρt(R). (3)

It follows from Eq. (1), Eq. (2) and the definition of customer-preferred ranking that for
any price vector p and customer-preferred ranking RC(p), we have ρt(R

C(p)) = ρ̄t(p) and
Dt(pt, R

C(p)) = D̄t(p). That is, it is possible to express demand (D̄t) in terms of the
R-induced demand function (Dt) and customer-preferred ranking (RC).

Suppose that in OPT-1 the firm could select not only the vector of prices p, but also
any ranking R consistent with p (potentially different than the customer-preferred ranking),
and customers decided when to obtain service according to this ranking, i.e., each customer
chooses the period with the lowest ranking between her arrival and departure time. Then,
the demand at any period is given by Dt(pt, R), and the corresponding revenue maximization
problem can be formulated as:

max
p≥0,R∈P(T )

T∑
t=1

ptDt(pt, R)

s.t. Dt(pt, R) ≤ ct for all t ∈ {1, ..., T}
Rt < Rt′ ⇒ pt ≤ pt′ for all t, t′ ∈ {1, ..., T},

(OPT-2)

where P(T ) is the set of all possible rankings of {1, ..., T}. Despite the fact that this problem
is different from OPT-1, the solutions of these problems are closely related, as we explain
next.

Since Dt(pt, R
C(p)) = D̄t(p), it follows that any feasible solution p of OPT-1 corresponds

to a feasible solution of OPT-2 given by (p, RC(p)), and these solutions lead to same objective
values. Additionally, it can be seen from Eq. (1) and Eq. (2) that for a given price vector
p, and any ranking R consistent with p the (potential) demand levels in OPT-1 and OPT-2
are equal except for periods where the price is equal to the price offered at another period.
Intuitively, unlike OPT-1, in OPT-2 the firm can choose how the customers collectively break
ties between time periods with equal price, by choosing the ranking R properly, and this
may lead to a difference in demand levels only at such time periods. These observations can
be used to show that OPT-2 always has an optimal solution, and this solution can be used
to construct a solution of OPT-1 that is arbitrarily close to the supremum.

Lemma 1 The following claims hold:

1. The problem OPT-2 admits an optimal solution (p?, R?).
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2. Let (p?, R?) be an optimal solution of OPT-2. For any ε > 0, the price vector p?+ εR?

is a feasible solution of OPT-1 and the revenue it obtains converges to the supremum
of OPT-1 as ε tends to 0.

3. If p is an optimal solution of OPT-1, then (p, RC(p)) is an optimal solution of OPT-2.

The proof is given in the appendix. The idea behind this lemma is that the projection
of the set of feasible solutions of OPT-2 onto the set of prices is the closure of the feasible
set of OPT-1. Therefore, the optimal prices generated by OPT-2 can be perturbed in a way
that maintains the ranking of prices, leading to a solution of OPT-1 that is arbitrarily close
to the supremum. In the rest of the paper, we focus on the solution of OPT-2, keeping in
mind that an optimal solution (or a solution arbitrarily close to optimal, if optimal solution
does not exist) of OPT-1 with (almost) same prices can be constructed using this solution.

4 Structure of the Optimal Prices

In this section, we explore the structure of optimal prices in OPT-2. We first show that
at all periods the monopolist has incentive to keep prices higher than the monopoly price
pM . Then, we use this observation to study the optimality conditions in OPT-2. Exploiting
these conditions, we construct a set of prices which contains all the possible candidate optimal
prices. We show that the cardinality of this set is polynomial in the time horizon T , a result
we later use in Section 5 to obtain a polynomial time algorithm to solve OPT-2. Proofs of
the results presented in this section can be found in the appendix.

To gain some intuition, we first consider the optimal solution in a single period setting.
By Assumption 1, choosing any price p < pM is suboptimal, and the firm has incentive to
increase its price to pM . If setting the price equal to pM violates the capacity constraints,
then the firm increases its price to the minimum price that respects the capacity constrain.
Since customers’ values are bounded by 1, such a price exists. Thus, it follows that an
optimal price in [pM , 1] can be found. The following proposition shows that this intuition
extends to multi-period settings.

Proposition 1 There exists an optimal solution (p, R) of OPT-2 such that pM ≤ pt ≤ 1
for all t ∈ {1, . . . , T}.

To prove this result, we assume that a solution where pt < pM for some t, is given, and we
raise prices that are below the monopoly price pM in a way that maintains the ranking of
the prices. This ensures that as the prices increase to pM , the revenue increases, while the
demand decreases. Thus, it is possible to obtain a feasible solution that (weakly) improves
revenues and satisfies pt ≥ pM .

Note that conditioned on prices being above the monopoly price pM , by the assumption
of unimodality of the uncapacitated revenue function, the incentives of the firm and the
customers are aligned: both the firm and the customers prefer lower prices over higher ones.
The firm never raises prices to obtain more revenue, only to satisfy capacity constraints.
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We next provide a further characterization of the prices that are used at an optimal
solution of OPT-2. This characterization significantly narrows down the set of prices that
needs to be considered to find an optimal solution.

Proposition 2 There exists an optimal solution (p, R) of the optimization problem OPT-2
such that for each period t one of the following is true:

1. pt = pM ,

2. pt = 1,

3. pt = pt̂ for some t̂, such that ct̂ = Dt̂(pt̂, R) and pt̂ ∈ [pM , 1].

The proof of this proposition follows by showing that unless the conditions of the propo-
sition hold, the monopolist can modify the prices in a way that increases its profits, while
maintaining the feasibility of capacity constraints. The third condition of the proposition
suggests that the price at time t is either such that the capacity constraint at time t is tight,
or this price is equal to the price offered at another time period, and the capacity constraint
at this other time period is tight. Hence, due to the presence of strategic customers, capacity
constraints at one period may bind the prices at another period, but this requires the prices
to be identical at these two periods.

This proposition implies that for an optimal solution (p, R) of OPT-2, each entry of the
price vector p either belongs to {pM , 1} or is above pM and satisfies the equation

ct̂ = Dt̂(p,R) = ρt̂(R)(1− F (p)), (4)

for some time period t̂. However, to characterize the set of all prices that may appear at
an optimal solution, we still need to consider all possible rankings. Although there are T !
possible rankings R, there are a significantly smaller number of prices that satisfy equations
of the form Eq. (4). In order to formalize this idea, we introduce the notion of attraction
range, which is a representation of all the populations that choose the same period for service.

Definition 1 (Attraction Range) For a given consistent price-ranking pair (p, R) the at-
traction range of a time period k is defined as the largest interval {t, ..., t} ⊆ {1, ..., T}
containing k such that Rk = min`∈{t,...,t}R`.

Assume that the attraction range of time period k for a consistent price-ranking pair
(p, R) is {t, ..., t}. Since customers choose the time period with the lowest ranking available
to them when purchasing service, customers who arrive at the system between periods t and
k, and who can wait until time period k, but not until after time period t are exactly the
ones who will seek service at period k. Thus, the attraction range concept can be used to
identify customers who are “attracted” to a particular time period for receiving service (see
Example 3).
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Example 3 (Attraction Range) Consider a problem instance with 6 time periods. As-
sume that a consistent price-ranking pair (p, R) for this problem is given, and the prices at
different time periods are as in Figure 1. Since prices at all time periods are different, there
is a unique ranking R consistent with these prices. The attraction range of time period 4 in
this example is {2, ..., 5}.Thus, customers who arrive between time periods 2 and 4 (inclusive)
and who cannot wait until after time period 5 are the ones who seek service at period 4.

Periods	  

Prices	  

1	   2	   3	   4	   5	   6	  

2	   4	   5	  

Figure 1: Attraction range of period 4 is {2, ..., 5} in this 6 period problem instance. The
height of each arrow is assumed to be proportional to the price at the corresponding period.

This example suggests that attraction ranges can be used to determine R-induced poten-
tial demand ρt(R). Assume that (p, R) is a consistent price-ranking pair, and consider the
attraction range of some time period k ∈ {1, . . . , T}, denoted by {t(k,R), ..., t(k,R)}. As
discussed earlier, customers who arrive at the system between t(k,R) and k (inclusive), and
who can wait until time k but not until after time t(k,R) are the only ones who can request
service at time k. Thus, we obtain that

ρk(R) =
k∑

i=t(k,R)

t(k,R)∑
j=k

aij. (5)

From this equation it follows that ρk(R) can immediately be obtained by specifying the
attraction range of time period k. By considering all the possible attraction ranges {t, . . . , t}
corresponding to time period k we conclude that for any ranking R

ρk(R) ∈

{
k∑
i=t

t∑
j=k

aij

∣∣∣∣∣ t ≤ k ≤ t

}
. (6)

Using this observation, it follows that any p satisfying Eq. (4) for some R and ρk(R) belongs
to the set

Lk ,

{
max

{
pM , F

−1

(
1−

(
ck∑k

i=t

∑t
j=k aij

))}∣∣∣∣∣ ck ≤
k∑
i=t

t∑
j=k

aij, and t ≤ k ≤ t

}
. (7)
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Here the condition ck ≤
∑k

i=t

∑t
j=k aij is present since F−1 is defined over the domain [0, 1].

The maximum with pM is taken to make sure that all the prices in Lk are at least equal to
pM , which follows from Proposition 2. By construction each element of Lk corresponds to an
attraction range {t, . . . , t}. Since there are O(T 2) attraction ranges (there are O(T ) values t
and t can take), the cardinality of Lk is O(T 2). Thus, we reach the following characterization
of optimal prices, which is stated without proof as it immediately follows from Propositions
1 and 2, and the definition of Lk given in Eq. (7).

Proposition 3 Let L be defined as

L ,
(
∪Tk=1Lk

)
∪ {pM} ∪ {1}. (8)

There exists an optimal solution (p, R) of OPT-2, such that pt ∈ L for all t ∈ {1, ..., T}.
Moreover, the cardinality of L is O(T 3).

The above proposition implies that without actually solving OPT-2, it is possible to charac-
terize a superset of the prices that will be used at an optimal solution. Moreover, this set has
polynomially-many elements, and it is sufficient for the monopolist to consider these prices,
when making its pricing decisions. However, finding the vector of optimal prices could still
be a computationally intractable problem even if L has small cardinality. In the next section,
we show that this is not case, and we develop a polynomial-time algorithm that determines
the optimal sequence of prices.

5 A Polynomial Time Algorithm

In this section, we use the characterization of the optimal prices obtained in Section 4 to
design a polynomial time algorithm for computing the optimal sequence of prices.

As shown in Proposition 3, an optimal solution of OPT-2 can be obtained by restricting
attention to set of prices L given in Eq. (8). Thus, an optimal solution to OPT-2 can
be obtained by restricting attention to prices in L, and solving the following optimization
problem:

max
p∈LT ,R∈P(T )

T∑
t=1

ptDt(pt, R)

s.t. Dt(pt, R) ≤ ct for all t ∈ {1, ..., T}
Rt < Rt′ ⇒ pt ≤ pt′ for all t, t′ ∈ {1, ..., T}.

(OPT-3)

We next show that it is possible to find an optimal solution of OPT-3 by recursively solving
problems that are essentially smaller instances of itself.

Consider an optimal solution of OPT-3, denoted by (p?, R?). Suppose time period k has
the lowest ranking, i.e., R?

k = 1. In this case the attraction range of k is {1, ..., T}, and

ρk(R
?) =

∑k
i=1

∑T
j=k aij. Hence, all customers who are present in the system at time k will
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seek service at time k. This implies that only populations ak1,k2 , 1 ≤ k1 ≤ k2 < k can receive
service at time periods {1, . . . , k−1} (similarly, only populations ak1,k2 , k < k1 ≤ k2 ≤ T can
receive service at time periods {k + 1, . . . , T}). Therefore, if the monopolist knows p?k and
that R?

k = 1, it can solve for optimal prices at other time periods, by solving two separate
subproblems for time periods {1, . . . , k − 1} and {k + 1, . . . , T}: maximize the revenue
obtained from time periods {1, . . . , k−1} assuming only populations ak1,k2 are present (with
1 ≤ k1 ≤ k2 < k), and similarly for time periods {k+ 1, . . . , T}. Note that in the solution of
the subproblems we need to impose the condition that prices are weakly larger than p?k, as
otherwise p?l < p?k for some l, and we obtain a contradiction to R?

k = 1.
The above observation suggests that given the time period k with the lowest ranking, the

pricing problem can be decomposed into two smaller pricing problems, where the prices that
can be offered are lower bounded by the price offered at k. We next exploit this observation
and obtain a dynamic programming algorithm for the solution of OPT-3.

Let ω(i, j, p) denote the maximum revenue obtained from an instance of OPT-3 assuming
(i) ak1,k2 = 0 unless i < k1 ≤ k2 < j, (ii) restricting prices to be weakly larger than p. That
is,

ω(i, j, p) = max
p∈LT ,R∈P(T )

j−1∑
t=i+1

ptD
ij
t (pt, R)

s.t. Dij
t (pt, R) ≤ ct for all t ∈ {1, ..., T}

Rt < Rt′ ⇒ pt ≤ pt′ for all t, t′ ∈ {1, ..., T}
pt ≥ p for all t ∈ {1, ..., T},

(9)

where Dij
t is defined similarly to Eq. (3), and denotes the demand at time t, assuming

ak1,k2 = 0 unless i < k1 ≤ k2 < j. Observe that the optimal objective value of OPT-3 is
equal to ω(0, T + 1, 0).

For i + 1 > j − 1, we assume ω(i, j, p) equals to 0. On the other hand, for any i, j such
that i+ 1 ≤ j − 1, we have

ω(i, j, p) = max
k∈{i+1,...,j−1}

{
max

p∈L:p≥p

{
ω(i, k, p) + γijk (p) + ω(k, j, p)

}}
, (10)

where γijk (p) is given by:

γijk (p) =


(

k∑
l=i+1

j−1∑
m=k

alm

)
(1− F (p))p if

(∑k
l=i+1

∑j−1
m=k alm

)
(1− F (p)) ≤ ck

−∞ otherwise.

(11)

In order to see why the recursion in Eq. (10) holds, consider a solution of Eq. (9), and assume
that in this solution k is the time period in {i + 1, . . . , j − 1} with the lowest ranking, and
pk ≥ p is the corresponding price. Then all populations which are present in the system at k

receive service at this time period. The total mass of these populations is
∑k

l=i+1

∑j−1
m=k alm,

since ak1,k2 = 0 unless i < k1 ≤ k2 < j as can be seen from the definition of ω(i, j, p).
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Since at the optimal solution of Eq. (9) the capacity constraints are satisfied, the revenue
obtained from time period k is given by γijk (pk). Since k has the lowest ranking among
{i + 1, . . . , j − 1}, only populations ak1,k2 such that i < k1 ≤ k2 < k can receive service
before time k, and the prices offered at those time periods should be weakly larger than pk.
It follows from the definition of ω that the maximum revenue that can be obtained from
these populations (with prices weakly larger than pk) is given by ω(i, k, pk). Similarly, it
follows that the maximum revenue that can be obtained from time periods after k equals
to ω(k, j, pk). Thus, we conclude that ω(i, j, p) = ω(i, k, pk) + γijk (pk) + ω(k, j, pk). The
recursion in Eq. (10) follows since it searches for time period k with the lowest ranking
and the corresponding price pk that maximizes the objective of Eq. (9). Note that since
γijk (p) = −∞ when a capacity constraint is violated, the solution obtained by solving this
recursion also satisfies the capacity constraints.

Theorem 1 shows that a solution of OPT-2, or equivalently a solution of the alternative
formulation in OPT-3, can be obtained by solving for prices using the dynamic programming
recursion in Eq. (10) and constructing a ranking vector consistent with these prices. The
proof is given in the appendix.

Theorem 1 The optimal solution of OPT-2 can be computed in time O(T 6).

The above theorem suggests that firms that provide service guarantee can effectively
implement optimal pricing policies even in nonstationary environments. In the following
sections, we show that this result extends to other general settings as well.

6 A Robust Optimization Formulation

In this section, we consider a robust optimization formulation of the firm’s pricing problem.
We show that when there is uncertainty about either the service capacity levels or the size
of the customer population, a variant of the algorithm of Section 5 can be used to obtain
a solution that maximizes revenue, while maintaining feasibility for all possible values of
uncertain parameters. Furthermore, we can bound the firm’s worst-case revenue loss as a
function of the uncertainty in the problem parameters. All proofs of this section can be
found in the appendix.

Suppose the firm does not know its service capacity level ct at a given period, but only
knows that it belongs to an interval Ct = [cLt , c

U
t ]. Similarly, the firm does not know the

mass of customers in population ai,j, but instead it knows only that ai,j ∈ Ai,j = [aLi,j, a
U
i,j].

We refer to a collection of population sizes A = {ai,j}1≤i,j≤T as a population matrix, and
represent the set of all possible capacity levels by C =

∏
t Ct and the set of all possible

population matrices by A =
∏

i,j Ai,j. In order to make dependence of the demand (defined
in Eq. (3)) on population size explicit, in this section we denote the demand at period t, when
population matrix is given by A ∈ A, and the firm uses price pt, and ranking R ∈ P(T ), by
Dt(pt, R,A).

The problem of selecting prices and ranking that are feasible for all capacity levels in C
and population matrices in A, and that maximize the worst case revenue, can be formulated
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as follows:

max
p≥0,R∈P(T ),M

M

s.t. M ≤
T∑
t=1

ptDt(pt, R,A) for all A ∈ A

Dt(pt, R,A) ≤ ct for all t, ct ∈ Ct and A ∈ A
Rt < Rt′ ⇒ pt ≤ pt′ for all t, t′ ∈ {1, ..., T},

(OPT-4)

The following lemma shows how to reformulate the robust optimization problem above
into one that is structurally similar to the original problem OPT-2.

Lemma 2 Let AL be the population matrix with elements aLi,j and AU be the population
matrix with elements aUi,j. Then, OPT-4 is equivalent to:

max
p≥0,R∈P(T )

T∑
t=1

ptDt(pt, R,A
L)

s.t. Dt(pt, R,A
U) ≤ cLt for all t ∈ {1, ..., T}

Rt < Rt′ ⇒ pt ≤ pt′ for all t, t′ ∈ {1, ..., T},

(OPT-5)

Note that the OPT-5 is different than OPT-2 in that the population matrices used for
computing revenue, AL, and for determining feasibility, AU , are different. However, the
structural insights about the optimal solution obtained in Section 4 and the polynomial-
time algorithm developed in Section 5 still apply for this problem with minor modifications.

Proposition 4 The optimal solution of OPT-4 can be computed in time O(T 6).

The robust formulation finds a conservative solution that is feasible for all possible values
of uncertain parameters. We next quantify the potential revenue loss due to the uncertainty,
when the solution obtained from this formulation is used for pricing. Assume that a solution
of OPT-4 is obtained using uncertainty sets C and A. Let V ROB(C,A, c, A) denote the
revenue the firm achieves, using this solution, when realized parameter values are c ∈ C and
A ∈ A. If there were no uncertainty in the parameters, i.e., if c and A were known from
the beginning, a solution of OPT-2 could be used for pricing. We denote the revenues that
could be obtained in this setting by V (c, A). The following proposition bounds the decrease
in the revenues when there is uncertainty, and the solution of OPT-4 is used to obtain a
robust pricing rule.

Proposition 5 Suppose cUt ≤ (1 + θ)cLt for all t ∈ {1, ..., T} and aUi,j ≤ (1 + θ)aLi,j for all
i, j ∈ {1, ..., T}. Then,

sup
c∈C,A∈A

(
V (c, A)− V ROB(C,A, c, A)

)
≤ 3θ

∑
i,j

aUi,j.
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This proposition implies that when the uncertainty in the problem parameters is small (i.e.,
when θ is small), the revenue loss is also small, provided that a solution of OPT-4 is used
for pricing. The proposition also suggests that if a nominal version of the problem with
parameters (cNOM , ANOM) is known, and the realized parameters are between 1 − ε and
1 + ε times the nominal ones (i.e., 1 + θ = 1 + ε/1− ε), then the maximum revenue loss due

to uncertainty is equal to 6ε(1+ε)
1−ε

∑
i,j a

NOM
i,j .

7 Extensions and an Approximation Scheme

In this section, we provide extensions of our baseline model, introduced in Section 2, by
allowing for more general objective functions and constraints. Using the general framework
introduced in this section, we obtain solutions to problem instances with

(i) customer valuations that depend on their arrival and departure periods,

(ii) production costs and soft capacity constraints,

(iii) different objective functions such as (weighted) social welfare maximization,

(iv) stochastic arrival and capacity processes and expected utility maximization.

At this level of generality, the results of Section 4 do not hold, and we cannot characterize
a set of prices (with size polynomial in the time horizon) that can appear in an optimal
solution. Thus, in this general setting, we cannot use the techniques developed in the
previous section to compute the optimal sequence of prices in polynomial time. However, we
show that modifying our initial framework, a fully polynomial time approximation scheme
(FPTAS) can be provided for the solution of the general model. The proofs of our results
are presented in the appendix.

We start by introducing an abstract problem that is the focus of this section:

max
p∈[0,1]T ,R∈P(T )

T∑
t=1

gt(pt, R)

s.t. ht(pt, R) ≤ 0 for all t ∈ {1, ..., T}
Rt < Rt′ ⇒ pt ≤ pt′ for all t, t′ ∈ {1, ..., T}.

(OPT-6)

We make the following assumption through out this section:

Assumption 2 For any ranking R and period t, the functions gt(·, R) and ht(·, R) satisfy
the following properties:

1. Each customer prefers the time period with the lowest rank (among those during which
she is present) to (potentially) receive service. Hence, the dependence of functions
gt : R × P(T ) → R and ht : R × P(T ) → R on R is through the attraction range of
time period t. That is, there exist functions ĝ, ĥ such that

gt(pt, R) = ĝt(pt, bt(R), et(R)) and ht(pt, R) = ĥt(pt, bt(R), et(R)) (12)

18



where {bt(R), ..., et(R)}, is the attraction range of time period t, when ranking R is
chosen.

2. ht(pt, R) is decreasing in pt.

3. gt(pt, R) is Lipschitz continuous in pt with parameter lt.

Observe that OPT-2 is a special case of OPT-6, when gt(pt, R) = ptDt(pt, R) and ht(pt, R) =
Dt(pt, R) − ct, assuming that demand Dt(pt, R) is Lipschitz continuous in pt, for a fixed
ranking R.

For a constant ε ∈ (0, 1), consider the set of prices Pε = {kε|k ∈ Z+, kε ≤ 1}, and assume
that we seek a solution to OPT-6 by restricting attention to the prices that belong to this
set, i.e.,

max
p∈PTε ,R∈P(T )

T∑
t=1

gt(pt, R)

s.t. ht(pt, R) ≤ 0 for all t ∈ {1, ..., T}
Rt < Rt′ ⇒ pt ≤ pt′ for all t, t′ ∈ {1, ..., T}.

(OPT-7)

Note that any feasible solution of OPT-7 is feasible in OPT-6. We next show that for small
ε the optimal objective values of these problems are also close. Hence, an optimal solution
of OPT-7 can be used to provide a near-optimal solution of OPT-6.

Lemma 3 Let the optimal solutions of OPT-6 and OPT-7 have objective values v and vε
respectively. Then, vε ≥ v − ε

∑T
t=1 lt.

We next show that a modified version of the algorithm in Section 5 can be used to solve
OPT-7. Our approach is again based on obtaining a solution by recursively solving smaller
instances of the problem. For this purpose, we first define ω̂(i, j, p) to be the maximum
utility that can be obtained assuming only populations ak1,k2 , i < k1 ≤ k2 < j, are present,
and the prices that can be used at periods {t|i < t < j} are (weakly) larger than p. It can
be seen that the optimal value of OPT-7 is equal to ω̂(0, T + 1, 0).

We set ω̂(i, j, p) = 0, for i + 1 > j − 1. Using the same argument given in Section 5
to justify the recursion in Eq. (10), it follows that for i + 1 ≤ j − 1, the following dynamic
programming recursion holds:

ω̂(i, j, p) = max
k∈{i+1,...,j−1}

{
max

p∈Pε:p≥p

{
ω̂(i, k, p) + γ̂ijk (p) + ω̂(k, j, p)

}}
, (13)

where γ̂ijk (p) denotes the utility obtained at time k with price p, from all populations ak1,k2
that can receive service at this period and that satisfy i < k1 ≤ k2 < j. That is γ̂ijk (p) =

ĝk(p, i, j), if ĥk(p, i, j) ≤ 0 and γ̂ijk (p) = −∞ otherwise.
The intuition behind Eq. (13) is similar to the intuition of Eq. (10): in order to find

ω̂(i, j, p), we search for the time period with the lowest rank (maximization over k in
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Eq. (13)), and we search for the best possible price for this time period (maximization
over p). Since all populations which are present at the time period with the lowest ranking
(say k) receive service at this time period, the payoff obtained from this time period can be
given by γ̂ijk (p). We then solve for prices of subproblems for time periods {i+ 1, . . . , k − 1}
and {k+1, . . . , j−1}. Since the time period with the lowest ranking also has the lowest price,
we impose the prices for these subproblems to be weakly larger than p. Thus, the payoffs
of the subproblems are given by ω̂(i, k, p) and ω̂(k, j, p). Hence, we obtain the recursion in
Eq. (13) for computing optimal prices in OPT-7.

In Lemma 4, we use this dynamic program to construct optimal prices and ranking
for the solution of OPT-7, and characterize the computational complexity of the solution.
Note that since we are dealing with general functions gt and ht, our result depends on the
computational complexity of evaluating these functions.

Lemma 4 Assume that for any given t, p, R, computation of gt(p,R) and ht(p,R) takes

O(s(T )) time. An optimal solution of OPT-7 can be found in O
(
T 3s(T )
ε2

)
time.

Lemmas 3 and 4 imply that an approximate solution to OPT-6 can be found in polynomial
time provided that gt(p,R) and ht(p,R) can be evaluated in polynomial time.

Theorem 2 Assume that for any given t, p, R, computation of gt(p,R) and ht(p,R) takes

O(s(T )) time. An ε-optimal solution of OPT-6 can be found in O
(
T 3s(T )
ε2

)
time.

The proof immediately follows from Lemmas 3 and 4 and is omitted. In many of the relevant
cases (such as revenue maximization subject to capacity constraints as introduced in Sections
2 and 3), for given prices and rankings, evaluating constraints and the objective function
(ht and gt) can be completed in O(1) time. In such settings Theorem 2 implies that an
approximate solution can be obtained in O(T 3/ε2) time.

We conclude this section by discussing some important special cases of this general op-
timization framework. We show that an approximate solution to these problems can be
obtained in polynomial time following the approach introduced in this section.

Population-dependent valuations: Here, we relax the assumption made before that
the customers’ valuations are independent of their arrival and departure periods. Let Fi,j(v)
represent the fraction of the ai,j population that values service at most v. We still assume
that all valuations are in [0, 1] and that Fi,j is continuous, but we no longer suppose that
Assumption 1 holds, i.e., the corresponding uncapacitated revenue function need not be
single peaked. Customer demand at period t as a function of price pt and the ranking of
prices R is now given by

Dt(pt, R) =
∑
i≤j

ai,j(1− Fi,j(pt))1{Rt ≤ Rk for all i ≤ k ≤ j}.

By choosing gt(pt, R) = ptDt(pt, R) and ht(pt, R) = Dt(pt, R) − ct, the corresponding
revenue maximization problem is an instance of OPT-6. Note that for a fixed R, denoting
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fi,j(p) = dFi,j(p)/dp, and assuming fi,j is bounded by li,j we conclude∣∣∣∣∂Dt(pt, R)

∂pt

∣∣∣∣ =
∑
i≤j

ai,jfi,j(pt)1{Rt ≤ Rk for all i ≤ k ≤ j} ≤
∑
i≤j

ai,jli,j.

Thus, it follows that when fi,j is bounded for all i, j, Dt(·, R) is Lipschitz continuous. This
implies that gt(·, R) is also Lipschitz continuous, for all t and R. Moreover, ht is decreasing in
pt (since demand is decreasing in pt). Furthermore, for any t, p, R evaluating Dt(pt, R), and
in turn gt(p,R) and ht(p,R) takes O(T 2) time. Thus, Theorem 2 applies and we conclude

that the approximate revenue maximization problem can be solved in O
(
T 5

ε2

)
.

Production costs and soft capacity constraints: We also incorporate productions
costs into the model. We assume that it costs the firm µt(d) to provide service to mass d
of customers at period t. We make the following regularity assumption on the production
costs:

Assumption 3 Assume that for any period t, the production cost µt is a non-negative,
non-decreasing, λ-Lipschitz continuous function.

Besides the cost of producing the service to be delivered, the function µt can also capture
a soft capacity constraint: if c̄t represents a capacity level above which any unit produced
costs µ̄, then we can capture this by setting µt(d) = max{0, µ̄(d − c̄t)}. Even with soft-
capacity constraints, we still assume that the firm provides service guarantees. Whenever
the firm is incapable of providing the purchased service itself, it contracts service delivery
out to a third-party with a unit cost of µ̄.

By letting gt(pt, R) = ptDt(pt, R)−µt(Dt(pt, R)) and ht(pt, R) = Dt(pt, R)−ct, we obtain
an instance of OPT-6. From Assumption 3, it follows that gt(pt, R) is Lipschitz continuous
in pt. Since demand is decreasing with price, we observe that ht(pt, R) decreases with price.
Thus, Theorem 2 applies and since Dt(p,R) (and hence gt(pt, R), ht(pt, R)) can be evaluated
in polynomial time for any given p and R, it follows that an approximate solution of the
problems with production costs and soft capacity constraints can be obtained in polynomial
time.

Weighted welfare maximization: We can also modify the firm’s objective function so
that it cares not only about its own revenue, but also about the welfare obtained by its
customers. Consider a unit mass of customers belonging to population ai,j. If the monopolist
offers the good to this population at price p, the welfare of the customers (CWij) and the
revenue of the firm (REVij) are given by:

CWij(p) =

∫ 1

p

(x− p)fi,j(x)dx,

REVij(p) =

∫ 1

p

pfi,j(x)dx.

(14)
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For any given parameter α ∈ [0, 1], and population ai,j, we define the weighted welfare
function as

wi,j,α(p) , αREVij(p) + (1− α)CWij(p).

=

∫ 1

p

(αp+ (1− α)(x− p))fi,j(x)dx

= (1− α)

∫ 1

p

xfi,j(x)dx+ (2α− 1)p

∫ 1

p

fi,j(x)dx.

(15)

Denote the total weighted welfare at time t by

Wt(pt, R) =
∑
i≤j

wi,j,α(p)1{Rt ≤ Rk for all i ≤ k ≤ j}.

Assume that the monopolist prices service so as to maximize the weighted social welfare
function, i.e., it maximizes

∑
tWt(pt, R) subject to capacity constraints Dt(pt, R) ≤ ct.

By choosing gt(pt, R) = Wt(pt, R), and ht(pt, R) = Dt(pt, R)− ct, it follows that weighted
welfare maximization problem is an instance of OPT-6. If fi,j is bounded for all i, j, it
follows that CWij and REVij are Lipschitz continuous. Consequently, Wt(pt, R) is Lipschitz
continuous in pt for all R. Since REVij(p) and CWij(p) take values independent of the length
of the horizon, it follows that the welfare function Wt(p,R) can be evaluated in polynomial
time. Thus, Theorem 2 suggests that the dynamic programming recursion in Eq. (13) can
be used to solve the weighted welfare maximization problem in polynomial time.

Stochastic arrival and capacity processes: Assume that population sizes {ai,j}i,j and
capacities {ct}t are random variables with known distributions. Let E[ai,j] = âi,j and E[ct] =
ĉt. In this setting, if monopolist wants to guarantee that the total service request does not
exceed the capacity for any realization of the parameters, it can use the robust optimization
framework in Section 6. On the other hand, if the firm has the capability to contract service
delivery out whenever the capacity is exceeded (hence it has soft capacity constraints), it
can solve the following expected revenue maximization problem:

max
p∈Pε,R∈P(T )

T∑
t=1

E[ptDt(pt, R)− µt(Dt(pt, R))]

s.t. Rt < Rt′ ⇒ pt ≤ pt′ for all t, t′ ∈ {1, ..., T},
(16)

By choosing ht(pt, R) = 0 and gt(pt, R) = E[ptDt(pt, R) − µt(Dt(pt, R))] we obtain an

instance of OPT-6. Note that ∂gt(pt,R)
∂pt

= E
[
∂(ptDt(pt,R)−µt(Dt(pt,R)))

∂pt

]
is bounded when µt is

Lipschitz continuous and fi,j is bounded for all i, j. Thus, under these assumptions, provided
that the expectation in E[ptDt(pt, R)− µt(Dt(pt, R))] can be evaluated in polynomial time,
Eq. (16) can be solved using the dynamic programming recursion in Eq. (13) in polynomial
time.
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8 Numerical Insights

In this section, we consider generic instances of the firm’s pricing problem and obtain qual-
itative insights about the optimal pricing scheme introduced in this paper. We show that
due to presence of strategic customers, the firm uses only a few different prices in its optimal
price sequence. Surprisingly our simulations also indicate that increased patience levels for
customers translate to higher prices, underutilization of capacity and reduced firm revenue
and customer welfare.

Our numerical results are based on simulations with 48 time periods, where we plot the
middle 24 periods to avoid potential boundary effects.3 We let customer valuations to be
uniformly distributed between 0 and 1, and capacities to be generated independently and
uniformly in between 0.5 and 1.5 for each time period. We assume that there are two types
of populations arriving at each time period: (i) impatient (or myopic) customers, i.e., cus-
tomers who are only interested in purchasing service at the period they arrived, (ii) strategic
(or s-patient) customers, who are willing to wait up to s periods to purchase service. This is
captured by setting all ai,j equal to 0 unless j = i (myopic customers) or j = i+ s (strategic
ones). For each i, ai,i is generated at random from a uniform distribution between 0 and
m1, while ai,i+s is generated from a uniform distribution between 0 and m2. Our analysis
focuses on the revenues, capacity usage and customer welfare (as defined in Section 7), as the
parameters s (willingness to wait for strategic customers) and m2

m1+m2
(fraction of customers

who are strategic) change. Since parameters are generated randomly, we present our results
by averaging them over 50 problem instances.

Patient Customers Lead to Fewer Price Levels: Proposition 2 stated that the optimal
price in a given time period must either belong to {pM , 1}, or be equal to the price of a time
period where the capacity is tight. This implies that the total number of price levels used
might be smaller than the total number of periods. Our simulation analysis shows that this
is indeed the case.

Figure 2(a) shows that the average number of price levels over the 24-period horizon
drops somewhat when a higher fraction of the population is willing to wait for service (see
the difference the between the two curves) and drops dramatically when the customers who
are willing to wait become more patient. For example, while roughly 14 prices are needed
when customers are willing to wait only up to 1 period, this number drops to 8 if they are
willing to wait for 2 periods and 5 if they are willing to wait for 3 periods (see the simulation
with m1 = m2 = 3). We note that when an optimal solution for the original pricing problem
OPT-1 does not exist, Lemma 1 suggests using perturbed prices {pt+εRt}t for an arbitrarily
small ε to obtain solutions arbitrarily close to the optimal. In such cases, our results indicate
that the firm uses “essentially” few prices.
Patient Customers Also Lead to Higher Prices: As customers become more patient,
the firm becomes more constrained in the prices it can offer. Consequently, to maintain

3We note that no significant changes are observed in our results when the entire time horizon is used for
the analysis.
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Figure 2: Number of price levels, and average price over 24 time periods of interest.

feasibility, and sustain its service guarantees, it may need to increase the prices at some
periods. Recall that the prices were already at or above monopoly price to begin with, so
both the firm and the customers lose as the prices go up. Even a small increase in customer
patience causes a fairly large increase in average prices (see Figure 2(b)) and, as expected,
the effect is more pronounced when a larger fraction of the population is strategic.
Fewer and Higher Prices Lead to Capacity Waste: At first glance, the presence of
customers that are more patient would seem to lead to better use of resources. After all, high
demand and low supply in one period, followed by low demand and high supply in the next
period could be properly matched if customers are willing to wait. Indeed this phenomenon
does show up in our numerical analysis to some extent, when customers switch from being
completely impatient to willing to wait for one period (see the case m1 = m2 = 3, in Figure
3(c)). However, we mainly observe the opposite effect. As customers become more patient
(for s ≥ 1), the firm is forced to use fewer and higher prices. These prices lead to inefficient
use of the firm’s resources.
Capacity Waste Leads to Low Revenue and Reduced Welfare: The presence of
patient customers forces the firm to offer few high prices and this causes its service to be
underutilized. This phenomenon lowers the firm’s revenue and reduces customer welfare. As
customers become more patient, both revenue loss and customer welfare reduction become
quite significant (for the case m1 = 1, m2 = 5, it can be seen that revenue and welfare for
s = 8 are respectively 35% and 75%, of those for s = 0), as can be seen in Figure 3.

Thus, increased patience levels for customers (or flexibility of purchase time), leads to
worse outcomes for the customers and the firm. This is analogous to Braess’ paradox that
arises in transportation problems (where opening a new road may lead to higher overall
congestion in the network). However, the mechanism at work here is different than the one
at Braess’ paradox, since in our setting the lower welfare is a consequence of the firm’s price
adjustment (raising prices to maintain feasibility of solution).
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Figure 3: Revenue, customer welfare, and (wasted) capacity over 24 time periods of interest.

9 Conclusions

In this paper, we study a service firm’s multi-period pricing problem in the presence of cus-
tomers that are fully strategic with respect to their purchasing decisions, and heterogeneous
with respect to their valuations, and arrival-departure times. A distinct feature of our model
is the service guarantees provided by the firm, which ensure that any customer willing to
pay the announced service price will be able to receive service. These guarantees force the
firm to take the complex problem of how to ensure it has sufficient service capacity at every
period onto itself, while tremendously simplifying the customers’ decision-making process by
removing all rationing risk.

Finding the optimal sequence of service prices turns out to be a non-convex optimization
problem. Nevertheless by exploiting the optimality conditions and using dynamic program-
ming techniques, we provide a tractable computational method for the solution of this prob-
lem. The prices used by the firm are higher and fewer in number than one would naively
expect. This is because, presence of strategic customers, who are willing to wait for a cheaper
future price, prevents the monopolist from setting low prices. A slight increase in the pa-
tience level of customers can lead to better usage of resources and, therefore, better outcomes
for both the firm and the customers. However, as the population becomes more patient, the
firm is quickly forced to use higher prices to guarantee availability of service. This leads to
less efficient usage of capacity, lower revenues and lower utility for the customers.

Acknowledgment We would like to thank Georgia Perakis, Ishai Menache, and Rakesh
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A Proof of Section 3

A.1 Proof of Lemma 1

First note that we can add the constraint 0 ≤ p ≤ 1 to the problem without loss of optimality,
since customer valuations are bounded by 1. Consequently, it follows that for a given fixed
ranking R, the set of consistent and feasible prices defines a closed and bounded set. Since
the objective function is continuous in prices (for a fixed ranking), we conclude that optimal
prices exist for any given ranking R. By maximizing over the finitely many possible rankings,
we conclude that an optimal solution of OPT-2 exists.

For the second claim, observe that if p is a feasible solution of OPT-1, then (p, RC(p)) is
a feasible solution of OPT-2 with the same objective value. Thus, the maximum of OPT-2 is
an upper bound on the supremum of OPT-1. Given an optimal solution (p?, R?) of OPT-2,
and any ε > 0, p? + εR? is a feasible vector of prices that is consistent with the ranking R?,
and hence (p? + εR?, R?) is a feasible solution of OPT-2. This is because, if R?

t < R?
t′ , then

p?t ≤ p?t′ , and consequently p?t + εR?
t < p?t′ + εR?

t′ . Moreover, this inequality also implies that
in p?+ εR? no price is repeated, and hence the only consistent ranking with this price vector
is R?. This implies that R? is the customer-preferred ranking corresponding to p? + εR?,

27



and thus this price vector is feasible in OPT-1 with the same objective value. Since the
objective of OPT-2 is continuous in prices for a fixed ranking R?, the value of (p? + εR?, R?)
approaches to that of (p?, R?), as ε goes to 0. Thus for ε > 0, p? + εR? is a feasible solution
of OPT-1, value of which converges to maximum of OPT-2 as ε goes to 0. Since maximum
of OPT-2 is an upper bound on the supremum of OPT-1, it follows that these values are
equal, and p? + εR? converges to the supremum of OPT-1, as claimed.

If p is an optimal solution of OPT-1, then its value equals to the supremum value.
However, as explained earlier this value equals to the maximum of OPT-2, and (p, RC(p))
is a feasible solution of this problem with the same value. Thus, the claim follows.

B Proofs of Section 4

B.1 Proof of Proposition 1

Since the valuations are bounded by 1, it is not beneficial to set a price above 1. Now,
suppose (p, R) is a feasible and consistent price ranking. Let p′ be the price vector such that
p′t = max{pM , pt}. We claim that (p′, R) is both consistent and feasible. For consistency,
note that if Rt < Rt′ then pt ≤ pt′ . Hence, max{pM , pt} ≤ max{pM , pt′}. Therefore, (p′, R) is
consistent. Moreover, because we have (weakly) increased the prices, it is a feasible solution.
Finally, observe that the revenue obtained from (p′, R) is at least equal to the revenue
of (p′, R). The reason is ρt(R) does not change, but the uncapacitated revenue function,
p(1− F (p)), increases. Namely,∑

t

pt(1− F (pt))ρt(R) ≤
∑
t

p′t(1− F (p′t))ρt(R).

since by definition pM maximizes p(1 − F (p)). Therefore, starting from a feasible solution,
we can construct another one with weakly better objective value, where all prices are weakly
above pM , thus the claim follows.

B.2 Proof of Proposition 2:

Note that if for a ranking R, we have ρt(R) = 0 , then, without loss of generality, we can let
pt = 1. Now, by Proposition 1, we can assume that (p, R) is an optimal solution of OPT-2
such that pM ≤ pt ≤ 1 and pt = 1 if ρt(R)(1−F (pt)) = 0 for all t ∈ {1, . . . , T}. We will prove
that (p, R) is such that pt necessarily satisfies one of the conditions 1-3 of the proposition
for all t ∈ {1, . . . , T}.

By contradiction, assume that for (p, R) none of the conditions 1-3 hold at time t0. Since
conditions 1-2 do not hold 1 > pt0 > pM . Note that pt0 6= 1 implies that ρt0(R)(1−F (pt0)) 6=
0, and hence ρt0(R) > 0. Since condition 3 does not hold, for t̃ ∈ S , {t ∈ {1, . . . , T}|pt =
pt0} we have that ct̃ is not tight, i.e.,

ρt̃(R)(1− F (pt̃)) < ct̃ for all t̃ ∈ S. (17)
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Let δ be a constant such that

δ =

{
pt0 − pM if pt0 ≤ pk for all k ∈ {1, . . . , T},

pt0 − max
{t1|pt1<pt0}

pt1 otherwise.

Consider the price vector p̂, for which pk = p̂k for k /∈ S, and p̂k = pk − ε otherwise, for
some 0 < ε < δ. It follows from the definition of δ that if pi ≤ pj for some i, j ∈ {1, . . . , T}
then p̂i ≤ p̂j. Hence, the price vector p̂ is also consistent with ranking R. Moreover, since
(1 − F (p)) is a continuous function, by Eq. (17) we conclude that ε can be chosen small
enough to guarantee that for time periods t ∈ S, ρt(R)(1 − F (p̂t)) < ct. Since (p, R) is
feasible and pt = p̂t for t /∈ S, it also follows that for t /∈ S, we have ρt(R)(1 − F (p̂t)) =
ρt(R)(1− F (pt)) ≤ ct. Consequently, (p̂, R) is feasible in OPT-2.

The definition of δ also suggests that pM < p̂t < pt = pt0 for t ∈ S. It follows by
the definition of pM and the unimodality of the uncapacitated revenue function that pt(1−
F (pt)) < p̂t(1− F (p̂t)) for t ∈ S. Thus, using the fact that ρt0(R) 6= 0 we conclude that the
revenue obtained from time periods t ∈ S, increases under p̂, i.e.,∑

t∈S

p̂t(1− F (p̂t))ρt(R) >
∑
t∈S

pt(1− F (pt))ρt(R). (18)

Since, pt = p̂t for t /∈ S, it also follows that
∑

t/∈S p̂t(1 − F (p̂t))ρt(R) =
∑

t/∈S pt(1 −
F (pt))ρt(R). Hence, we conclude that the overall revenue improves when (p̂, R) is used.
Therefore, we reach a contradiction and (p, R) has to satisfy one of the conditions 1-3 of the
proposition.

C Proof of Section 5

C.1 Proof of Theorem 1

We first describe how the optimal prices and ranking in OPT-2 are obtained, and then we
consider the computational complexity of the solution.

As explained in the text, given the set L, the optimal solution of OPT-2 can be obtained
by solving OPT-3. The solution of the latter problem is identical to that of Eq. (9), with
i = 0, j = T + 1, p = 0, and hence the optimal value is equal to ω(0, T + 1, 0). Given
ω(i, j, p), for 0 ≤ i ≤ j ≤ T + 1, one can construct the optimal sequence of prices in this
problem using the recursion in Eq. (10): We say that k is the solution for ω(i, j, p) if the
r.h.s. of Eq. (10) takes its maximum at k and k is the earliest time period that achieves the
maximum. Let (k∗, pk∗) be the optimal solution of ω(0, T + 1, 0) in Eq. (10). Then the price
of time period k∗ in the optimal solution of Eq. (9) is pk∗ , and prices for time periods earlier
and later than k∗ can be obtained by solving for the prices in the subproblems ω(0, k∗, pk∗)
and ω(k∗, T + 1, pk∗).

We assume that at each step the left most subproblem is solved first. We say that the
time period k∗ which solves the ith subproblem has priority i (hence the time period which
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solves ω(0, T + 1, 0) has priority 1). Using these priorities together with prices, we next
construct the ranking vector (consistent with the already obtained prices) that appear in
the solution of OPT-3 (or equivalently to Eq. (10) with i = 0, j = T + 1, p = 0). Consider
time periods k1 and k2. If pk1 6= pk2 , it is clear how to rank them: the lower price will have
a smaller rank. Now suppose pk1 = pk2 , then the time period with lower priority receives
lower ranking. Note that under this ranking, the ranking vector is consistent with prices.
Moreover, when there are multiple time periods with the same price, the time period that
has lower ranking is the one that is used by the algorithm to solve an earlier subproblem.
This implies that the ranking is consistent with the time period each population receives
service in the solution of the recursion Eq. (10).

We next characterize the computational complexity of providing a solution to OPT-2.
Note that by Proposition 3, there exists an optimal solution for OPT-2 with prices that
belong to set L (Eq. (8)). It can be seen from Eq. (7) that to compute the prices in this set
we need quantities of the form zijk =

∑k
t1=i

∑j
t2=k

at1,t2 for all i ≤ j ≤ k. Note that there are
O(T 3) values zijk can take, and each value takes at most O(T 2) to compute. Thus, all values
of zijk, and the set L can be computed in O(T 5) time.4 Thus, in O(T 5) time we can reduce
OPT-2 to OPT-3. We characterize the computational complexity of the latter problem.

Observe that the algorithm relies on characterizing ω(i, j, p) for all time periods i ≤ j
and p ∈ L. Since cardinality of L is O(T 3) (each zijk corresponds to an element as can
be seen from Eq. (8)), there are O(T 5) values of ω(i, j, p) that needs to be characterized.
These can be computed, using the condition ω(i, j, p) = 0 if i+ 1 ≥ j − 1, and the recursion
in Eq. (10). At each step of the recursion there are O(T ) different values k can take. On
the other hand, for a given value of k, the corresponding optimal pk can be computed
in O(1): Since for all p ∈ L we have p ≥ pM , it follows that γijk (p) is decreasing in p,
provided that p ∈ L. Moreover, ω(i, j, p) is also decreasing in p for all i, j, since larger
p corresponds to tighter constraints in Eq. (9). Thus, the pk that solves Eq. (10) is the
smallest p ≥ pM that makes the capacity constraint feasible. Therefore, it follows that

pk = max
{
pM , F

−1
(

1− ck/
∑k

l=i+1

∑j−1
m=k alm

)}
, where the latter is the price that makes

the capacity at time k tight. Since by construction both these prices belong to L, and
elements of L were computed earlier, it follows that given k, pk can be constructed in O(1).
Thus, we conclude that each step of the recursion in Eq. (10) can be computed in O(T ).
Thus, the overall complexity of computing all ω(i, j, p) is O(T 6).

Finally, given all values of ω(i, j, p), the construction of the prices, that solve Eq. (9) takes
O(T 2) following the procedure described in the beginning of the proof: to solve for each pk,
an instance of the recursion Eq. (10) needs to be solved. This takes O(T ) time, and there
are O(T ) prices to be solved for. Similarly constructing priorities and rankings consistent
with these prices takes another O(T ). Thus, the overall complexity of the algorithm is
O(T 5 + T 6 + T 2 + T ) = O(T 6).

4The computation time can be decreased using the relation between different values of zijk. This is
omitted, as it does not affect our final complexity result.
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D Proofs of Section 6

D.1 Proof of Lemma 2:

The function Dt(pt, R,A) is weakly increasing in all the elements of the matrix A. There-
fore, for all A ∈ A, the tightest constraint among all of constraints of the form M ≤∑T

t=1 ptDt(pt, R,A) is the one given by AL. At optimal solutions of OPT-4, M should be

replaced by the maximum value it can attain, which is
∑T

t=1 ptDt(pt, R,A
L). Similarly, the

tightest constraint among of the constraints of the form Dt(pt, R,A) ≤ ct is the one given by
AU and cLt . Thus, the claim follows replacing constraints of this form by Dt(pt, R,A

U) ≤ cLt .

D.2 Proof of Proposition 4:

The constraint set of OPT-5 is identical to that of an instance of OPT-2 with parameters
(cL, AU). Additionally, the objective functions of both problems are nonincreasing for all
p ≥ pM . Since, Proposition 3 relied on the monotonicity of revenue in prices, and the
properties of constraint sets, it follows that for OPT-5, a set L with O(T 3) prices that
contains all candidate optimal prices can be constructed (using parameters (cL, AU)). Thus,
we can still use the recursion in Eq. (10) to find the optimal sequence of prices. However,
γijk (p) needs to be modified slightly since in OPT-5 the feasibility constraints involve AU ,
whereas, the revenue function involves AL. Therefore, the recursion in Eq. (10) solves OPT-5
(again in O(T 6)), using the following modified definition of γijk (p):

γijk (p) =


(

k∑
l=i+1

j−1∑
m=k

aLlm

)
(1− F (p))p if

(∑k
l=i+1

∑j−1
m=k a

U
lm

)
(1− F (p)) ≤ cLk

−∞ otherwise.

D.3 Proof of Proposition 5

Let c∗, A∗ denote the capacity and arrivals in a given problem instance. We will show that
V (c∗, A∗)−V ROB(C,A, c∗, A∗) ≤ θ(2H+1)P (AU). Since, c∗, and A∗ are arbitrary, the claim
then follows from taking supremum over all c∗ and A∗.

Let VR(c, A,A∗) denote the revenue obtained by (i) offering a price vector consistent with
ranking R, (ii) ensuring that prices are feasible for arrival matrix A and capacity vector c,
(iii) having arrival realization A∗, i.e.,

VR(c, A,A∗) = max
p≥0

T∑
t=1

ptDt(pt, R,A
∗)

s.t. Dt(pt, R,A) ≤ ct for all t ∈ {1, ..., T}
pt ≤ pt′ if Rt < Rt′ for all t, t′ ∈ {1, ..., T}.

Note that imposing the constraint pt ≤ pt′ if Rt′ = Rt + 1 (for all t, t′) is equivalent to
imposing the constraint pt ≤ pt′ if Rt < Rt′ in the above optimization problem, due to the
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transitivity of the inequalities. Thus, we conclude

VR(c, A,A∗) = max
p≥0

T∑
t=1

ptDt(pt, R,A
∗)

s.t. Dt(pt, R,A) ≤ ct for all t ∈ {1, ..., T}
pt ≤ pt′ if Rt′ = Rt + 1 for all t, t′ ∈ {1, ..., T}.

(19)

Let λt ≥ 0 denote the Lagrange multiplier corresponding to the capacity constraint
associated with time t, and µt,t′ ≥ 0 be the Lagrange multiplier associated with the ranking
constraint pt ≤ pt′ , assuming Rt′ = Rt+1. The KKT conditions (see, for example, Acemoglu
(2008)) imply that for all t, the optimal prices satisfy:

Dt(pt, R,A
∗) + pt

∂Dt(pt, R,A
∗)

∂pt
− λt

∂Dt(pt, R,A)

∂pt
+ µt′′,t − µt,t′ = 0, (20)

where t, t′, and t′′ are such that Rt′ = Rt + 1 and Rt = Rt′′ + 1. By the complementary
slackness conditions, if two prices pt and pt′ are different, then µt,t′ = 0. Thus, summing the
KKT conditions for all periods that have the same price p (and noting that ranking of such
periods are necessarily consecutive), µt terms cancel, and we obtain:∑

t: pt=p

[
Dt(p,R,A

∗) + p
∂Dt(p,R,A

∗)

∂p
− λt

∂Dt(p,R,A)

∂p

]
= 0.

By definition Dt(p,R,A) = ρt(R,A)(1−F (p)), where ρt(R,A) is the R-induced potential
demand for population matrix A. Hence, using the notation F ′(p) = f(p), we obtain∑

t: pt=p

[ρt(R,A
∗)(1− F (p))− p ρt(R,A∗)f(p) + λtρt(R,A)f(p)] = 0.

Rearranging terms, this equation leads to∑
t: pt=p

ρt(R,A)λt =
∑
t: pt=p

ρt(R,A
∗)

[
p− 1− F (p)

f(p)

]
≤
∑
t: pt=p

ρt(R,A
∗),

where the inequality follows from the fact that optimal prices are bounded by 1, and 1−F (p)
f(p)

≥
0. Thus, summing the above equality over all periods t (or all different price levels p that
appear in an optimal solution) we obtain

T∑
t=1

ρt(R,A)λt ≤
T∑
t=1

ρt(R,A
∗) = P (A∗) ≤ P (AU), (21)

where P (A) =
∑

i,j ai,j. By the complementary slackness conditions, ct = Dt(pt, R,A) =
ρt(R,A)(1− F (pt)) ≤ ρt(R,A) whenever the Lagrange multiplier λt 6= 0. Hence, the above
inequality also implies

T∑
t=1

ctλt ≤ P (AU). (22)
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We next consider how VR(c, A,A∗) changes as c increases and A decreases. The Envelope

Theorem (see Acemoglu (2008)) suggests that the derivatives ∂VR(c,A,A
∗)

∂ct
and ∂VR(c,A,A

∗)
∂ai,j

are

equal to

∂VR(c, A,A∗)

∂ct
= λt and

∂VR(c, A,A∗)

∂ai,j
= −λt′(i,j,R)(1− F (pt′(i,j,R))), (23)

where t′(i, j, R) represents the period t′ that has minimum ranking in R within {i, ..., j}, i.e.,
the time period population ai,j receives service.

Observe that by definition VR is increasing in c and decreasing in A. Since
cUt
cLt

and
aUi,j
aLi,j
≤ 1 + θ, it follows that

0 ≤ VR(c∗, A∗, A∗)− VR(cL, A
U , A∗) ≤ VR(cU , A

L, A∗)− VR(cL, A
U , A∗)

≤ VR((1 + θ)cL, A
L, A∗)− VR(cL, A

L(1 + θ), A∗)
(24)

Using the Fundamental Theorem of Calculus (and the notation gR(x) = VR((1+x)cL, AL, A∗))
it follows that

0 ≤ VR((1 + θ)cL, A
L, A∗)− VR(cL, A

L, A∗) =

∫ θ

x=0

dgR(x)

dx
dx =

∫ θ

x=0

T∑
t=1

∂VR
∂ct

((1 + x)cL, A
L, A∗)cLt dx

≤
∫ θ

x=0

T∑
t=1

∂VR
∂ct

((1 + x)cL, A
L, A∗)(1 + x)cLt dx.

(25)
Observing from Eq. (23) that ∂VR

∂ct
((1 +x)cL, A

L, A∗) equals to the Lagrange multiplier λt for
the problem instance with capacity vector (1 + x)cL, and using Eq. (22) and Eq. (25), we
obtain

VR((1 + θ)cL, A
L, A∗)− VR(cL, A

L, A∗) ≤
∫ θ

x=0

P (AU)dx = θP (AU). (26)

Following a similar approach, we also obtain

0 ≤ VR(cL, A
L, A∗)− VR(cL, (1 + θ)AL, A∗) = −

∫ θ

x=0

∑
i,j

∂VR
∂ai,j

(cL, (1 + x)AL, A∗)ai,jdx

≤ −
∫ θ

x=0

∑
i,j

∂VR
∂ai,j

(cL, (1 + x)AL, A∗)(1 + x)ai,jdx

(27)
Using Eq. (23), it follows that − ∂VR

∂ai,j
(cL, (1+x)AL, A∗) = λt′(i,j,R)(1−F (pt′(i,j,R))) ≤ λt′(i,j,R),

where λt denotes the Lagrange multiplier in a problem instance with parameters cL, (1 +
x)AL, A∗. Thus, using Eq. (27) and noting from the definition of t′(i, j, R) that ρt(R,A) =∑

i,j:t′(i,j,R)=t ai,j, we obtain,

VR(cL, A
L, A∗)− VR(cL, (1 + θ)AL, A∗) ≤

∫ θ

x=0

T∑
t=1

λtρt(R,A
L(1 + x))dx. (28)
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Thus it follows from Eq. (21) that

VR(cL, A
L, A∗)− VR(cL, (1 + θ)AL, A∗) ≤

∫ θ

x=0

P (AU)dx = θP (AU). (29)

Adding Eq. (26) and Eq. (29), and using it in the right hand side of Eq. (24) it follows that

VR(c∗, A∗, A∗)− VR(cL, A
U , A∗) ≤ 2θP (AU). (30)

Note that by linearity of the objective of Eq. (19) in its third argument, and the fact
that aLi,j ≤ a∗i,j ≤ aUi,j ≤ (1 + θ)aLi,j, it follows that VR(cL, A

U , A∗) ≤ VR(cL, A
U , AL)(1 + θ).

On the other hand, since maximum price customers can pay for service is 1, it follows
from the definition of P (A) that VR(cL, A

U , AL) ≤ P (AL) ≤ P (AU). Thus, we conclude
VR(cL, A

U , A∗)− VR(cL, A
U , AL) ≤ θP (AU). Combining this with Eq. (30) we obtain

VR(c∗, A∗, A∗) ≤ VR(cL, A
U , AL) + 3θP (AU). (31)

Maximizing both sides of this inequality over R and noting that maxR VR(c∗, A∗, A∗) =
V (c∗, A∗), we conclude V (c∗, A∗) ≤ maxR VR(cL, A

U , AL)+3θP (AU). Note that by definition
maxR VR(cL, A

U , AL) equals the solution of OPT-5 and V ROB(C,A, c∗, A∗) is larger than
this solution (OPT-5 gives the worst case profits for optimal prices that are feasible for all
capacities in C, and arrivals in A, whereas V ROB(C,A, c∗, A∗) is the realized profit). Thus,
we conclude V (c∗, A∗) ≤ V ROB(C,A, c∗, A∗) + 3θP (AU), and the claim follows.

E Proofs of Section 7

E.1 Proof of Lemma 3

Let p? and R? denote an optimal solution of OPT-6. Observe that for all t, the set Pε ∩
[p?t , p

?
t + ε) contains a single element. Denote this element by p̂t.

We first show that p̂ is consistent with ranking R?. Note that if R?
t < R?

t′ then p?t′ ≥ p?t .
Moreover, since we have p?t′ + ε ≥ p?t + ε, and p̂k is characterized by intersection of [p?k, p

?
k + ε)

with Pε for all k, it follows that p̂t′ ≥ p̂t, and hence the consistency claim.
By Assumption 2, ht(p,R

?) is decreasing in p, for any R. Therefore, ({p̂t}, R?) is a
feasible solution of OPT-6. By Assumption 2 again, and the fact that p̂t ∈ [p?t , p

?
t + ε) for all

t, it follows that

v =
∑
t

gt(p
?
t , R

?) ≤
∑
t

(
gt(p̂t, R

?) + ltε
)
. (32)

On the other hand, by construction p̂t ∈ Pε for all t, thus ({p̂t}, R?) is a feasible solution
of OPT-7. Hence vε ≥

∑
t gt(p̂t, R

?), and together with Eq. (32), this implies that vε ≥
v − ε

∑
t lt.
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E.2 Proof of Lemma 4

Construction of optimal prices and ranking, using the dynamic programming recursion in
Eq. (13) is identical to the construction given in Theorem 1, and is omitted. In the rest of
the proof we characterize the computational complexity of this construction.

In order to solve the recursion in Eq. (13) we compute all values of ω(i, j, p) by solving
O(T 2|Pε|) subproblems. At each step of the recursion we solve for the optimal k and p.
Finding these requires at most O(T |Pε|) trials. Given a value of p and k, we need to evaluate
γ̂ijk (p). This requires checking if constraints are satisfied in the subproblem (hence comput-
ing hk(p,R)), and evaluating the corresponding objective value (gk(p,R)) in the relevant
subproblem. Thus, computation of γ̂ijk (p) can be completed in O(s(T )) time, and the overall

complexity is O
(
T 3s(T )
ε2

)
.
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