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ABSTRACT 

In this paper, we present an automatic framework for modeling 

node- and cluster-level power consumption, using only portable 

OS-level performance counters. We evaluate these models using 

an emerging class of MapReduce-style workloads, executed on 

current server-class systems as well as energy-efficient low-power 

desktops, high-end laptops, and embedded systems. We also 

validate generic, cross-platform (with respect to model features) 

cluster power models for our four workloads running on six types 

of clusters. Our models yield highly accurate predictions without 

the intrusiveness and/or the correctness and portability problems 

of hardware performance counters or board-level measurements. 

We define a new metric called Dynamic Range Error (DRE) to 

describe how well the model characterizes the dynamic system 

behavior (a tighter bound than MSE or median error) and facilitate 

inter- and intra-cluster model accuracy comparisons. Using this 

metric, we quantify the tradeoffs between model complexity and 

accuracy for different workloads. The generic feature model 

removes the feature selection process and only degrades 

prediction accuracy by at most 1% DRE when compared to the 

best cluster power model for the workloads and clusters we 

studied. To the best of our knowledge, this is the most complete 

study of system power modeling covering such a wide variety of 

platforms, workloads, and models. 

1. Introduction 
Power consumption is a first-order design constraint in the data 

center (DC). Power infrastructure accounts for approximately 

80% of data center facility costs and about 40% of operating costs 

[12]. Provisioning DCs for peak absolute system power avoids the 

dire consequences of exceeding the DC's power budget, but it is 

overly conservative. The goal of this paper is to build software-

based high-fidelity cluster power models that can be used for DC 

power provisioning and planning, online power capping, and 

power-aware software tuning, eliminating the need for expensive 

hardware and/or software solutions. In order for these models to 

be suitable for large-scale use, we require them to use generic, 

portable predictors; to be highly accurate for emerging server 

designs and workloads; and to scale beyond a single node. 

We use OS-level performance counters to build and validate 

machine-level and cluster-level power models for six different 

clusters of homogeneous machines. OS-level performance 

counters are easy to collect and consistent across multiple 

platforms (portable), and they can be collected in real time for 

online power prediction. The machines that make up the clusters 

span the embedded, mobile, desktop, and server processor spaces, 

reflecting energy-efficient server recommendations from recent 

research [1,13,19,31,32] as well as more traditional servers used 

in current practice. We build and validate these models on 

MapReduce-style applications that all use the same software 

stack. 

In order to conduct this model exploration, we build and 

evaluate over 1200 full-system power models per cluster in a 

design exploration of the modeling techniques and model features. 

Our power modeling requirements are to simultaneously provide 

high accuracy, with errors of less than 10% of the dynamic power 

range (a stricter error measure than used in prior art), minimize 

the number of model features, use portable features across 

platforms, and minimize the model complexity, thereby reducing 

modeling overhead. Accurate and low-cost models are critical 

when planning new DCs and provisioning existing ones. 

In this paper, we make the following contributions: 

 We define and evaluate a new model error metric called 

Dynamic Range Error (DRE), which is based on the mean 

squared error and the dynamic power range of the system. 

This metric yields a more appropriate basis for cross-

platform comparison than currently used error metrics. 

 We demonstrate an automatic, generic framework that 

builds high-fidelity cluster power models using portable 

OS-level performance counters. We achieve prediction 

errors of less than 10% DRE, a stricter error measure than 

prior work has used, or 0.5-2.5% using median error. 

 We show the relationship between model complexity and 

accuracy for different workloads and present a general set 

of predictors that yields accurate models across the 

different clusters. 

The rest of this paper is organized as follows. Section 2 

provides a brief summary of related work. Section 3 describes our 

hardware, software, and instrumentation infrastructure. In Section 

4, we present the model feature space and modeling techniques 

we used. Section 5 evaluates our models’ accuracy and generality, 

and Section 6 concludes. 

2. Related Work 
In this section, we compare our full-system power models to 

prior work based on five characteristics: choice of predictors, 

choice of modeling techniques, sampling frequency, 

portability/scalability, and overall accuracy. We discuss only 

system-level power models and omit component-specific models, 

which have very different goals and characteristics. 

Choice of predictors. Early power models were based solely on 

CPU utilization [5,9,24,26] or even CPU frequency state [4].  

Subsequent work uses board-level measurements [21,22] or 

hardware performance counters to capture the behavior of CPU, 

memory, and I/O devices [2,8,23,29,30]. Our framework uses 

only OS-level performance counters, avoiding the intrusiveness of 

board-level measurements and the correctness and portability 

problems of hardware performance counters [3,33]. 

Choice of modeling techniques. Most previous work uses linear 

models [5,9,14,21,23,27], piecewise linear models [28], or other 

models that do not capture interaction between predictors [2].  

Other recent work found that even nonlinear interactive models 

fail to capture the behavior of the systems studied, but chaotic 

attraction predictors provide the desired accuracy [22]. Our work 

confirms that linear models are often insufficient, but we find 

interactive models to be highly accurate for our machines and 



workloads. Our choice of predictors may be the reason for this 

difference from prior work. 

Sampling frequency. A sampling frequency of 1 Hz is common 

in the literature, since many power meters and OS event interfaces 

do not support faster sampling.  Recent work shows that this 

sampling rate does not capture short power-supply-induced 

spikes; modeling these spikes requires sampling at every 

invocation of the OS scheduler [24]. The inability to model these 

spikes is a limitation of less intrusive models, including ours. At 

the other extreme, some models have used 10-minute intervals [9] 

or modeled total energy over a workload [20,29,30], which misses 

application-level behavior patterns [16]. 

Portability and scalability. Some previous models require 

application-specific profiling [11,23], while others are solely for 

processor-intensive workloads [14,28].  One study compared 

simple models for a breadth of machines and workloads but did 

not go beyond a single node [27]. In fact, only a few studies 

model the power consumption of multiple machines [7,9,11,14]. 

This work builds single-node and cluster-level models for a 

variety of machines and data-intensive workloads. 

Accuracy. In many papers the only metric of accuracy is that 

the model was sufficient for some energy-saving technique.  Other 

papers use metrics such as (r)MSE or median error, but they 

compare these metrics to static power rather than the dynamic 

power range. This makes it difficult to understand how well the 

model captures variation in power.  Our modeling approach yields 

models at least as accurate as any previously proposed 

generalizable approach, with the added advantages of portability 

and non-intrusive metric collection. 

3. Infrastructure 
This section describes the clusters for which we build power 

models, the workloads we use to build and validate models, and 

our measurement infrastructure. 

3.1 Hardware and software infrastructure 
We build power models for multiple small (five-node) 

homogeneous clusters. Using these testbeds, which are described 

in Table 1, we demonstrate an automatic, general, and portable 

framework for building high-fidelity cluster power models, and 

we evaluate the accuracy of several modeling techniques for a 

variety of workloads. 

We run an assortment of distributed workloads using the Dryad 

and DryadLINQ application framework [15]. Some of the 

workloads are CPU-intensive, while others are dominated by disk 

or network. We run all workloads five times per cluster to allow 

each node to act as job scheduler, which provides diversity in the 

work done even within an application. The workloads used are: 

 Sort. This workload sorts 4GB of data with 100-byte 

records. This workload has high disk and network utilization. 

 PageRank. This workload runs a graph-based page ranking 

algorithm over the ClueWeb09 dataset [6], a corpus of about 

1 billion web pages. PageRank has high network utilization. 

 Prime. This workload checks for primeness of each of 

approximately 1,000,000 numbers on each of 5 partitions in a 

cluster. This workload is CPU-intensive and produces little 

network traffic. 

 WordCount. This workload reads through 50 MB text files 

on each of 5 partitions in a cluster and tallies the occurrences 

of each word that appears. It produces little network traffic. 

3.2 Measurement infrastructure 
The measurement infrastructure consists of a hardware 

component that physically measures total system power and the 

software components that collect both the power measurements 

and OS-level performance counters.  

Hardware: Every machine in every cluster is individually 

instrumented with a power meter. We use the WattsUp? Pro 

digital power meter to capture the wall power once per second. 

Each machine reads its own power measurements over a USB 

port. The power meters have an error of 1.5%. We verified the 

meter calibration, but we leave the explicit extraction of meter 

error for future work. 

Software: Each system runs Windows Server 2008 R2, which 

has a convenient and standardized OS-level performance counter 

interface and tool suite. We use Windows Perfmon to record 

measurements once per second for Windows ETW (Event Tracing 

for Windows) software counters as well as the WattsUp? Pro 

power meter readings.  

4. Modeling Framework 
This section briefly reviews the feature selection process, 

which is described in more detail in [7]. Then it presents the four 

different modeling techniques used to generate full-system and 

full-cluster power models. 

4.1 Feature Selection 
To fully explore the space of predictors, we sample a wide 

Table 2. Significant ETW performance counters used in cluster models. 

Category Performance counter counter ID 

Network Datagram/sec 1 

Memory 

Page Faults/sec 18 

Committed Bytes 20 

Cache Faults/sec 24 

Pages/sec 26 

Page Reads/sec 28 

Pool Nonpaged Allocs 34 

Physical Disk 
Disk Total Disk Time % 54 

Disk Total Disk Bytes/sec 66 

Process 
Total Page Faults/sec 79 

Total IO Data Bytes/sec 99 

Processor 

Total Processor Time % (Utilization) 102 

Total Processor Interrupts/sec 105 

Total Processor % DPC Time 106 

File System Cache 

Data Map Pins/sec 121 

Pin Reads/sec 122 

Pin Read Hits % 125 

Copy Reads/sec 126 

Fast Reads not Possible/sec 139 

Lazy Write Flushes/sec 140 

Job Object Details Total Page File Bytes Peak 167 

Processor Performance Processor_0 Processor Frequency 209 

 

Table 1. We develop full-system power models for 5-machine clusters of the platforms below. *System maximum memory capacity. 

System Class CPU Memory Disk(s) OS, FS 

Embedded Intel Atom, dual-core, 1.6 GHz 4 GB DDR2-800* 1 Micron SSD 

Windows Server 

2008 R2, NTFS 

Mobile Intel Core 2 Duo, dual-core, 2.26 GHz, 25 W TDP 4 GB DDR3-1066* 1 Micron SSD 

Desktop AMD Athlon, dual-core, 2.8 GHz, 65 W TDP 8 GB DDR2-800 1 Micron SSD  

Server AMD Opteron, quad-core, 2.0 GHz, 50 W TDP 32 GB DDR2-800 2 10K RPM SATA 

Server Intel Xeon, quad-core, 2.33 GHz, 80 W TDP 16 GB DDR2-667 4 7.2K RPM SATA 

Server Intel Xeon, quad-core, 2.67 GHz, 80 W TDP 16 GB DDR2-667 6 15K RPM SAS 

 



range of performance counters provided by the OS and tool suite. 

This set includes counters from the following categories: 

processor, memory, physical disk, process, job object, file system 
cache, and network interfaces [25]. In aggregate, approximately 

250 performance counters are collected per second per node. We 

verified that the data collection process does not interfere with 

program behavior or power consumption. 

After removing insignificant or redundant counters, about 50 

features remain. For each system type, we further pare this list to 

5-15 significant features. The equations below show the final 

features for each cluster-specific model. Power is denoted by y, 

and xi denotes the features measured on each machine. We collect 

data of the form <y, x1,…,xn>, and we fit functions  ̂           

so that  ̂   approximates y, minimizing some loss function. The 

numeric subscripts refer to the counter IDs in Table 2.  

               ̂                                        

                 ̂                                      
                                

                ̂                                     
                                  )  

             ̂                              

            ̂                                   

           ̂                                             
We found that systems with aggressive DVFS required the 

processor frequency as a model feature. Furthermore, the Intel 

servers had fewer frequency states and more hard disk drives. For 

these models, the processor frequency feature was not as strong a 

signal as other models and hard drive related features were 

stronger that single disk configurations, both with respect to 

hardware related counters and software related counters like the 

file system and related cache. 

4.2 Modeling techniques 
We experiment with four different modeling techniques of 

varying degrees of conceptual and implementation complexity. 

We present the simple linear model first, followed by the 

piecewise linear, interactive, and switching model, the latter based 

on domain-specific system knowledge.  

Baseline linear power model: 

 ̂             ∑                                                                            
 

 

Piecewise linear power model: 

 ̂             ∑ ∑          
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Interactive power model: 
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Switching power model: 

 ̂                  ∑      
 

                ∑        
 

       

where I(f) = 1 iff the frequency < threshold; otherwise I(f) = 0.  

We start with a basic linear regression model (Equation 1), 

where the parameters     
  are fitted by minimizing the squared 

error. This is the form used by most previous work. It is a useful 

baseline against which we can compare all other proposals for  ̂   

and evaluate the increase in accuracy of more complex models. 

The piecewise linear power model (Equation 2) provides an 

extra degree of freedom. In this model, s can be positive (+) or 

negative (), and the basis functions Bi,j
s are hinge functions. 

    
 (x,t) takes a value of 0 if x ≤ t and xt otherwise.  Similarly,     

  

(x,t) takes a value of 0 if x > t and tx otherwise.  The t thresholds 

are usually called knots, and the j indices permit a feature to be 

responsible for more than one knot.  Fitting these models requires 

finding the knots      and the parameters     .  To do so, we use an 

implementation of the Multivariate Adaptive Regression Splines 

(MARS) algorithm [10]. 

Intuitively, these models can express that a feature, such as 

CPU utilization, may consume full-system power at different rates 

in different regions. It could thus be nonlinear over the entire 

space, but linear within each of these regions.  

The interactive model (Equation 3) is an extension of the 

piecewise linear model that introduces nonlinearity by letting the 

basis functions interact. We restrict this interaction to degree = 2 

and use the same algorithm (and implementation) as in the 

piecewise linear case to select knots and fit parameters and to 

select which bases would interact. Finally, the switching model 

(Equation 4) uses CPU frequency as the indicator function, I(f). 

The result is a set of (possibly) different linear models depending 

on the clock frequency. Unlike the piecewise model, where the 

knots partition only the space of a particular feature, the frequency 

state and the indicator function partition the space for all the 

features, creating completely separate models for each frequency. 

This model is more rigid, even though it may require more 

parameters (since we must fit coefficients for every feature at 

every frequency state). 

5. Evaluation 
In this section, we discuss the highlights of our findings from 

building over 1200 power models. We use a scripting language to 

generate high-level statistical computing code. In some case, the 

high-level statistical environment uses the scripting language to 

process intermediate results, automating model building and 

testing. In the following subsections, we explain these results in 

detail. First, we define and justify the dynamic range error (DRE), 

the metric we will use to evaluate the models. Then we evaluate 

our platform-specific and general model. Finally, we discuss the 

impact of these modeling techniques. 

5.1 Dynamic range error 
To evaluate the accuracy of power models, absolute error terms 

like mean squared error (MSE) or median error are difficult to 

compare across platforms whose operating power may differ by 

orders of magnitude. Presenting these error terms as a percentage 

of the total power still obscures the fact that the overall power 

may contain a large static component, making it trivially 

predictable. The real question from a research perspective is how 

well the model captures the dynamic variation in power. 

Therefore, a more meaningful number is the dynamic range 

error (DRE), which we define as the root-mean-squared error 

divided by the dynamic range. Table 3 compares various error 

metrics across our platforms. It shows that a small rMSE, on the 

order of 2% of total power, can translate into a large DRE of 30%. 

Using DRE provides a platform-independent view of a model’s 

explanatory power. 

5.2 Cluster Model Discussion 
We compare 16 different cluster models from the 4 categories 

of models described in Section 4.2, using various subsets of the 

features from the 22 independent features identified in Table 2. 

We use 5-fold cross validation to generate an average DRE per 

Table 3. Dynamic range error (DRE) compared to two other common 

error metrics: rMSE and the percent error (rMSE/ average power).  

Workloads 

Opteron - Server Atom - Embedded 

rMSE 

rMSE/ 

Avg Power DRE rMSE 

rMSE/  

Avg Power DRE 

Primes 4.35 2.9% 11.3% 0.57 2.4% 30.8% 

Staticrank 4.13 2.9% 7.6% 0.64 2.6% 19.4% 

Terasort 2.76 2.0% 9.4% 0.69 2.8% 11.5% 

Wordcount 3.84 2.6% 9.5% 0.64 2.6% 22.7% 

 



cluster configuration and workload. Using this methodology, we 

are able to compare models across the various platforms and 

quickly understand how good the models are. 

5.2.1 Cluster Power Models 
The cluster power model is built using a general machine 

model,  ̂         , as described in Section 4.2, that is trained 

using several machines, as shown in Equation 5. The best model 

accuracy was achieved using a subset of the features listed in 

Table 2 for each machine in the cluster, specified in Section 4.1. 

             ∑  ̂                                 
 

 

Some of our initial attempts relied on aggregated features 

across the cluster to find correlations to the cluster power. In this 

case, there were too many features that correlated and the 

generated models were fragile. The features that these models 

selected excluded some nodes and as a result, there was no clear 

way to scale the models. The same holds true for models at the 

rack level when trying to aggregate features from all the 

machines. Our goal is to reduce the number of features used to 

model the cluster and use the simplest model with the highest 

fidelity. Of the models we investigated, the PWL and interactive 

models use fewer features than the switching models, reducing 

their overhead. By reducing the model overhead, we are able to 

also use these models for online power prediction, which can then 

be used to attribute costs to the appropriate user, screen for 

hardware and/or software failures, or other data mining studies. 

5.2.2 Cluster model accuracy 
Figure 1A lists the modeling techniques, from left to right, in 

increasing order of the number of features used in the models. It 

should be noted that the results presented here are typical across 

all platforms, and so we only present data from one cluster and 

one of the workloads. 

There are several observations that can be made from Figure A 

related to model complexity and feature selection. This figure 

shows the CPU-only models are, in general, the least accurate. 

Even in CPU-bound applications like Primes, using piecewise 

linear (PWL) models dramatically improves accuracy. 

Furthermore, regardless of the application, feature selection 

played a critical role in the modeling accuracy. When using a 

small number of features, we found a few cases of the piecewise 

linear and linear modeling techniques producing the same models 

for a particular workload and cluster. However, when we use the 

model feature set from Section 4.1, all PWL, interactive, and 

switch models outperformed all linear models. These results 

demonstrate that more complex models are required and that 

feature selection matters to produce high-fidelity models. Finally, 

as prior art has shown [22], past data may be useful in improving 

model accuracy. We used the past (t-1) core frequency in the 

piecewise linear and interactive models, but we found this 

additional feature did not improve model accuracy significantly. 

Unlike prior work [22], we only used the previous core frequency 

and not a window. 

Finally, as Figure 1B demonstrates, a linear model using only 

CPU utilization that minimizes the model error cannot predict the 

full dynamic range of the node. However, a piecewise linear 

model can predict the full dynamic node range. In the next 

section, we demonstrate this using the general cluster model. 

5.3 General Feature Set 
Ideally, we would be able to identify a unified set of model 

features that can be used for all platforms. After building the 

various platform-specific models, we noticed that at a high level, 

the models shared a lot of features. By selecting the features that 

were common across all the models and adding the most common 

features from the categories that were not represented in this 
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Figure 1. (A) Opteron average DRE for one representative workload (Primes), demonstrating that more complex models are required. Other workloads 

like StaticRank (not shown) demonstrate that feature selection is critical. (B) The piecewise linear model (black circles) can predict the full-system 

power range, while the trained linear model (red dotted line) cannot. 
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Figure 2. Worst-case full-system power prediction for the desktop 

(Athlon) cluster using a single machine linear power model compared to 
the cluster interaction model using the general feature set. Note the upper 

region of the graph where the linear model cannot predict power. 



common set, we defined a general set of features that can be used 

across all platforms. This is the general model shown below: 

              ̂                                      

This model simplifies model and feature extraction and 

provides the ultimate portability. Furthermore, the general feature 

set model reduced accuracy by less than 1% DRE, worst case and 

no more than 0.25% DRE excluding the worst-case outlier. As 

Figure 1A demonstrates, the general-model DRE is on par with 

the other models. Likewise, as Figure 2 shows, the general model 

can predict the entire dynamic range of the cluster, whereas the 

scaled single machine linear model that only uses CPU utilization 

does not predict the upper ~20% of the cluster power. 

6. Conclusions 
In this paper, we developed and validated high-fidelity cluster 

power models for six server platforms. These platforms covered a 

range of server designs proposed in recent literature 

[1,13,19,31,32] and used in current practice, from embedded- and 

mobile-processor-based systems to desktop- and server-processor-

based systems. Our models are based on a statistically sound and 

automatic framework that is capable of absorbing a very large 

number of initial features and returning a tractable number of 

features used in a variety of models: Out of CHAOS comes 

clarity. All of these features can be collected by the OS to provide 

online power estimates. To the best of our knowledge, these 

models are the first to use OS-level counters to predict full-system 

and cluster power with this high level of accuracy. The use of 

high-level OS counters makes metric collection convenient and 

consistent across all the platforms we tested, unlike hardware 

performance counters and board-level measurements. 

In order to evaluate and compare models across systems and 

workload types, we introduced a new error metric, called dynamic 

range error (DRE), based on the familiar mean squared error. This 

metric provides a frame of reference for model accuracy with 

respect to the application’s dynamic power consumption range on 

a particular platform, making it easier to evaluate tradeoffs 

between cost and accuracy. This metric can also be used to 

compare the accuracy of models across platforms. Our cluster 

models demonstrate accuracy in the 0.5-2.5% range using metrics 

like median error and rMSE divided by average power, and under 

10% using our error metric, DRE. 

Our cross-platform results show that models based on CPU 

metrics alone do not capture the behavior of data-intensive 

cluster-level applications.  Furthermore, disk utilization metrics 

significantly improve model accuracy even on systems with solid-

state disks. This result is surprising since solid-state disks 

generally have low static and dynamic power consumption.  For 

the data-intensive applications examined, disk utilization may also 

be a proxy for memory traffic. We also found that historical 

processor frequency information did not improve model accuracy. 

We only used the previous processor frequency and not a window 

as described in [22]. 

From the modeling perspective, we quantified the loss of using 

a unified set of features across disparate hardware platforms. This 

quantification enables informed decision-making about whether 

the effort of collecting these additional statistics is necessary in a 

given context. Finally, the general model can be used across 

multiple platforms and does not impact accuracy compared to 

platform-specific models, which can be deployed for online or 

offline cluster power prediction.  
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