
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Checking Compatibility of Bit Sizes in

Floating Point Comparison Operations

Manuel Fähndrich1

Microsoft Research, Redmond

Francesco Logozzo2

Microsoft Research, Redmond

Abstract

We motivate, define and design a simple static analysis to check that comparisons of floating point
values use compatible bit widths and thus compatible precision ranges. Precision mismatches arise
due to the difference in bit widths of processor internal floating point registers (typically 80 or
64 bits) and their corresponding widths when stored in memory (64 or 32 bits). The analysis
guarantees that floating point values from memory (i.e. array elements, instance and static fields)
are not compared against floating point numbers in registers (i.e. arguments or locals).
Without such an analysis, static symbolic verification is unsound and hence may report false
negatives.
The static analysis is fully implemented in Clousot, our static contract checker based on abstract
interpretation.

Keywords: Abstract Interpretation, Design by Contracts, Floating points, Numerical Abstract
Domains, Static Analysis, .NET.

1 Introduction

Comparing floating point values in programs can introduce subtle errors due
to precision mismatches of the compared values. Precision mismatches arise as
a result of truncating typically larger register internal floating point widths (80
or 64 bits) to the floating point width used when storing the value into main
memory (64 or 32 bits). Such mismatches may produce unexpected program

1 Email:maf@microsoft.com
2 Email:logozzo@microsoft.com

c©2011 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:maf@microsoft.conm
mailto:logozzo@microsoft.com


Fähndrich, Logozzo

public class Account
{
private float balance;

public Account(float initial)
{
Contract.Requires(initial >= 0.0f);

balance = initial;
}

public void Deposit(float amount)
{
Contract.Requires(amount >= 0.0);
Contract.Ensures(balance == Contract.OldValue(balance) + amount);

balance = balance + amount;
}

// Other methods here
}

Fig. 1. A C# code snippet for the classical Bank account example. Contract.Requires specifies the
precondition, Contract.Ensures specify the postcondition, Contract.OldValue denotes the value
of the argument expression at the entry point (not directly expressible in C#). It turns out that,
as it is, the postcondition is incorrect, and it may fail at runtime for opportune values of amount.

behavior, resulting in programmer confusion and—if ignored—unsound static
program analysis.

We introduce the problem with the code snippet in Fig. 1, extracted from
the “classical” bank account example annotated with contracts [8]. In this
paper, we use C# as our language and the .NET runtime. However, the
general problem addressed in this paper is present in numerous programming
languages and runtimes. We address these other contexts in Sect. 5.

The class Account represents a bank account. The method Deposit up-
dates the balance by a given non-negative amount. The postcondition for
Deposit states that on method exit the balance has been correctly updated.
The current balance is stored in an instance field of type float. The ECMA
standard requires .NET implementations of floating point types to follow the
IEC:60559:1989 standard.

At a first glance, one expects the postcondition to hold and any static
analyzer to easily prove it. In fact, a simple reasoning by symbolic propagation
(balance0 denotes the value of the field balance at method entry) could be:

assert balance == balance0 + amount

⇐⇒ { by the assignment: balance = balance0 + amount }
assert balance0 + amount == balance0 + amount

⇐⇒ { by equality }
true

Unfortunately, a static analyzer for .NET performing this reasoning would be
unsound! For instance, the following two lines of C# code:

var account = new Account(6.28318548f);
account.Deposit(3.14159274f);

2



Fähndrich, Logozzo

Fig. 2. A failure at runtime of the postcondition for Deposit.

cause a postcondition violation in the method Deposit (cf. Fig. 2).

What is wrong here? Let’s first rule out causes that are not the problem:

• Overflow can be excluded, as floating point numbers cannot overflow (at
worst, operations result in special values ±∞ or NaN).

• Non-determinism is ruled out by the IEEE754 standard, and by the fact
that the code in the example is single-threaded.

• Cancellation is to be ruled out too: e.g. the numerical quantities are positive
and of the same order of magnitude.

• Floating point addition is commutative, so this is not the cause of the
problem either.

• Addition is not necessarly associative, but we do not need associativity here
(we are adding only two numbers).

The real culprit here is the equality test. In general all comparisons of floating
point values are problematic. However it is still unclear at first sight why the
comparison is a source of problems here: after all we are adding up the same
two quantities and then comparing them for equality. If some rounding error
occurs, then the same error should occur in both additions, or won’t it?

The reason for the unexpected behavior is to be found deeper in the spec-
ification of the Common Language Runtime (Partition I, Sect. 12.1.3 of [1]):

Storage locations for floating-point numbers (statics, array elements, and fields of classes) are
of fixed size. The supported storage sizes are float32 and float64 . Everywhere else (on the
evaluation stack, as arguments, as return types, and as local variables) floating-point num-
bers are represented using an internal floating-point type. In each such instance, the

3



Fähndrich, Logozzo

l = k (load const)

l = l1 (copy) l = (type) l1 (cast)

l = l1 op l2 (binary op)

l = o.f (load field) o.f = l (store field)

l = a[li] (load array) a[li] = l (store array)

Fig. 3. The simplified bytecode language we consider for the analysis. A constant k can
only be a constant belonging to the float32 or float64 ranges. Casting is allowed only to
type ∈ {float32 , float64 }.

nominal type of the variable or expression is either float32 or float64 , but its value can be
represented internally with additional range and/or precision. The size of the internal floating-
point representation is implementation-dependent, can vary, and shall have precision at least
as great as that of the variable or expression being represented. An implicit widening conver-
sion to the internal representation from float32 or float64 is performed when those types are
loaded from storage. [...] When a floating-point value whose internal representation has
greater range and/or precision than its nominal type is put in a storage location, it
is automatically coerced to the type of the storage location.

The standard allows exploiting the maximum precision available from the
floating point hardware for operations on values in registers despite of their
nominal type, provided that on memory stores the internal value is truncated
to the nominal size. It is now easy to see why we get the postcondition
violation at runtime.

The result of the evaluation of the expression this.balance + amount is
internally stored at the maximum precision available from the hardware (on
Intel processors 80 bits registers, on ARM architectures 64 bits). In the exam-
ple, the result of the addition is 9.42477822, a value that cannot be precisely
represented in 32 bits.

The successive field store forces the value to be truncated to 32 bits, thereby
changing the value. In the example, 9.42477822 is coerced to a float, causing
a loss of precision resulting in the value 9.424778 being stored in the field
this.balance.

When the postcondition is evaluated, the truncated value of balance is
re-loaded from memory, but the addition in the postcondition is re-computed
with the internal precision. Comparing these two values causes the postcon-
dition to fail, since 9.424778 6= 9.42477822.

Contribution

We present a simple static analysis to check that floating point comparisons
(equalities, inequalities) use operands of compatible types. When they are not
compatible, the analysis reports a warning message to the user, so that all
successive validations should be understood as conditional. We fully imple-
mented the analysis in Clousot, our static contract checker based on abstract
interpretation for .NET [2]. We validated the analysis by running it on the
base class library of .NET where it emitted 5 real warnings.

4



Fähndrich, Logozzo

2 The Language

We illustrate our analysis on a minimalistic bytecode language. We make some
simplyfing assumptions. There are two kinds of variables: store variables
(f, a ∈ S) and locals (l, p ∈ L). Store variables are instance fields, static
fields and arrays. Local variables are locals, parameters, and the return value.
Variables belong to the set Vars = S ∪ L. Aliasing is not allowed.

The language has only two nominal floating point types
(float32 , float64 ∈ TN ) and one internal floating point type (floatX )
such that 64 ≤ X. On x86, floatX is float80, allowing extended floating
point precision. Please note that the .NET standard does not include a
long double as for instance C [3], so application programmers have no access
to floatX types.

All variables have a nominal floating point type. At runtime, the nominal
floating point type for locals may be widened but not that of store variables.
We say “may be widened”, as it depends on register allocation choices by
the compiler. We think it is reasonable to force the code to compute values
independent of floating point register allocation choices.

The simplified bytecode language is presented in Fig. 3. Floating point
constants are loaded into locals (load const). Admissible constant values are
only those admitted by the nominal types, i.e. floating point constants in 32
or 64 bits including special values as ±∞ and NaN (Not-a-number).

Values can be copied to locals, retaining their internal value (copy). Cast-
ing is allowed only to nominal types, with values narrowed or widened as
needed (cast). In general it is not true that if l1 and l have the same nominal
type then (cast) is semantically equivalent to (copy) as their internal type
may differ.

Binary operations are the usual floating point arithmetic ones (+,−, ∗, /)
and (unordered) comparison operations (==, <,≤,) (binary op). The result
of a comparison is 0.0 if the comparison is false, 1.0 otherwise.

Values are loaded from and stored to fields ([load/store] field). We do
not distinguish between static and instance fields. Fields only contain values
of nominal types: therefore, when storing a local into a field, its value is
automatically narrowed to the field nominal type value. If the value of l is
too large or too small, then it is approximated to ±∞ or to 0. Similarly, values
read from arrays have a nominal type value and values written into arrays are
narrowed to the nominal type of the array type. Arrays are indexed by local
values, and in addition to the usual out-of-bounds checking, we assume that
the computation stops also when li is a floating point number with non-zero
decimal part or it is NaN.

Example 2.1 The compilation to simplified bytecode of the body of method
deposit (without contracts) of Fig. 1 is in Fig. 4. Please note that the store

5



Fähndrich, Logozzo

0 : l1 = this.balance

1 : l2 = amount + l1

2 : this.balance = l2

3 : l1 = this.balance

4 : lcomp = l1 == l2

Fig. 4. The (partial) compilation of the running example in our simple bytecode instruction set.

Jl = kK(τ) = τ [l 7→ η(l)]

Jl = l1K(τ) = τ [l 7→ τ(l1)]

Jl = (type)l1K(τ) = τ [l 7→ type]

Jl = l1opl2K(τ) = τ [l 7→ floatX ]

Jl = o.fK(τ) = τ [l 7→ η(o.f)]

Jo.f = lK(τ) = τ

Jl = a[li]K(τ) = τ [l 7→ η(a[·])
Ja[li] = lK(τ) = τ

Fig. 5. The abstract semantics. The function η returns the nominal type of a variable.

and load field operations are now made explicit in the bytecode.

3 The Abstract Semantics

3.1 Abstract Domain

The abstract domain T we use captures the potential runtime floating point
width a variable may have, which may be more precise than its nominal type.
Therefore, the elements of T belong to the set Vars −→ TX where 64 ≤ X and
TX is the abstract domain:

>

float32

77

float64

OO

floatX

gg

⊥

gg OO 77

If X = 64, i.e. the hardware does not provide any wider floating point
register, then float64 and floatX co-incide. This is the case on ARM archi-
tectures, but not for x86 architectures which provide extra precision registers.

The operations of the abstract domain T (order, join, meet) are the func-
tional pointwise extensions of those on the lattice above. No widening is
required as the lattice is of finite height.

6



Fähndrich, Logozzo

3.2 Abstract Semantics

The abstract semantics J·K ∈ P × T −→ T statically determines, at each
program point an internal type for each local variable. Store variables are
known, by the ECMA standard, to have their nominal type coincide with the
internal type.

The abstract transfer function is defined in Fig. 5. The only constant values
that can be explicitly represented are those admissible as float32 or float64
values: the internal type of a local after a load constant is its nominal type.
Variable copy retains the internal type. The ECMA standard guarantees that
casting a value v to type truncates the value v to one in the type range. If v is
too large or too small for type then it is rounded to ±∞ or 0. The result of a
binary operation is a value of maximum hardware precision, which we denote
by floatX . Reading from a field or an array location provides a value of the
nominal type (no extra precision can be stored in fields). Writing into a field
or an array location causes the truncation of the value to the corresponding
nominal type.

Example 3.1 For the bytecode in Fig. 4, with τ0 = [amount 7→ floatX ], the
inferred internal types after each program point are:

0 : τ1 = τ0[l1 7→ float32 ]

1 : τ2 = τ1[l2 7→ floatX ]

2 : τ3 = τ2

3 : τ4 = τ3[l1 7→ float32 ]

4 : τ5 = τ4[lcomp 7→ floatX ]

3.3 Checking

Checking a program P for precision mismatch in floating point comparisons is
now quite easy. First run the analysis JPK to collect an over-approximation of
the internal types for each program point. Then, for each (binary op) in P

pp : l = l1 op l2

such that op is one of ==,≤, < get τpp, which is the abstract pre-state for pp.

If τpp(l1) or τpp(l2) are different from >, and τpp(l1) = τpp(l2) then the
comparison is on variables with the same internal type. Otherwise, the com-
parison may happen on floating point values of different width, and hence a
warning to the user should be emitted.

Example 3.2 In our running example, τ5(l2) = floatX and τ5(l1) =
float32 . So a warning is emitted to the user (cf. Fig 6).

7



Fähndrich, Logozzo

Fig. 6. The warning emitted by Clousot.

3.4 Fixing the warnings

When the analysis cannot prove that the operands of a comparison are of the
same type, the user can fix it by adding explicit casts. For instance in our
running example, the right postcondition is one where the type coercion is
made explicit:

Contract.Ensures(balance == (float)Contract.OldValue(balance) + amount);

From a programmer’s point of view, this coercion seems redundant, as the
expression Contract.OldValue(balance) + amount already has nominal type
float32 . He/she may expect that the explicit cast to float32 would be a
no-operation. But for the reasons explained in this paper, the cast may be a
truncation.

4 Implementation and Experiment

We have implemeted the analysis described in this paper in Clousot, our static
analyzer for CodeContracts [2]. The analyzer first reads the IL from disk, then
constructs for each method the control flow graph, inserting contracts at the
necessary points. Then it simplifies the program by getting rid of the eval-
uation stack and the heap, reconstructs expressions lost during compilation,
and finally produces a scalar program.

Several analyses are run on the top of the scalar program, i.e. non-null, nu-
merical, array, or arithmetic. We added the detection of precision mismatches
in floating point comparisons described in this paper to the arithmetic analysis.
The analysis is fast and accurate: on the core library of the .NET framework,
mscorlib.dll, constisting of 25089 methods, it adds less than 10 seconds to
the total time, and it reports 5 warnings. We manually inspected those, and
they all represent real warnings similar to the following example:

bool IsNonZero(float f) {
return f != 0.0F;

}

According to the ECMA standard, the parameter f of callers may be passed
in registers and thus use more bits than float32 in memory. Therefore,
the inequality comparison against 0.0F may result in true, even though f

8



Fähndrich, Logozzo

truncated to float32 is equal to 0.0F. As an example of where this could
result in problems, consider:

class C {
float a; // should never be 0.0F

void Update(float f) {
if (IsNonZero(f)) {
this.a = f;

}

...

In the above code, the programmer expects to guard the assignment to the
field to make sure the value stored in the field is never 0.0F. However, due to
register allocation of f, a value represented using more than 32 bits, close to
0.0F but not equal to 0.0F can pass the test and be truncated to 0.0F when
stored into this.a.

5 Discussion

Some languages and compilers have addressed the problem described in this
paper using other means. C compilers typically offer compile-time switches
to control whether the compiler should emit code that adheres strictly to the
bit-widths declared in types, or whether it is allowed to use extra precision
for computations in registers.

Using strict adherence to the declared types requires compilers to emit
truncating casts after each floating point operation that could result in more
precision, or putting the floating point unit into a mode that automatically
performs truncation [10]. The Java standard provides the strictfp keyword
to enforce this truncating behavior and thereby avoids the problem described
in this paper entirely at the cost of precision and speed.

We decided to detect problems with precision mismatches only when com-
paring floating point numbers. Another view would be to write an analysis
that warns users whenever some higher precision float is implicitly cast to the
nominal type width (effectively whenever a result is stored into memory). The
problem with such an alternative analysis is that it would a) warn about most
memory writes, b) miss implicit narrowings arising due to register spilling into
memory introduced by the compiler. We found that warning about compar-
isons addresses the problem in a more actionable way.

6 Related Work

Previous work in this area focuses on enhancing static analysis techniques to
soundly analyze programs with floating points. For instance [4,6,5] present
static analyses to spot the source of imprecision in floating point computa-

9



Fähndrich, Logozzo

tions. [9] introduces ideas to extend numerical abstract domains to the anal-
ysis of IEEE 754-compliant floating point values and [7] introduces program
transformation techniques to reduce the error in floating point computations.

Our work is orthogonal to those in that we are not interested in the actual
values of the computation but only in detecting situations that may cause
unexpected comparison results. The need for such detection is particularly
important to avoid runtime failures of contracts that seemingly have been
validated via symbolic execution.

7 Conclusions

We described a simple static analysis to detect the absence of “surprising”
behaviors of comparisons involving floating point numbers. The analysis is
motivated by feeedback from users of our Code Contract tools. They re-
ported false negatives similar to the example described in the introduction.
We integrated the analysis in the static checker tool for Code Contracts, and
experience shows it to be accurate enough.

Thanks. Many thanks to Matthias Jauernig, who was the first to report
the unsoundess in Clousot illustrated here. Thanks also to Juan Chen for the
detailed explanation of the floating point subsystem in the ARM architecture.

References

[1] ECMA. Common Language Runtime specification.

[2] M. Fähndrich and F. Logozzo. Static contract checking with abstract interpretation. In
FoVeOOS’10, LNCS. Springer-Verlag, 2010.

[3] American National Standard for Programming Languages. The C language specification, 1990.

[4] E. Goubault and S. Putot. Static analysis of finite precision computations. In VMCAI, pages
232–247, 2011.

[5] M. Martel. Propagation of roundoff errors in finite precision computations: A semantics
approach. In ESOP, pages 194–208, 2002.

[6] M. Martel. Static analysis of the numerical stability of loops. In SAS, pages 133–150, 2002.

[7] M. Martel. Program transformation for numerical precision. In PEPM, pages 101–110, 2009.

[8] B. Meyer. Eiffel: The Language. Prentice Hall, 1991.

[9] A. Miné. Relational abstract domains for the detection of floating-point run-time errors. In
ESOP’04.

[10] D. Monniaux. The pitfalls of verifying floating-point computations. ACM Trans. Program.
Lang. Syst., 30(3), 2008.

10


	Introduction
	The Language
	The Abstract Semantics
	Abstract Domain
	Abstract Semantics
	Checking
	Fixing the warnings

	Implementation and Experiment
	Discussion
	Related Work
	Conclusions
	References

