
No Hardware Required: Building and Validating Composable

Highly Accurate OS-based Power Models

John D. Davis
1
, Suzanne Rivoire

2
, Moises Goldszmidt

1
, and Ehsan K. Ardestani

3

Microsoft Research - Silicon Valley Lab
1
 Sonoma State University

2
 University of CA, Santa Cruz

3

ABSTRACT

In this paper, we present an automatic framework for modeling

node- and cluster-level power consumption, using only portable

OS-level performance counters. We evaluate these models using

an emerging class of MapReduce-style workloads, executed on

current server-class systems as well as energy-efficient low-power

desktops, high-end laptops, and embedded systems. We also

validate generic, cross-platform (with respect to model features)

cluster power models for our four workloads running on six types

of clusters. Our models yield highly accurate predictions without

the intrusiveness and/or the correctness and portability problems

of hardware performance counters or board-level measurements.

We define a new metric called Dynamic Range Error (DRE) to

describe how well the model characterizes the dynamic system

behavior (a tighter bound than MSE or median error) and facilitate

inter- and intra-cluster model accuracy comparisons. Using this

metric, we quantify the tradeoffs between model complexity and

accuracy for different workloads. The generic feature model

removes the feature selection process and only degrades

prediction accuracy by at most 1% DRE when compared to the

best cluster power model for the workloads and clusters we

studied. To the best of our knowledge, this is the most complete

study of system power modeling covering such a wide variety of

platforms, workloads, and models.

1. Introduction
Power consumption is a first-order design constraint in the data

center (DC). Power infrastructure accounts for approximately

80% of data center facility costs and about 40% of operating costs

[12]. Provisioning DCs for peak absolute system power avoids the

dire consequences of exceeding the DC's power budget, but it is

overly conservative. The goal of this paper is to build software-

based high-fidelity cluster power models that can be used for DC

power provisioning and planning, online power capping, and

power-aware software tuning, eliminating the need for expensive

hardware and/or software solutions. In order for these models to

be suitable for large-scale use, we require them to use generic,

portable predictors; to be highly accurate for emerging server

designs and workloads; and to scale beyond a single node.

We use OS-level performance counters to build and validate

machine-level and cluster-level power models for six different

clusters of homogeneous machines. OS-level performance

counters are easy to collect and consistent across multiple

platforms (portable), and they can be collected in real time for

online power prediction. The machines that make up the clusters

span the embedded, mobile, desktop, and server processor spaces,

reflecting energy-efficient server recommendations from recent

research [1,13,19,31,32] as well as more traditional servers used

in current practice. We build and validate these models on

MapReduce-style applications that all use the same software

stack.

In order to conduct this model exploration, we build and

evaluate over 1200 full-system power models per cluster in a

design exploration of the modeling techniques and model features.

Our power modeling requirements are to simultaneously provide

high accuracy, with errors of less than 10% of the dynamic power

range (a stricter error measure than used in prior art), minimize

the number of model features, use portable features across

platforms, and minimize the model complexity, thereby reducing

modeling overhead. Accurate and low-cost models are critical

when planning new DCs and provisioning existing ones.

In this paper, we make the following contributions:

 We define and evaluate a new model error metric called

Dynamic Range Error (DRE), which is based on the mean

squared error and the dynamic power range of the system.

This metric yields a more appropriate basis for cross-

platform comparison than currently used error metrics.

 We demonstrate an automatic, generic framework that

builds high-fidelity cluster power models using portable

OS-level performance counters. We achieve prediction

errors of less than 10% DRE, a stricter error measure than

prior work has used, or 0.5-2.5% using median error.

 We show the relationship between model complexity and

accuracy for different workloads and present a general set

of predictors that yields accurate models across the

different clusters.

The rest of this paper is organized as follows. Section 2

provides a brief summary of related work. Section 3 describes our

hardware, software, and instrumentation infrastructure. In Section

4, we present the model feature space and modeling techniques

we used. Section 5 evaluates our models’ accuracy and generality,

and Section 6 concludes.

2. Related Work
In this section, we compare our full-system power models to

prior work based on five characteristics: choice of predictors,

choice of modeling techniques, sampling frequency,

portability/scalability, and overall accuracy. We discuss only

system-level power models and omit component-specific models,

which have very different goals and characteristics.

Choice of predictors. Early power models were based solely on

CPU utilization [5,9,24,26] or even CPU frequency state [4].

Subsequent work uses board-level measurements [21,22] or

hardware performance counters to capture the behavior of CPU,

memory, and I/O devices [2,8,23,29,30]. Our framework uses

only OS-level performance counters, avoiding the intrusiveness of

board-level measurements and the correctness and portability

problems of hardware performance counters [3,33].

Choice of modeling techniques. Most previous work uses linear

models [5,9,14,21,23,27], piecewise linear models [28], or other

models that do not capture interaction between predictors [2].

Other recent work found that even nonlinear interactive models

fail to capture the behavior of the systems studied, but chaotic

attraction predictors provide the desired accuracy [22]. Our work

confirms that linear models are often insufficient, but we find

interactive models to be highly accurate for our machines and

workloads. Our choice of predictors may be the reason for this

difference from prior work.

Sampling frequency. A sampling frequency of 1 Hz is common

in the literature, since many power meters and OS event interfaces

do not support faster sampling. Recent work shows that this

sampling rate does not capture short power-supply-induced

spikes; modeling these spikes requires sampling at every

invocation of the OS scheduler [24]. The inability to model these

spikes is a limitation of less intrusive models, including ours. At

the other extreme, some models have used 10-minute intervals [9]

or modeled total energy over a workload [20,29,30], which misses

application-level behavior patterns [16].

Portability and scalability. Some previous models require

application-specific profiling [11,23], while others are solely for

processor-intensive workloads [14,28]. One study compared

simple models for a breadth of machines and workloads but did

not go beyond a single node [27]. In fact, only a few studies

model the power consumption of multiple machines [7,9,11,14].

This work builds single-node and cluster-level models for a

variety of machines and data-intensive workloads.

Accuracy. In many papers the only metric of accuracy is that

the model was sufficient for some energy-saving technique. Other

papers use metrics such as (r)MSE or median error, but they

compare these metrics to static power rather than the dynamic

power range. This makes it difficult to understand how well the

model captures variation in power. Our modeling approach yields

models at least as accurate as any previously proposed

generalizable approach, with the added advantages of portability

and non-intrusive metric collection.

3. Infrastructure
This section describes the clusters for which we build power

models, the workloads we use to build and validate models, and

our measurement infrastructure.

3.1 Hardware and software infrastructure
We build power models for multiple small (five-node)

homogeneous clusters. Using these testbeds, which are described

in Table 1, we demonstrate an automatic, general, and portable

framework for building high-fidelity cluster power models, and

we evaluate the accuracy of several modeling techniques for a

variety of workloads.

We run an assortment of distributed workloads using the Dryad

and DryadLINQ application framework [15]. Some of the

workloads are CPU-intensive, while others are dominated by disk

or network. We run all workloads five times per cluster to allow

each node to act as job scheduler, which provides diversity in the

work done even within an application. The workloads used are:

 Sort. This workload sorts 4GB of data with 100-byte

records. This workload has high disk and network utilization.

 PageRank. This workload runs a graph-based page ranking

algorithm over the ClueWeb09 dataset [6], a corpus of about

1 billion web pages. PageRank has high network utilization.

 Prime. This workload checks for primeness of each of

approximately 1,000,000 numbers on each of 5 partitions in a

cluster. This workload is CPU-intensive and produces little

network traffic.

 WordCount. This workload reads through 50 MB text files

on each of 5 partitions in a cluster and tallies the occurrences

of each word that appears. It produces little network traffic.

3.2 Measurement infrastructure
The measurement infrastructure consists of a hardware

component that physically measures total system power and the

software components that collect both the power measurements

and OS-level performance counters.

Hardware: Every machine in every cluster is individually

instrumented with a power meter. We use the WattsUp? Pro

digital power meter to capture the wall power once per second.

Each machine reads its own power measurements over a USB

port. The power meters have an error of 1.5%. We verified the

meter calibration, but we leave the explicit extraction of meter

error for future work.

Software: Each system runs Windows Server 2008 R2, which

has a convenient and standardized OS-level performance counter

interface and tool suite. We use Windows Perfmon to record

measurements once per second for Windows ETW (Event Tracing

for Windows) software counters as well as the WattsUp? Pro

power meter readings.

4. Modeling Framework
This section briefly reviews the feature selection process,

which is described in more detail in [7]. Then it presents the four

different modeling techniques used to generate full-system and

full-cluster power models.

4.1 Feature Selection
To fully explore the space of predictors, we sample a wide

Table 2. Significant ETW performance counters used in cluster models.

Category Performance counter counter ID

Network Datagram/sec 1

Memory

Page Faults/sec 18

Committed Bytes 20

Cache Faults/sec 24

Pages/sec 26

Page Reads/sec 28

Pool Nonpaged Allocs 34

Physical Disk
Disk Total Disk Time % 54

Disk Total Disk Bytes/sec 66

Process
Total Page Faults/sec 79

Total IO Data Bytes/sec 99

Processor

Total Processor Time % (Utilization) 102

Total Processor Interrupts/sec 105

Total Processor % DPC Time 106

File System Cache

Data Map Pins/sec 121

Pin Reads/sec 122

Pin Read Hits % 125

Copy Reads/sec 126

Fast Reads not Possible/sec 139

Lazy Write Flushes/sec 140

Job Object Details Total Page File Bytes Peak 167

Processor Performance Processor_0 Processor Frequency 209

Table 1. We develop full-system power models for 5-machine clusters of the platforms below. *System maximum memory capacity.

System Class CPU Memory Disk(s) OS, FS

Embedded Intel Atom, dual-core, 1.6 GHz 4 GB DDR2-800* 1 Micron SSD

Windows Server

2008 R2, NTFS

Mobile Intel Core 2 Duo, dual-core, 2.26 GHz, 25 W TDP 4 GB DDR3-1066* 1 Micron SSD

Desktop AMD Athlon, dual-core, 2.8 GHz, 65 W TDP 8 GB DDR2-800 1 Micron SSD

Server AMD Opteron, quad-core, 2.0 GHz, 50 W TDP 32 GB DDR2-800 2 10K RPM SATA

Server Intel Xeon, quad-core, 2.33 GHz, 80 W TDP 16 GB DDR2-667 4 7.2K RPM SATA

Server Intel Xeon, quad-core, 2.67 GHz, 80 W TDP 16 GB DDR2-667 6 15K RPM SAS

range of performance counters provided by the OS and tool suite.

This set includes counters from the following categories:

processor, memory, physical disk, process, job object, file system
cache, and network interfaces [25]. In aggregate, approximately

250 performance counters are collected per second per node. We

verified that the data collection process does not interfere with

program behavior or power consumption.

After removing insignificant or redundant counters, about 50

features remain. For each system type, we further pare this list to

5-15 significant features. The equations below show the final

features for each cluster-specific model. Power is denoted by y,

and xi denotes the features measured on each machine. We collect

data of the form <y, x1,…,xn>, and we fit functions ̂

so that ̂ approximates y, minimizing some loss function. The

numeric subscripts refer to the counter IDs in Table 2.

 ̂

 ̂

 ̂
)

 ̂

 ̂

 ̂
We found that systems with aggressive DVFS required the

processor frequency as a model feature. Furthermore, the Intel

servers had fewer frequency states and more hard disk drives. For

these models, the processor frequency feature was not as strong a

signal as other models and hard drive related features were

stronger that single disk configurations, both with respect to

hardware related counters and software related counters like the

file system and related cache.

4.2 Modeling techniques
We experiment with four different modeling techniques of

varying degrees of conceptual and implementation complexity.

We present the simple linear model first, followed by the

piecewise linear, interactive, and switching model, the latter based

on domain-specific system knowledge.

Baseline linear power model:

 ̂ ∑

Piecewise linear power model:

 ̂ ∑ ∑

()

Interactive power model:

 ̂ ∑ ∑

 ()

Switching power model:

 ̂ ∑

 ∑

where I(f) = 1 iff the frequency < threshold; otherwise I(f) = 0.

We start with a basic linear regression model (Equation 1),

where the parameters
 are fitted by minimizing the squared

error. This is the form used by most previous work. It is a useful

baseline against which we can compare all other proposals for ̂

and evaluate the increase in accuracy of more complex models.

The piecewise linear power model (Equation 2) provides an

extra degree of freedom. In this model, s can be positive (+) or

negative (), and the basis functions Bi,j
s are hinge functions.

 (x,t) takes a value of 0 if x ≤ t and xt otherwise. Similarly,

(x,t) takes a value of 0 if x > t and tx otherwise. The t thresholds

are usually called knots, and the j indices permit a feature to be

responsible for more than one knot. Fitting these models requires

finding the knots and the parameters . To do so, we use an

implementation of the Multivariate Adaptive Regression Splines

(MARS) algorithm [10].

Intuitively, these models can express that a feature, such as

CPU utilization, may consume full-system power at different rates

in different regions. It could thus be nonlinear over the entire

space, but linear within each of these regions.

The interactive model (Equation 3) is an extension of the

piecewise linear model that introduces nonlinearity by letting the

basis functions interact. We restrict this interaction to degree = 2

and use the same algorithm (and implementation) as in the

piecewise linear case to select knots and fit parameters and to

select which bases would interact. Finally, the switching model

(Equation 4) uses CPU frequency as the indicator function, I(f).

The result is a set of (possibly) different linear models depending

on the clock frequency. Unlike the piecewise model, where the

knots partition only the space of a particular feature, the frequency

state and the indicator function partition the space for all the

features, creating completely separate models for each frequency.

This model is more rigid, even though it may require more

parameters (since we must fit coefficients for every feature at

every frequency state).

5. Evaluation
In this section, we discuss the highlights of our findings from

building over 1200 power models. We use a scripting language to

generate high-level statistical computing code. In some case, the

high-level statistical environment uses the scripting language to

process intermediate results, automating model building and

testing. In the following subsections, we explain these results in

detail. First, we define and justify the dynamic range error (DRE),

the metric we will use to evaluate the models. Then we evaluate

our platform-specific and general model. Finally, we discuss the

impact of these modeling techniques.

5.1 Dynamic range error
To evaluate the accuracy of power models, absolute error terms

like mean squared error (MSE) or median error are difficult to

compare across platforms whose operating power may differ by

orders of magnitude. Presenting these error terms as a percentage

of the total power still obscures the fact that the overall power

may contain a large static component, making it trivially

predictable. The real question from a research perspective is how

well the model captures the dynamic variation in power.

Therefore, a more meaningful number is the dynamic range

error (DRE), which we define as the root-mean-squared error

divided by the dynamic range. Table 3 compares various error

metrics across our platforms. It shows that a small rMSE, on the

order of 2% of total power, can translate into a large DRE of 30%.

Using DRE provides a platform-independent view of a model’s

explanatory power.

5.2 Cluster Model Discussion
We compare 16 different cluster models from the 4 categories

of models described in Section 4.2, using various subsets of the

features from the 22 independent features identified in Table 2.

We use 5-fold cross validation to generate an average DRE per

Table 3. Dynamic range error (DRE) compared to two other common

error metrics: rMSE and the percent error (rMSE/ average power).

Workloads

Opteron - Server Atom - Embedded

rMSE

rMSE/

Avg Power DRE rMSE

rMSE/

Avg Power DRE

Primes 4.35 2.9% 11.3% 0.57 2.4% 30.8%

Staticrank 4.13 2.9% 7.6% 0.64 2.6% 19.4%

Terasort 2.76 2.0% 9.4% 0.69 2.8% 11.5%

Wordcount 3.84 2.6% 9.5% 0.64 2.6% 22.7%

cluster configuration and workload. Using this methodology, we

are able to compare models across the various platforms and

quickly understand how good the models are.

5.2.1 Cluster Power Models
The cluster power model is built using a general machine

model, ̂ , as described in Section 4.2, that is trained

using several machines, as shown in Equation 5. The best model

accuracy was achieved using a subset of the features listed in

Table 2 for each machine in the cluster, specified in Section 4.1.

 ∑ ̂

Some of our initial attempts relied on aggregated features

across the cluster to find correlations to the cluster power. In this

case, there were too many features that correlated and the

generated models were fragile. The features that these models

selected excluded some nodes and as a result, there was no clear

way to scale the models. The same holds true for models at the

rack level when trying to aggregate features from all the

machines. Our goal is to reduce the number of features used to

model the cluster and use the simplest model with the highest

fidelity. Of the models we investigated, the PWL and interactive

models use fewer features than the switching models, reducing

their overhead. By reducing the model overhead, we are able to

also use these models for online power prediction, which can then

be used to attribute costs to the appropriate user, screen for

hardware and/or software failures, or other data mining studies.

5.2.2 Cluster model accuracy
Figure 1A lists the modeling techniques, from left to right, in

increasing order of the number of features used in the models. It

should be noted that the results presented here are typical across

all platforms, and so we only present data from one cluster and

one of the workloads.

There are several observations that can be made from Figure A

related to model complexity and feature selection. This figure

shows the CPU-only models are, in general, the least accurate.

Even in CPU-bound applications like Primes, using piecewise

linear (PWL) models dramatically improves accuracy.

Furthermore, regardless of the application, feature selection

played a critical role in the modeling accuracy. When using a

small number of features, we found a few cases of the piecewise

linear and linear modeling techniques producing the same models

for a particular workload and cluster. However, when we use the

model feature set from Section 4.1, all PWL, interactive, and

switch models outperformed all linear models. These results

demonstrate that more complex models are required and that

feature selection matters to produce high-fidelity models. Finally,

as prior art has shown [22], past data may be useful in improving

model accuracy. We used the past (t-1) core frequency in the

piecewise linear and interactive models, but we found this

additional feature did not improve model accuracy significantly.

Unlike prior work [22], we only used the previous core frequency

and not a window.

Finally, as Figure 1B demonstrates, a linear model using only

CPU utilization that minimizes the model error cannot predict the

full dynamic range of the node. However, a piecewise linear

model can predict the full dynamic node range. In the next

section, we demonstrate this using the general cluster model.

5.3 General Feature Set
Ideally, we would be able to identify a unified set of model

features that can be used for all platforms. After building the

various platform-specific models, we noticed that at a high level,

the models shared a lot of features. By selecting the features that

were common across all the models and adding the most common

features from the categories that were not represented in this

0 100

Requires complex models

Increasing Model Complexity

(A) (B)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0 %

12.0 %

14.0 %

16.0 %

Lin
ea

r (
CP

U
ut

il.
)

Lin
ea

r (
CP

U
ut

il.
 an

d
fre

q.
)

Lin
ea

r (
CP

U
ut

il.
 an

d
fre

q.
,…

Lin
ea

r (
Su

pe
r m

od
el

)

Lin
ea

r (
Su

pe
r m

od
el

, P
as

t)

PW
L (

CP
U

ut
il.

)

PW
L (

CP
U

ut
il.

 an
d

fre
q.

)

PW
L (

CP
U

ut
il.

 an
d

fre
q.

, P
as

t)

PW
L (

Su
pe

r m
od

el
)

PW
L (

Su
pe

r m
od

el
, P

as
t)

In
te

ra
ct

iv
e (

CP
U

ut
il.

 an
d

fre
q.

)

In
te

ra
ct

iv
e (

CP
U

ut
il.

 an
d…

In
te

ra
ct

iv
e (

Su
pe

r m
od

el
)

In
te

ra
ct

iv
e (

Su
pe

r m
od

el
, P

as
t)

In
te

ra
ct

iv
e(

Ge
ne

ra
l)

Sw
itc

hi
ng

 (S
up

er
 m

od
el

)

(A)

D
R

E

N
o

d
e

 P
o

w
e

r
(W

)

Figure 1. (A) Opteron average DRE for one representative workload (Primes), demonstrating that more complex models are required. Other workloads

like StaticRank (not shown) demonstrate that feature selection is critical. (B) The piecewise linear model (black circles) can predict the full-system

power range, while the trained linear model (red dotted line) cannot.

Athlon running Staticrank

Single Machine Linear Model (CPU)

Measured Power Cluster interactive Model (General)

Region unable to predict

using linear model

P
o

w
e

r
(W

)

Time (s)

Figure 2. Worst-case full-system power prediction for the desktop

(Athlon) cluster using a single machine linear power model compared to
the cluster interaction model using the general feature set. Note the upper

region of the graph where the linear model cannot predict power.

common set, we defined a general set of features that can be used

across all platforms. This is the general model shown below:

 ̂

This model simplifies model and feature extraction and

provides the ultimate portability. Furthermore, the general feature

set model reduced accuracy by less than 1% DRE, worst case and

no more than 0.25% DRE excluding the worst-case outlier. As

Figure 1A demonstrates, the general-model DRE is on par with

the other models. Likewise, as Figure 2 shows, the general model

can predict the entire dynamic range of the cluster, whereas the

scaled single machine linear model that only uses CPU utilization

does not predict the upper ~20% of the cluster power.

6. Conclusions
In this paper, we developed and validated high-fidelity cluster

power models for six server platforms. These platforms covered a

range of server designs proposed in recent literature

[1,13,19,31,32] and used in current practice, from embedded- and

mobile-processor-based systems to desktop- and server-processor-

based systems. Our models are based on a statistically sound and

automatic framework that is capable of absorbing a very large

number of initial features and returning a tractable number of

features used in a variety of models: Out of CHAOS comes

clarity. All of these features can be collected by the OS to provide

online power estimates. To the best of our knowledge, these

models are the first to use OS-level counters to predict full-system

and cluster power with this high level of accuracy. The use of

high-level OS counters makes metric collection convenient and

consistent across all the platforms we tested, unlike hardware

performance counters and board-level measurements.

In order to evaluate and compare models across systems and

workload types, we introduced a new error metric, called dynamic

range error (DRE), based on the familiar mean squared error. This

metric provides a frame of reference for model accuracy with

respect to the application’s dynamic power consumption range on

a particular platform, making it easier to evaluate tradeoffs

between cost and accuracy. This metric can also be used to

compare the accuracy of models across platforms. Our cluster

models demonstrate accuracy in the 0.5-2.5% range using metrics

like median error and rMSE divided by average power, and under

10% using our error metric, DRE.

Our cross-platform results show that models based on CPU

metrics alone do not capture the behavior of data-intensive

cluster-level applications. Furthermore, disk utilization metrics

significantly improve model accuracy even on systems with solid-

state disks. This result is surprising since solid-state disks

generally have low static and dynamic power consumption. For

the data-intensive applications examined, disk utilization may also

be a proxy for memory traffic. We also found that historical

processor frequency information did not improve model accuracy.

We only used the previous processor frequency and not a window

as described in [22].

From the modeling perspective, we quantified the loss of using

a unified set of features across disparate hardware platforms. This

quantification enables informed decision-making about whether

the effort of collecting these additional statistics is necessary in a

given context. Finally, the general model can be used across

multiple platforms and does not impact accuracy compared to

platform-specific models, which can be deployed for online or

offline cluster power prediction.

7. REFERENCES
[1] D. Andersen et al., “FAWN: A fast array of wimpy nodes,” in SOSP

2009.

[2] W. L. Bircher and L. K. John, “Complete system power estimation:

A trickle-down approach based on performance events,” in ISPASS
2007.

[3] S. Bird et al., “Fixing performance counters: Performance

monitoring hardware for the datacenter,” in Wkshp. on Architectural
Concerns in Large Datacenters (ACLD), 2009.

[4] Y. Chen et al., “Managing server energy and operational costs in

hosting centers,” in SIGMETRICS 2005.
[5] J. Choi et al., “Profiling, prediction, and capping of power

consumption in consolidated environments,” in MASCOTS 2008.

[6] ClueWeb09 dataset. Available at
http://boston.lti.cs.cmu.edu/Data/clueweb09/

[7] J. D. Davis et al., “Accounting for variability in large-scale cluster

power models,” in Wkshp. on Exascale Evaluation and Research
Techniques (EXERT), 2011.

[8] D. Economou et al., “Full-system power analysis and modeling for

server environments,” in Wkshp. on Modeling, Benchmarking, and
Simulation (MoBS), 2006.

[9] X. Fan et al, “Power provisioning for a warehouse-sized computer,”

in ISCA 2007.
[10] J. Friedman, Multivariate Adaptive Regression Splines, 1991, The

Annals of Statistics, 19:1-141.

[11] S. Govindan et al., “Statistical profiling-based techniques for
effective power provisioning in data centers,” in EuroSys 2009.

[12] J. Hamilton, “Annual fully burdened cost of power,” Dec. 2008.

Available at: http://perspectives.mvdirona.com/2008/
12/06/AnnualFullyBurdenedCostOfPower.aspx

[13] J. Hamilton, “CEMS: low-cost, low-power servers for Internet-scale
services,” in CIDR 2009.

[14] T. Heath et al., “Energy conservation in heterogeneous server

clusters,” in PPoPP 2005.
[15] M. Isard et al., “Dryad: Distributed data-parallel programs from

sequential building blocks,” in EuroSys 2007.

[16] M. Isard et al., “Quincy: Fair scheduling for distributed computing
clusters,” in SOSP 2009.

[17] A. Kansal and F. Zhao, “Fine-grained energy profiling for power-

aware application design,” in HotMetrics 2008.
[18] A. Kansal et al., “Virtual machine power monitoring and

provisioning,” in Proc. Symp. on Cloud Computing (SoCC), 2010.

[19] L. Keys et al., “The search for energy-efficient building blocks for

the data center,” WEED 2010.

[20] W. Lang and J. Patel, “Energy management for MapReduce

clusters,” in VLDB 2010.
[21] A. Lewis et al., “Run-time energy consumption estimation based on

workload in server systems,” in HotPower 2008.

[22] A. Lewis et al., “Chaotic attractor prediction for server run-time
energy consumption,” in HotPower 2010.

[23] T. Li and L. K. John, “Run-time modeling and estimation of

operating system power consumption,” in SIGMETRICS 2003.
[24] D. Meisner and T.F. Wenisch, “Peak power modeling for data center

servers with switched-mode power supplies,” in ISLPED 2010.

[25] Microsoft, “Windows 2000 Resource Kit Performance Counters,
Counters by Object,” available at: http://msdn.microsoft.com/en-

us/library/ms803998.aspx

[26] P. Ranganathan, et al. “Ensemble-level power management for dense
blade servers,” in ISCA 2006.

[27] S. Rivoire et al., “A comparison of high-level full-system power

models,” in HotPower 2008.
[28] K. Singh et al., “Real-time power estimation and thread scheduling

via performance counters,” in Wkshp. on Design, Architecture, and

Simulation of Chip Multi-Processors (dasCMP), 2008.
[29] D. C. Snowdon et al., “Koala: a platform for OS-level power

management,” in EuroSys 2009.

[30] D. C. Snowdon et al., “Accurate on-line prediction of processor and
memory energy usage under voltage scaling,” in EMSOFT 2007.

[31] A. S. Szalay, et al., “Low-power Amdahl-balanced blades for data-

intensive computing,” in HotPower 2009.
[32] V. Vasudevan, et al., “Energy-efficient cluster computing with

FAWN: workloads and implications,” in e-Energy 2010.

[33] V. M. Weaver and S. A. McKee, “Can hardware performance
counters be trusted?” in IISWC 2008.

